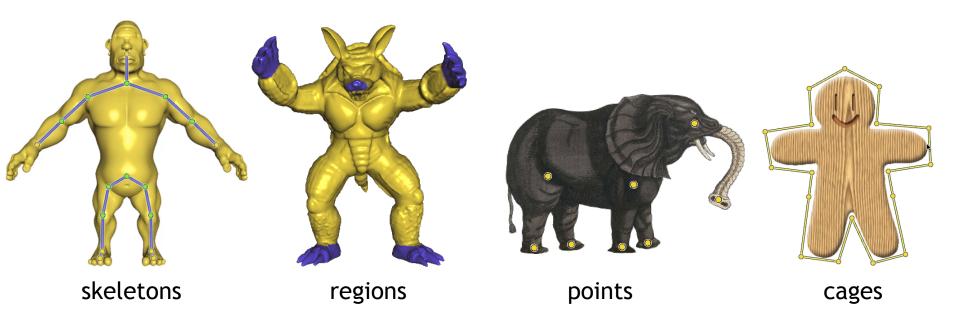
CS 6501

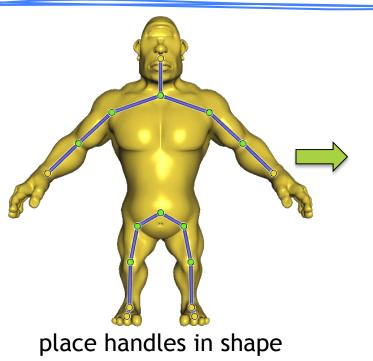
2D/3D Shape Manipulation, 3D Printing

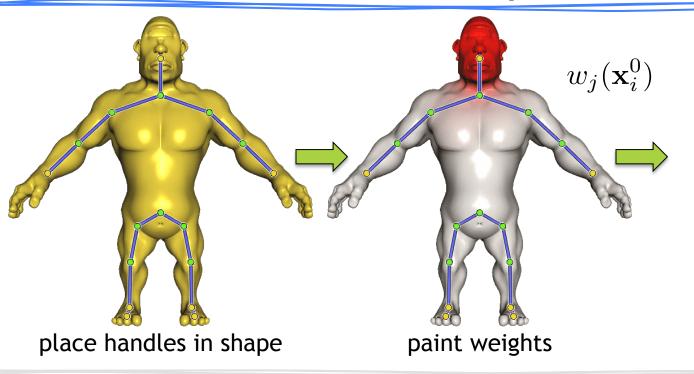
Linear Blend Skinning

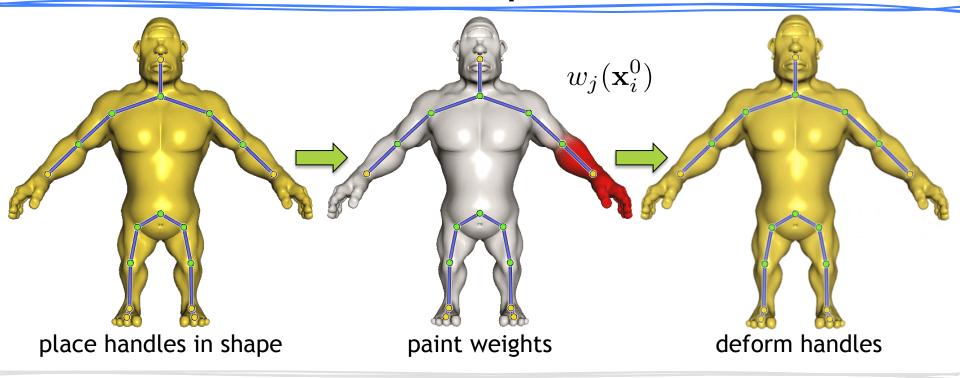
Slides from Olga Sorkine

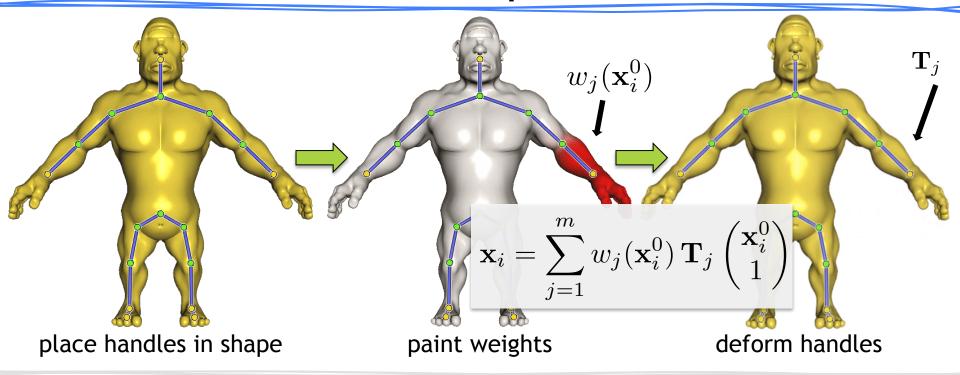
LBS generalizes to different handle types

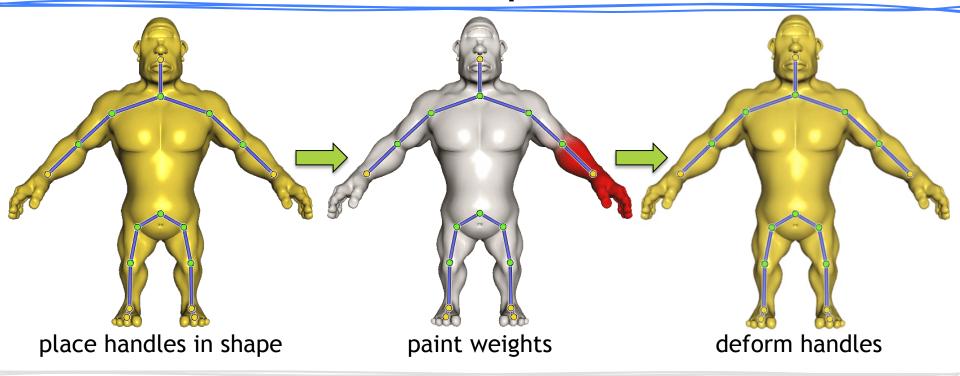






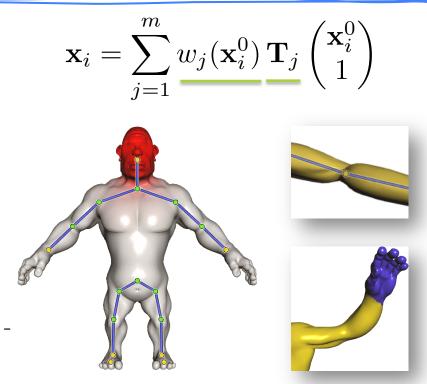






Challenges with LBS

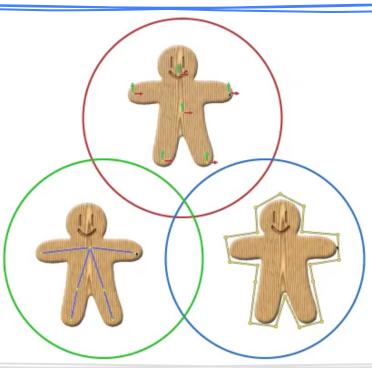
- Weight functions w_i
 - Need intuitive, general and automatic weights
- Degrees of freedom T_i
 - Let the energy decide!
- Richness of achievable deformations
 - Want to avoid common LBS pitfalls candy wrapper, collapses



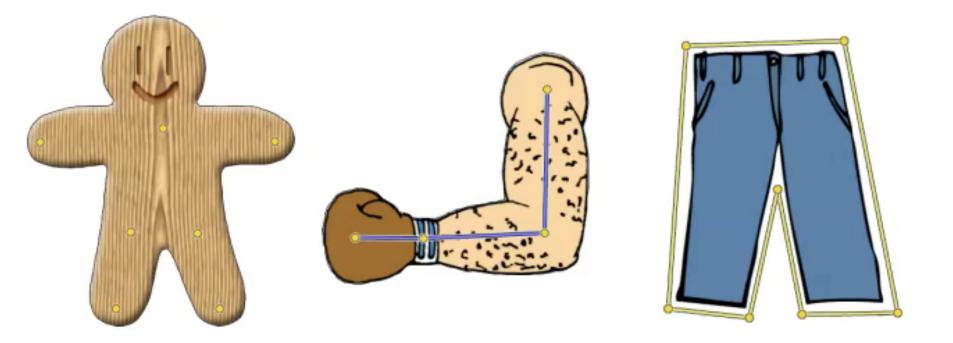
Alec Jacobson, Ilya Baran, Jovan Popović, S ACM SIGGRAPH 2011; selected for Research Highlights in CACM (2013)

Bounded Biharmonic Weights

Automatic weights that unify points, skeletons and cages



Weights should be smooth, shape-aware, positive and *intuitive*

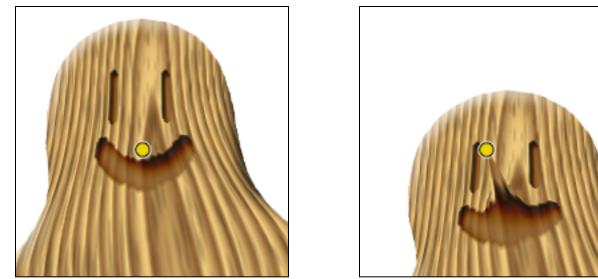


Weights must be smooth everywhere, especially at handles

Bounded Biharmonic Weights

Extension of Harmonic Coordinates [Joshi et al. 2005]

Weights must be smooth everywhere, especially at handles



Bounded Biharmonic Weights

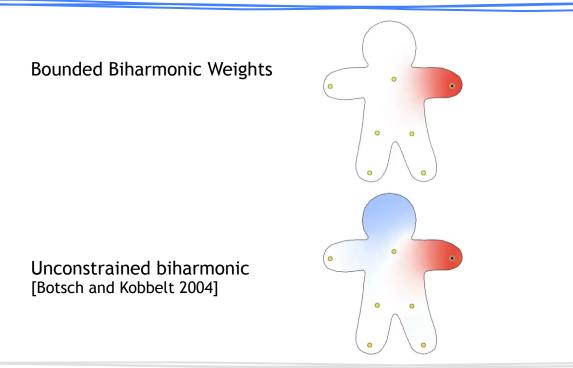
Extension of Harmonic Coordinates [Joshi et al. 2005]

Shape-awareness ensures respect of domain's features

Bounded Biharmonic Weights

Non-shape-aware methods e.g. [Schaefer et al. 2006]

Non-negative weights are necessary for intuitive response



Weights must maintain other simple, but important properties

$$\sum_{j \in H} w_j(\mathbf{x}^0) = 1$$

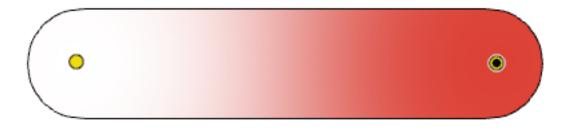
Handle vertices
$$w_j \Big|_{H_k} = \delta_{jk}$$

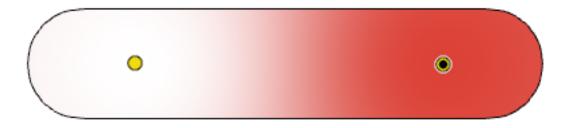
 w_j is linear along cage faces

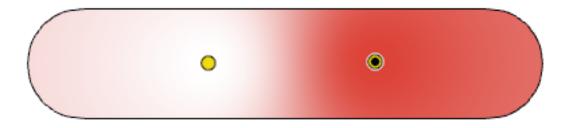
Partition of unity

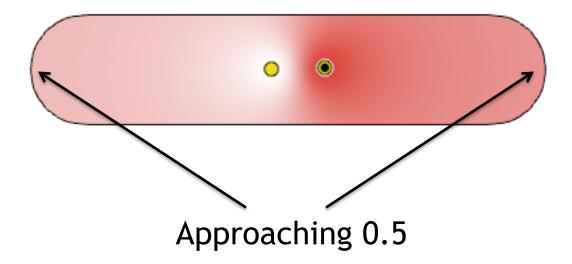
Interpolation of handles

How about $w_j(\mathbf{x}^0) = d(\mathbf{x}^0, H_j)^{-1}$?

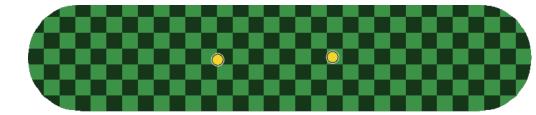




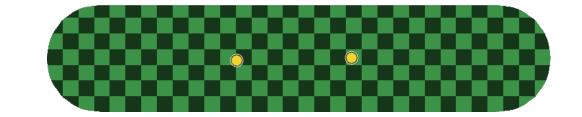




Inversedistance weights



BBW



Bounded biharmonic weights enforce properties as constraints to minimization

$$\underset{w_j}{\operatorname{arg\,min}} \frac{1}{2} \int_{\Omega} |\Delta w_j|^2 dV$$

$$w_j \Big|_{H_k} = \delta_{jk}$$

$$w_j \text{ is linear along cage faces}$$

Bounded biharmonic weights enforce properties as constraints to minimization

$$\underset{w_j}{\operatorname{arg\,min}} \frac{1}{2} \int_{\Omega} |\Delta w_j|^2 dV$$

$$w_j \Big|_{H_k} = \delta_{jk}$$

$$w_j \text{ is linear along cage faces}$$

Constant inequality constraints $0 \leq w_j(\mathbf{x}^0) \leq 1$ Partition of unity

 $\sum w_j(\mathbf{x}^0) = 1$

 $j \in H$

Bounded biharmonic weights enforce properties as constraints to minimization

$$\underset{w_j}{\operatorname{arg\,min}} \frac{1}{2} \int_{\Omega} |\Delta w_j|^2 dV$$

$$w_j \Big|_{H_k} = \delta_{jk}$$

$$w_j \text{ is linear along cage faces}$$

Constant inequality constraints $0 \leq w_j(\mathbf{x}^0) \leq 1$

Solve independently and normalize

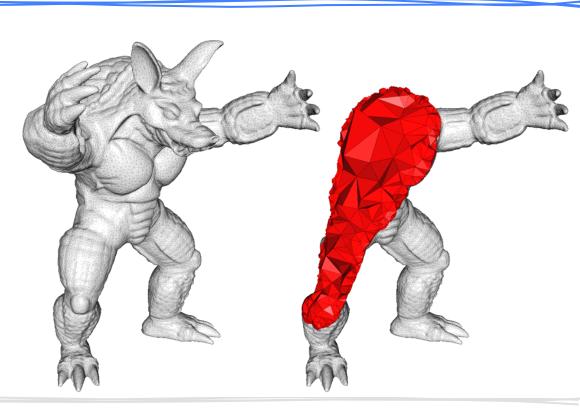
$$w_j(\mathbf{x}^0)$$

$$\frac{w_j(\mathbf{x}^0)}{\sum\limits_{i\in H} w_i(\mathbf{x}^0)}$$

Weights optimized as precomputation at bind-time

$$\begin{aligned} \arg\min_{w_j} \frac{1}{2} \int_{\Omega} |\Delta w_j|^2 dV \\ w_j \Big|_{H_k} &= \delta_{jk} \\ w_j \text{ is linear along cage faces} \\ 0 &\leq w_j(\mathbf{x}^0) \leq 1 \end{aligned}$$

FEM discretization 2D \rightarrow Triangle mesh 3D \rightarrow Tet mesh

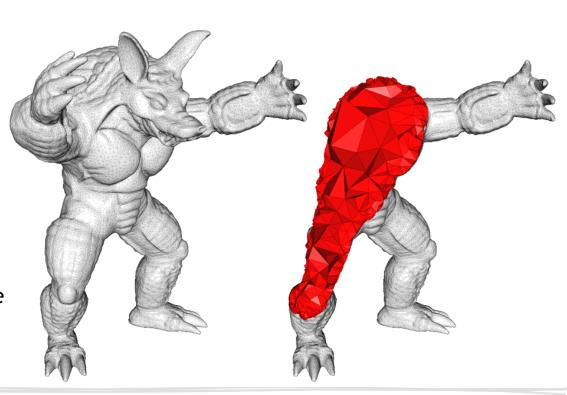


Weights optimized as precomputation at bind-time

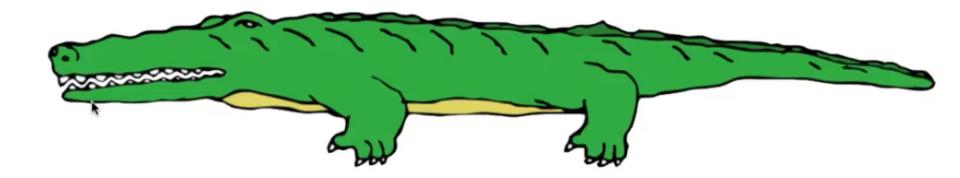
$$\begin{aligned} \arg\min_{w_j} \frac{1}{2} \int_{\Omega} |\Delta w_j|^2 dV \\ w_j \Big|_{H_k} &= \delta_{jk} \\ w_j \text{ is linear along cage faces} \\ 0 &\leq w_j(\mathbf{x}^0) \leq 1 \end{aligned}$$

Sparse quadratic programming with constant inequality constraints $2D \rightarrow$ less than second per handle

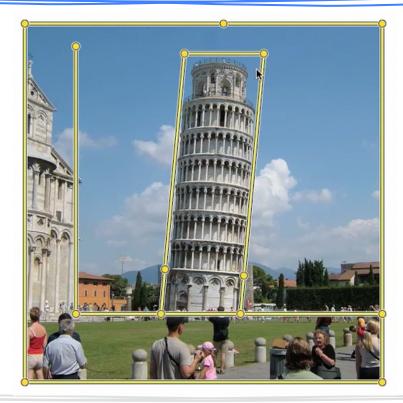
 $3D \rightarrow$ tens of seconds per handle



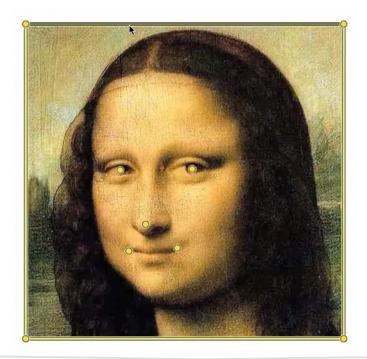
Some examples of BBW in action



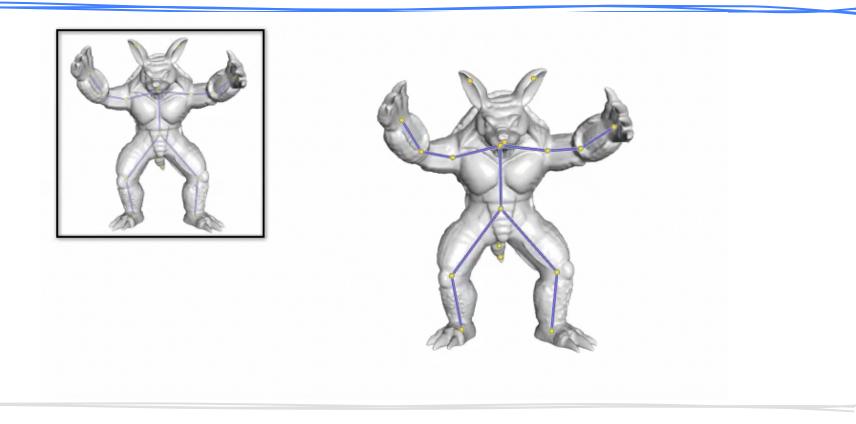
Some examples of BBW in action



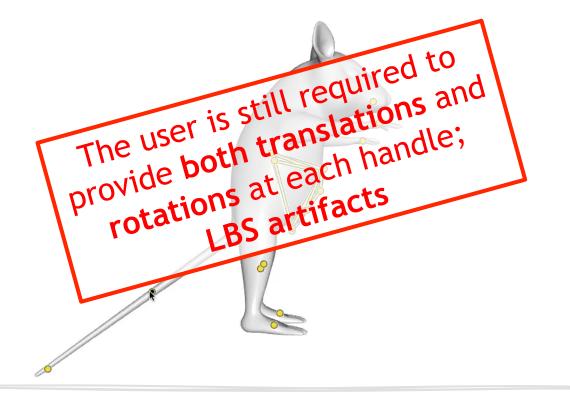
Some examples of BBW in action



3D Characters



Mixing different handle types



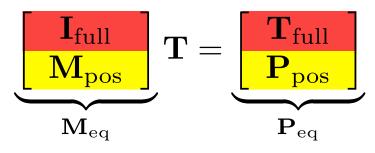
Alec Jacobson, Ilya Baran, Ladislav Kavan, Jovan Popović, S ACM SIGGRAPH 2012

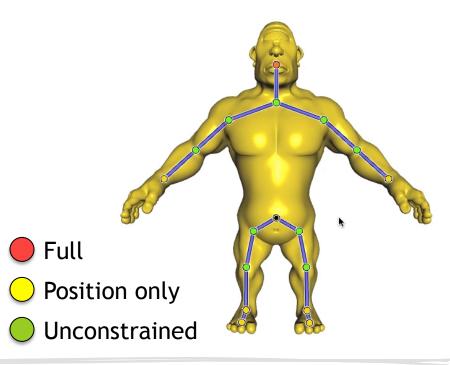
Fast Automatic Skinning Transformations

User specifies subset of parameters, automatically optimize remaining ones

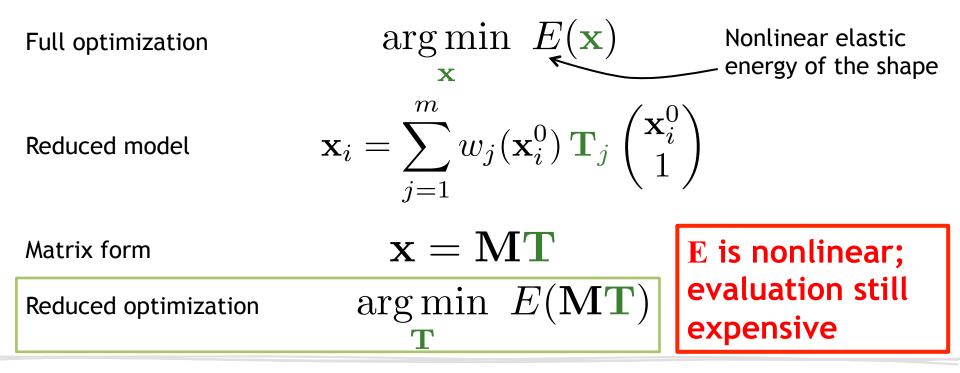
Reduced optimization $\underset{\mathbf{T}}{\operatorname{arg\,min}} E(\mathbf{MT})$

User constraints





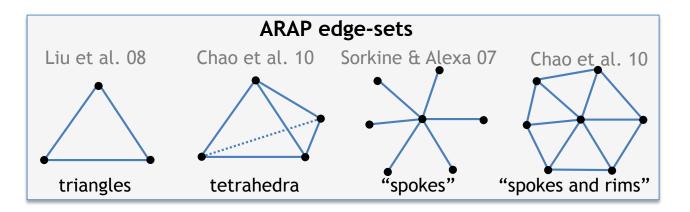
User specifies subset of parameters, automatically optimize remaining ones



We reduce any *as-rigid-as-possible* energies

Full energy
$$E(\mathbf{x}) = \sum_{k \in \text{Cells}} \sum_{(i,j) \in \mathcal{E}_k} c_{ijk} \| (\mathbf{x}_i - \mathbf{x}_j) - \mathbf{R}_k(\mathbf{x})(\mathbf{x}_i^0 - \mathbf{x}_j^0) \|^2$$

Best rotation that aligns deformed configuration \mathcal{E}_k to rest-pose



We reduce any *as-rigid-as-possible* energies

Full energy
$$E(\mathbf{x}) = \sum_{k \in \text{Cells}} \sum_{(i,j) \in \mathcal{E}_k} c_{ijk} \| (\mathbf{x}_i - \mathbf{x}_j) - \mathbf{R}_k(\mathbf{x}) (\mathbf{x}_i^0 - \mathbf{x}_j^0) \|^2$$

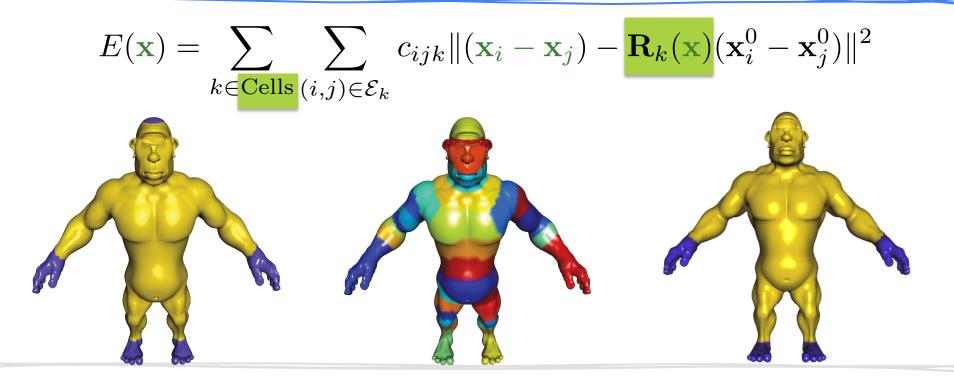
Best rotation that aligns deformed configuration \mathcal{E}_k to rest-pose

Reduction to LBS subspace:

$$\mathbf{x} = \mathbf{MT}$$

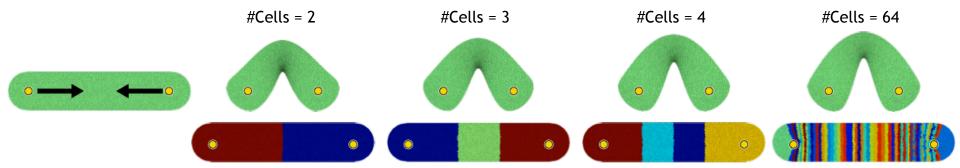
Problem: still many SVDs to do! $\#{\mathbf{R}_k(\mathbf{x})} = O(\#\text{vertices})$

Rotation evaluations may be reduced by clustering in *weight space*



Rotation evaluations may be reduced by clustering in *weight space*

$$E(\mathbf{x}) = \sum_{k \in \text{Cells}} \sum_{(i,j) \in \mathcal{E}_k} c_{ijk} \| (\mathbf{x}_i - \mathbf{x}_j) - \mathbf{R}_k(\mathbf{x}) (\mathbf{x}_i^0 - \mathbf{x}_j^0) \|^2$$



Real-time automatic degrees of freedom

With more and more user constraints we fall back to standard skinning

Extra weights would expand subspace to approximate elasticity better

$$\mathbf{x}_i = \sum_{j=1}^m w_j(\mathbf{x}_i^0) \, \mathbf{T}_j \begin{pmatrix} \mathbf{x}_i^0 \\ 1 \end{pmatrix}$$

$$\mathbf{x} = \mathbf{MT}$$

Extra weights would expand subspace to approximate elasticity better

$$\mathbf{x}_{i} = \sum_{j=1}^{m} w_{j}(\mathbf{x}_{i}^{0}) \mathbf{T}_{j} \begin{pmatrix} \mathbf{x}_{i}^{0} \\ 1 \end{pmatrix} + \sum_{k=1}^{m_{\text{extra}}} \tilde{w}_{k}(\mathbf{x}_{i}^{0}) \mathbf{T}_{k} \begin{pmatrix} \mathbf{x}_{i}^{0} \\ 1 \end{pmatrix}$$

$\mathbf{x} = \mathbf{M}\mathbf{T} + \mathbf{M}_{\mathrm{extra}}\mathbf{T}_{\mathrm{extra}}$

Extra weights would expand subspace to approximate elasticity better

Need:

- smooth
- local, sparse
- respect intent of original weights

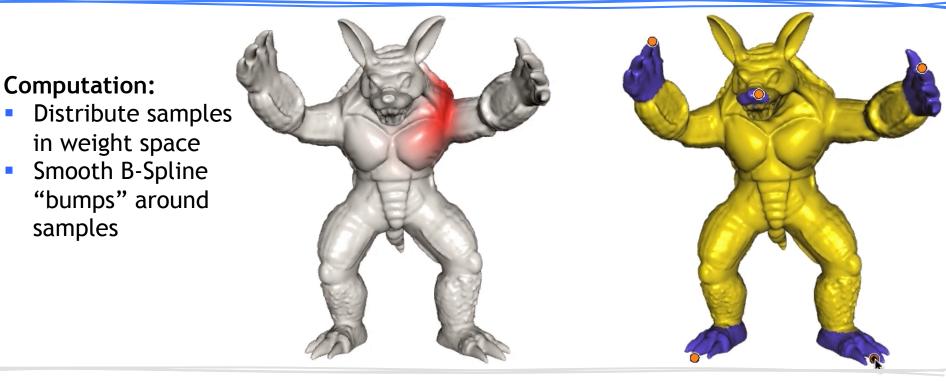
Do not need:

- partition of unity
- interpolation
- scale, sign, etc.

$$\mathbf{x}_{i} = \sum_{j=1}^{m} w_{j}(\mathbf{x}_{i}^{0}) \mathbf{T}_{j} \begin{pmatrix} \mathbf{x}_{i}^{0} \\ 1 \end{pmatrix} + \sum_{k=1}^{m_{\text{extra}}} \tilde{w}_{k}(\mathbf{x}_{i}^{0}) \mathbf{T}_{k} \begin{pmatrix} \mathbf{x}_{i}^{0} \\ 1 \end{pmatrix}$$

$$\mathbf{x} = \mathbf{M}\mathbf{T} + \mathbf{M}_{\mathrm{extra}}\mathbf{T}_{\mathrm{extra}}$$

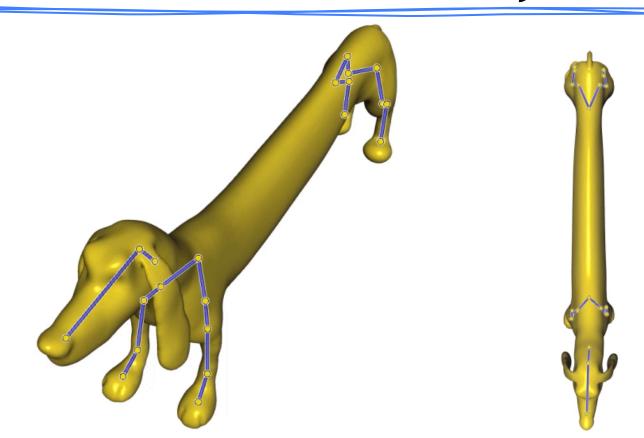
Extra weights expand deformation subspace, while respecting user intent



Subspace now rich enough for lightning fast variational elastic modeling

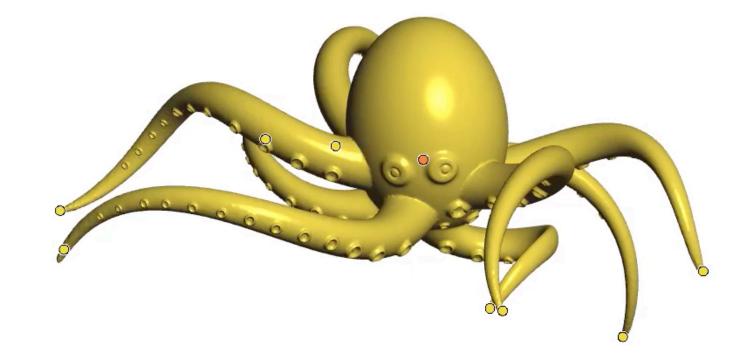
Reference nonlinear deformation: Our reduced method PriMo [Botsch et al. SGP 2006]

Extra weights and disjoint skeletons make flexible control easy

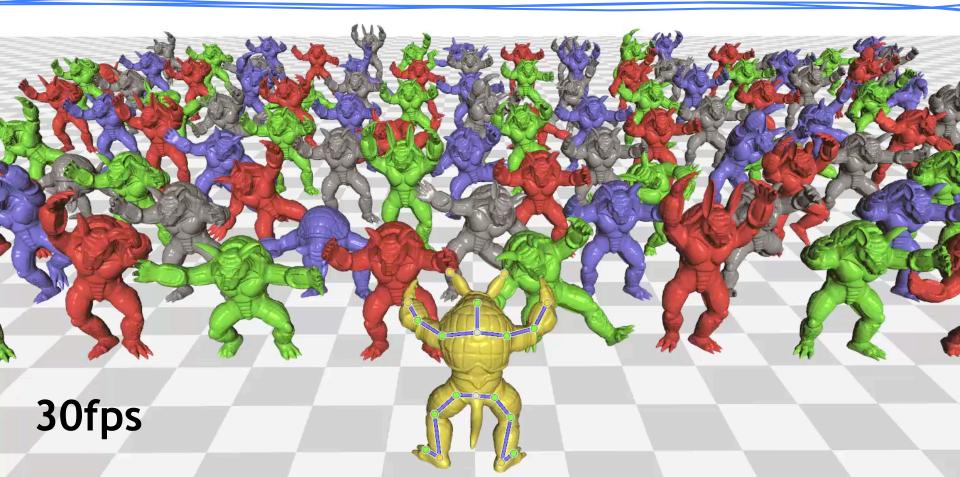


Shape-aware IK!

Simple drag-only interface for point handles



100 Armadillos, 86K triangles each

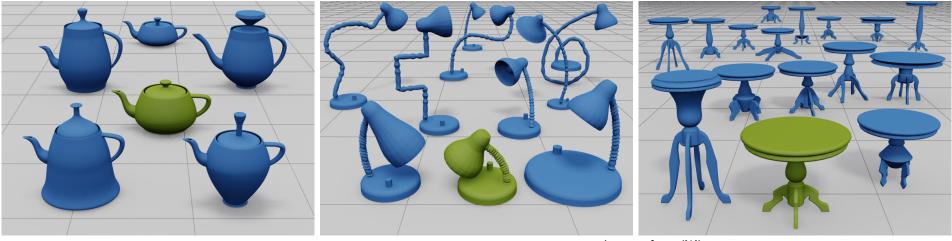


Realtime variational mesh editing solved...

What next??

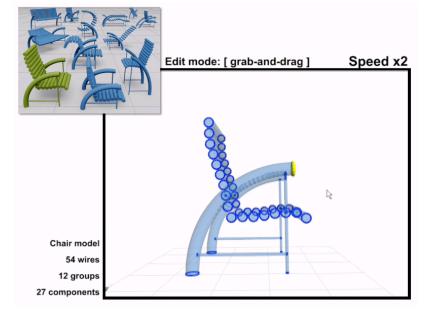
Non-Elastic Deformations

- Many shapes, e.g. man-made, are **not** made of rubber
 - Extract and preserve high-level structures while editing!

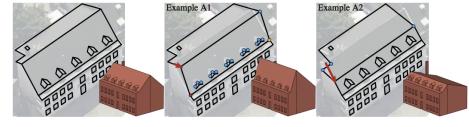


Images from iWires [Gal, S, Mitra, Cohen-Or, SIGGRAPH 2009]

Non-Elastic Deformations



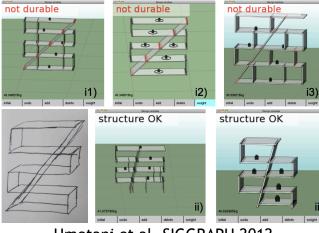
iWires [Gal, S, Mitra, Cohen-Or 2009] Sequels, e.g. "Component-wise controllers for structure-preserving shape manipulation", EG 2011



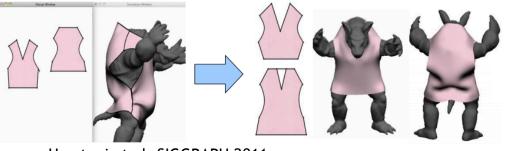
Habbecke & Kobbelt, EG 2012

Bokeloh et al. SIGGRAPH 2012 Milliez et al. EG 2013

- From modeling directly to manufacturing
- Need to find the right balance between physical constraints and artistic freedom



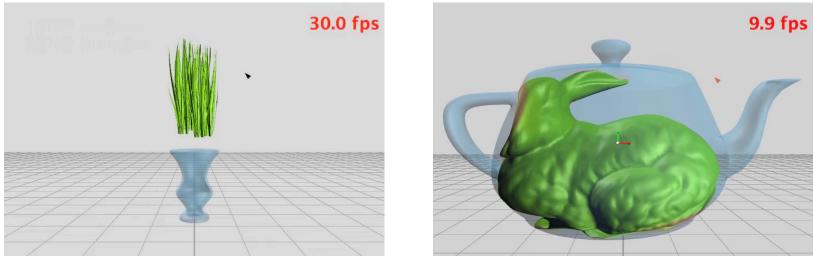
Umetani et al. SIGGRAPH 2012



Umetani et al. SIGGRAPH 2011

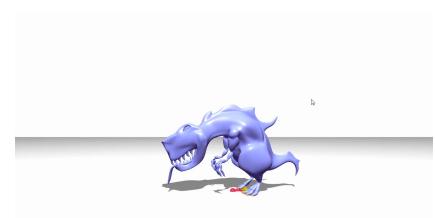
• Specialized systems vs. general principles?

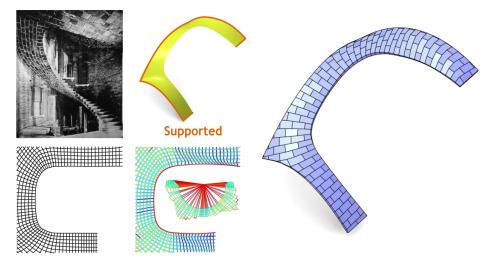
- Specialized systems vs. general principles?
- Example: Self-intersections and collisions



"Interface Aware Geometric Modeling", Harmon, Panozzo, S, Zorin, SIGGRAPH ASIA 2011

- Specialized systems vs. general principles?
- Example: Gravity

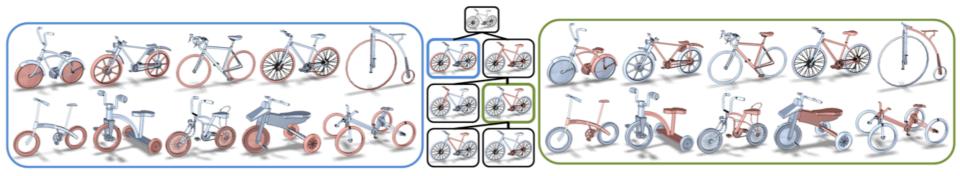




"Make It Stand", Prevost, Whiting, Lefebvre, S SIGGRAPH 2013 "Designing Masonry Models", Panozzo, Block, S SIGGRAPH 2013

Big Data

• Large model collections: learn model structure, semantic segmentation, inspiration for modeling



"Co-Hierarchical Analysis of Shape Structures", van Kaick et al., SIGGRAPH 2013

Big Data

• Large model collections: learn model structure, semantic segmentation, **inspiration for modeling**

"Probabilistic Reasoning for Assembly-Based 3D Modeling", Chaudhuri et al., SIGGRAPH 2011

• Not just static data but **modeling process data**?

Thank You!