
Acknowledgement: slides by Jason Lawrence, Misha Kazhdan, Allison Klein, Tom
Funkhouser, Adam Finkelstein and David Dobkin

Image Filtering,
Warping and Sampling

Connelly Barnes
CS 4810

University of Virginia

Outline

2

‣ Image Processing
‣ Image Warping
‣ Image Sampling

Image Processing

3

‣ What about the case when the modification that we would like to
make to a pixel depends on the pixels around it?
‣ Blurring
‣ Edge Detection
‣ Etc.

Multi-Pixel Operations

4

‣ In the simplest case, we define a mask of weights which tells us
how the values at adjacent pixels should be combined to
generate the new value.

Blurring

5

‣ To blur across pixels, define a mask:
‣ Whose value is largest at the center pixel
‣ Whose entries sum to one

Original Blur

Filter =

Blurring

6

Pixel(x,y): red = 36
 green = 36
 blue = 0

Filter =

Blurring

7

Pixel(x,y): red = 36
 green = 36
 blue = 0

Pixel(x,y).red and its
red neighbors

X - 1 X X + 1

Y - 1 36 109 146

Y 32 36 109

Y + 1 32 36 73

Filter =

Blurring

8

X - 1 X X + 1

Y - 1 36 109 146

Y 32 36 109

Y + 1 32 36 73

New value for Pixel(x,y).red =
(36 * 1/16) + (109 * 2/16) + (146 * 1/16)
(32 * 2/16) + (36 * 4/16) + (109 * 2/16)
(32 * 1/16) + (36 * 2/16) + (73 * 1/16)

Pixel(x,y).red and its
red neighbors

Filter =

Blurring

9

X - 1 X X + 1

Y - 1 36 109 146

Y 32 36 109

Y + 1 32 36 73

New value for Pixel(x,y).red = 62.69

Pixel(x,y).red and its
red neighbors

Filter =

Blurring

10

Original

New value for Pixel(x,y).red = 63

Blur

Blurring

11

‣ Repeat for each pixel and each color channel
‣ Note 1: Keep source and destination separate to avoid “drift”
‣ Note 2: For boundary pixels, not all neighbors are used, and you

need to normalize the mask so that the sum of the values is
correct

Blurring

12

‣ In general, the mask can have arbitrary size:
‣ We can express a smaller mask as a bigger one by padding

with zeros.

Original Blur

Blurring

13

‣ More non-zero entries to give rise to a wider blur

Original Narrow Blur Wide Blur

Blurring

14

‣ A general way for defining the entries of an nxn blurring mask is
to use the values of a Gaussian:

‣ σ equals the mask radius (“n/2 for an n x n mask”)
‣ x is i’s horizontal distance from center pixel
‣ y is j’s vertical distance from center pixel
‣ Don’t forget to normalize!

Gaussian[i, j] = e�
x

2+y

2

2�2

Bivariate Gaussian Function

15

Gaussian[i, j] = e�
x

2+y

2

2�2

aka “Normal Distribution”

Edge Detection

16

‣ To find the edges in an image, define a mask:
‣ Whose value is largest at the center pixel
‣ Whose entries sum to zero.

‣ Edge pixels are those whose value is larger (or smaller) than
those of its neighbors.

Original Highlighted Edges

Filter =

Edge Detection

17

Pixel(x,y): red = 36
 green = 36
 blue = 0

Filter =

Edge Detection

18

Pixel(x,y): red = 36
 green = 36
 blue = 0

X - 1 X X + 1

Y - 1 36 109 146

Y 32 36 109

Y + 1 32 36 73

Filter =

Pixel(x,y).red and its
red neighbors

Edge Detection

19

X - 1 X X + 1

Y - 1 36 109 146

Y 32 36 109

Y + 1 32 36 73

New value for Pixel(x,y).red =
(36 * -1) + (109 * -1) + (146 * -1)
(32 * -1) + (36 * 8) + (109 * -1)
(32 * -1) + (36 * -1) + (73 * -1)

Filter =

Pixel(x,y).red and its
red neighbors

Edge Detection

20

X - 1 X X + 1

Y - 1 36 109 146

Y 32 36 109

Y + 1 32 36 73

New value for Pixel(x,y).red = -285

Filter =

Pixel(x,y).red and its
red neighbors

Edge Detection

21

X - 1 X X + 1

Y - 1 36 109 146

Y 32 36 109

Y + 1 32 36 73

New value for Pixel(x,y).red = 0

Filter =

Pixel(x,y).red and its
red neighbors

Edge Detection

22

New value for Pixel(x,y).red = 0

Edge Mask is a Derivative Filter

23

@G

@x

/ � x

�

2
e�

x

2+y

2

2�2

Outline

24

‣ Image Processing
‣ Image Warping
‣ Image Sampling

Image Warping

25

‣ Move pixels of image
‣ Mapping
‣ Resampling

Source image Destination image

Warp

Overview

26

‣ Mapping
‣ Forward
‣ Reverse

‣ Resampling
‣ Point sampling
‣ Triangle filter
‣ Gaussian filter

Mapping

27

‣ Transformation: describe the destination location (x,y) for every
source location (u,v)

v

u

y

x

Example Mappings

28

‣ Scale by factor:
‣ x = factor * u
‣ y = factor * v

Scale
0.8

y

x

v

u

Example Mappings

29

‣ Rotate by θ degrees:
‣ x = ucosθ - vsinθ
‣ y = usinθ + vcosθ

Rotate
30 deg

v

u

y

x

Example Mappings

30

‣ Shear in X by factor:
‣ x = u + factor * v
‣ y = v

‣ Shear in Y by factor:
‣ x = u
‣ y = v + factor * u

Shear X
1.3

Shear Y
1.3

v

u

v

u

y

x

y

x

Other Mappings

31

‣ Any function of u and v:
‣ x = fx(u,v)
‣ y = fy(u,v)

Fish-eye

“Swirl”

“Rain”

Image Warping Attempt 1 (Forward Mapping)

32

for (int u = 0; u < umax; u++)
 for (int v = 0; v < vmax; v++)
 float x = fx(u,v);
 float y = fy(u,v);
 dst(x,y) = src(u,v);

Source image Destination image

(u,v)
(x,y)

f

Forward Mapping

33

Rotate
-30

v

u

y

x

Forward Mapping

34

Rotate
-30

v

u

y

x

Many source pixels
can map to same
destination pixel

Forward Mapping

35

Rotate
-30

v

u

y

x

Some destination pixels
may not be covered

Image Warping Attempt 2 (Reverse Mapping)

36

for (int x = 0; x < xmax; x++)
 for (int y = 0; y < ymax; y++)
 float u = fx-1(x,y);
 float v = fy-1(x,y);
 dst(x,y) = src(u,v);

Source image Destination image

(u,v)
(x,y)

f

Reverse Mapping – GOOD!

37

‣ Iterate over destination image
‣ Must resample source
‣ May oversample, but much simpler!

Rotate
-30

v

u

y

x

Resampling

38

Source image Destination image

(u,v)
(x,y)

Issue: (u,v) does not usually
have integer coordinates

Overview

39

‣ Mapping
‣ Forward
‣ Reverse

‣ Resampling
‣ Nearest Point Sampling
‣ Bilinear Sampling
‣ Gaussian Sampling

Nearest Point Sampling

40

int iu = floor(u+0.5);

int iv = floor(v+0.5);

dst[x,y] = src[iu,iv];

Rotate
-30

Scale
0.5

v

u

y

x

Bilinear Sampling

41

‣ Bilinearly interpolate four closest pixels
a = linear interpolation of src(x1,y1) and src(x2,y1)
b = linear interpolation of src(x1,y2) and src(x2,y2)
dst(x,y) = linear interpolation of “a” and “b”

x1 = floor(x);
x2 = x1 + 1;
y1 = floor(y);
y2 = y1 + 1;
dx = x – x1;
dy = y – y1;
a = src(x1,y1)*(1-dx) + src(x2,y1)*dx;
b = src(x1,y2)*(1-dx) + src(x2,y2)*dx;
dst(x,y) = a*(1-dy) + b*dy;

(x1,y1)

(x2,y2)

(x2,y1)

(x1,y2)

(x,y)

b

a

Bilinear Sampling

42

‣ Bilinearly interpolate four closest pixels
a = linear interpolation of src(x1,y1) and src(x2,y1)
b = linear interpolation of src(x1,y2) and src(x2,y2)
dst(x,y) = linear interpolation of “a” and “b”

x1 = floor(x);
x2 = x1 + 1;
y1 = floor(y);
y2 = y1 + 1;
dx = x – x1;
dy = y – y1;
a = src(x1,y1)*(1-dx) + src(x2,y1)*dx;
b = src(x1,y2)*(1-dx) + src(x2,y2)*dx;
dst(x,y) = a*(1-dy) + b*dy;

(x1,y1)

(x2,y2)

(x2,y1)

(x1,y2)

(x,y)

b

a

Make sure to test that the pixels
(x1,y1), (x2,y2), (x1,y2), and
(x2,y1) are within the image.

Gaussian Sampling

43

‣ Compute weighted sum of pixel neighborhood:
‣ The blending weights are  

the normalized values of 
a Gaussian function.

(x,y)

44

Nearest
Neighbor

Filtering Methods Comparison

45Bilinear

Filtering Methods Comparison

46Gaussian

Filtering Methods Comparison

47Gaussian

Trade-offs:

1. Jagged edges versus blurring

2. Computational speed

Image Warping Implementation

48

for (int x = 0; x < xmax; x++)
 for (int y = 0; y < ymax; y++)
 float u = fx-1(x,y);
 float v = fy-1(x,y);
 dst(x,y) = resample_src(u,v,w);

Source image Destination image

(u,v)

(x,y)

f

Image Warping Implementation

49

for (int x = 0; x < xmax; x++)
 for (int y = 0; y < ymax; y++)
 float u = fx-1(x,y);
 float v = fy-1(x,y);
 dst(x,y) = resample_src(u,v,w);

Source image Destination image

(u,v)

(x,y)

f

w

Example: Scale (src, dst, s)

50

float w = ??;
for (int x = 0; x < xmax; x++)
 for (int y = 0; y < ymax; y++)
 float u = x / s;
 float v = y / s;
 dst(x,y) = resample_src(u,v,w);

Scale
0.5

y

x

v

u

(u,v)

(x,y)

Example: Scale (src, dst, s)

51

Scale
0.5

y

x

v

u

(u,v)

(x,y)w=1.0/s

float w = ??;
for (int x = 0; x < xmax; x++)
 for (int y = 0; y < ymax; y++)
 float u = x / s;
 float v = y / s;
 dst(x,y) = resample_src(u,v,w);

Example: Rotate (src, dst, theta)

52

float w = ??;
for (int x = 0; x < xmax; x++)
 for (int y = 0; y < ymax; y++)
 float u = x*cos(-θ) - y*sin(-θ);
 float v = x*sin(-θ) + y*cos(-θ);
 dst(x,y) = resample_src(u,v,w);

Rotate
30

v

u

(u,v)

x = ucosθ - vsinθ
y = usinθ + vcosθ

y

x

(x,y)

Example: Rotate (src, dst, theta)

53

Rotate
30

v

u

(u,v)

x = ucosθ - vsinθ
y = usinθ + vcosθ

y

x

(x,y)w=1.0

float w = ??;
for (int x = 0; x < xmax; x++)
 for (int y = 0; y < ymax; y++)
 float u = x*cos(-θ) - y*sin(-θ);
 float v = x*sin(-θ) + y*cos(-θ);
 dst(x,y) = resample_src(u,v,w);

Example: Swirl (src, dst, theta) ???

54

float w = ??;
for (int x = 0; x < xmax; x++)
 for (int y = 0; y < ymax; y++)
 float u = rot(dist(x,xcenter)*theta);
 float v = rot(dist(y,ycenter)*theta);
 dst(x,y) = resample_src(u,v,w);

Swirl
45

y

x

v

u

(u,v) f
(x,y)

Outline

55

‣ Image Processing
‣ Image Warping
‣ Image Sampling

Sampling Questions

56

‣ How should we sample an image:
‣ Nearest Point Sampling?
‣ Bilinear Sampling?
‣ Gaussian Sampling?
‣ Something Else?

Image Representation

57

What is an image?
An image is a discrete collection of pixels, each representing a

sample of a continuous function.

Continuous image Digital image

Sampling

58

Let’s look at a 1D example:

Continuous Function Discrete Samples

Sampling

59

At in-between positions, values are undefined.
How do we determine the value of a sample at these locations?

Discrete Samples

?

Sampling

60
Discrete Samples

We need to reconstruct a continuous
function, turning a collection of discrete
samples into a 1D function that we can
sample at arbitrary locations.

?

At in-between positions, values are undefined.
How do we determine the value of a sample at these locations?

Sampling

61
Discrete Samples

?

In other words: “How do
we define the in-between
values?”

At in-between positions, values are undefined.
How do we determine the value of a sample at these locations?

We need to reconstruct a continuous
function, turning a collection of discrete
samples into a 1D function that we can
sample at arbitrary locations.

Nearest Point Sampling

62

The value at a point is the value of the closest discrete sample.

Discrete SamplesReconstructed Function

?

Nearest Point Sampling

63

The value at a point is the value of the closest discrete sample.

Discrete SamplesReconstructed Function

?

The reconstruction:

ü Interpolates the samples

û Is not continuous

Bilinear Sampling

64

The value at a point is the (bi)linear interpolation of the two
surrounding samples.

Discrete SamplesReconstructed Function

?

Bilinear Sampling

65

The value at a point is the (bi)linear interpolation of the two
surrounding samples.

Discrete SamplesReconstructed Function

?

The reconstruction:

ü Interpolates the samples

û Is not smooth

Gaussian Sampling

66

The value at a point is the Gaussian average of the surrounding
samples.

Discrete SamplesReconstructed Function

?

Gaussian Sampling

67

The value at a point is the Gaussian average of the surrounding
samples.

Discrete SamplesReconstructed Function

?

The reconstruction:

û Does not interpolate

ü Is smooth

Image Sampling

68

‣ How do we reconstruct a function from a collection of samples?

?
Samples Reconstruction

Image Sampling

69

‣ How do we reconstruct a function from a collection of samples?
‣ To answer this question, we need to understand what kind of

information the samples contain.

?
Samples ReconstructionOriginal Function

Image Sampling

70

‣ How do we reconstruct a function from a collection of samples?
‣ To answer this question, we need to understand what kind of

information the samples contain.
‣ Signal processing helps us understand this better.

?
Samples ReconstructionOriginal Function

Fourier Analysis

71

‣ Fourier analysis provides a way for expressing (or approximating)
any signal as a sum of scaled and shifted cosine functions.

The Building Blocks for the Fourier Decomposition

cos(0θ) cos(1θ) cos(2θ) cos(3θ)

cos(4θ) cos(5θ) cos(6θ)
…

π π π π

π π π

-π -π -π -π

-π -π -π

Fourier Analysis

72

‣ As higher frequency components are added to the
approximation, finer details are captured.

Initial Function 0th Order Approximation

0th Order Component

f(θ)

f0(θ)=a0(cos0(θ+φ0)

Fourier Analysis

73

‣ As higher frequency components are added to the
approximation, finer details are captured.

Initial Function 1st Order Approximation

+

1st Order Component

0th Order Approximation

f(θ)

f1(θ)=a1(cos1(θ+φ1)

Fourier Analysis

74

‣ As higher frequency components are added to the
approximation, finer details are captured.

Initial Function 2nd Order Approximation

+

2nd Order Component

1st Order Approximation

f(θ)

f2(θ)=a2(cos2(θ+φ2)

Fourier Analysis

75

‣ As higher frequency components are added to the
approximation, finer details are captured.

Initial Function 3rd Order Approximation

+

3rd Order Component

2nd Order Approximation

f(θ)

f3(θ)=a3(cos3(θ+φ3)

Fourier Analysis

76

‣ As higher frequency components are added to the
approximation, finer details are captured.

Initial Function 4th Order Approximation

+

4th Order Component

3rd Order Approximation

f(θ)

f4(θ)=a4(cos4(θ+φ4)

Fourier Analysis

77

‣ As higher frequency components are added to the
approximation, finer details are captured.

Initial Function 5th Order Approximation

+

5th Order Component

4th Order Approximation

f(θ)

f5(θ)=a5(cos5(θ+φ5)

Fourier Analysis

78

‣ As higher frequency components are added to the
approximation, finer details are captured.

Initial Function 6th Order Approximation

+

6th Order Component

5th Order Approximation

f(θ)

f6(θ)=a6(cos6(θ+φ6)

Fourier Analysis

79

‣ As higher frequency components are added to the
approximation, finer details are captured.

Initial Function 7th Order Approximation

+

7th Order Component

6th Order Approximation

f(θ)

f7(θ)=a7(cos7(θ+φ7)

Fourier Analysis

80

‣ As higher frequency components are added to the
approximation, finer details are captured.

Initial Function 8th Order Approximation

+

8th Order Component

7th Order Approximation

f(θ)

f8(θ)=a8(cos8(θ+φ8)

Fourier Analysis

81

‣ As higher frequency components are added to the
approximation, finer details are captured.

Initial Function 9th Order Approximation

+

9th Order Component

8th Order Approximation

f(θ)

f9(θ)=a9(cos9(θ+φ9)

Fourier Analysis

82

‣ As higher frequency components are added to the
approximation, finer details are captured.

Initial Function 10th Order Approximation

+

10th Order Component

9th Order Approximation

f(θ)

f10(θ)=a10(cos10(θ
+φ10)

Fourier Analysis

83

‣ As higher frequency components are added to the
approximation, finer details are captured.

Initial Function 11th Order Approximation

+

11th Order Component

10th Order
Approximation

f(θ)

f11(θ)=a11(cos11(θ
+φ11)

Fourier Analysis

84

‣ As higher frequency components are added to the
approximation, finer details are captured.

Initial Function 12th Order Approximation

+

12th Order Component

11th Order Approximation

f(θ)

f12(θ)=a12(cos12(θ
+φ12)

Fourier Analysis

85

‣ As higher frequency components are added to the
approximation, finer details are captured.

Initial Function 13th Order Approximation

+

13th Order Component

12th Order
Approximation

f(θ)

f13(θ)=a13(cos13(θ
+φ13)

Fourier Analysis

86

‣ As higher frequency components are added to the
approximation, finer details are captured.

Initial Function 14th Order Approximation

+

14th Order Component

13th Order
Approximation

f(θ)

f14(θ)=a14(cos14(θ
+φ14)

Fourier Analysis

87

‣ As higher frequency components are added to the
approximation, finer details are captured.

Initial Function 15th Order Approximation

+

15th Order Component

14th Order
Approximation

f(θ)

f15(θ)=a15(cos15(θ
+φ15)

Fourier Analysis

88

‣ As higher frequency components are added to the
approximation, finer details are captured.

Initial Function 16th Order Approximation

+

16th Order Component

15th Order
Approximation

f(θ)

f16(θ)=a16(cos16(θ
+φ16)

Fourier Analysis

89

‣ Combining all of the frequency components together, we get the
initial function.

Initial Function

…

+ + + +

+ + + +

=

f(θ)

f0(θ) f1(θ) f2(θ) f3(θ) f4(θ)

f5(θ) f6(θ) f7(θ) f8(θ)

ak: amplitude of the kth frequency component 
φk: shift of the kth frequency component

Question

90

‣ As higher frequency components are added to the
approximation, finer details are captured.

‣ If we have n samples, what is the highest frequency that can be
represented?

Initial Function

…

+ + + +

+ + + +

=

f(θ)

f0(θ) f1(θ) f2(θ) f3(θ) f4(θ)

f5(θ) f6(θ) f7(θ) f8(θ)

Question

91

‣ As higher frequency components are added to the
approximation, finer details are captured.

‣ If we have n samples, what is the highest frequency that can be
represented?

Initial Function

…

+ + + +

+ + + +

=

f(θ)

f0(θ) f1(θ) f2(θ) f3(θ) f4(θ)

f5(θ) f6(θ) f7(θ) f8(θ)

Each frequency component has two degrees of freedom:
• Amplitude
• Shift

With n samples we can represent the first n/2 frequency 
components

Sampling Theorem

92

‣ A signal can be reconstructed from its samples, if the original
signal has no frequencies above 1/2 the sampling frequency –
Shannon’s Theorem

‣ The minimum sampling rate for band-limited function is called the
“Nyquist rate”

A signal is band-limited if its highest
non-zero frequency is bounded.
The frequency is called the bandwidth.

Question

93

‣ What if we have only n samples and we try to reconstruct a
function with frequencies larger than the Nyquist frequency (n/2)?

Aliasing

94

‣ When a high-frequency signal is sampled with insufficiently many
samples, it will be perceived as a lower-frequency signal. This
masking of higher frequencies as lower ones is referred to as
aliasing.

π-π

Aliasing

95

‣ When a high-frequency signal is sampled with insufficiently many
samples, it will be perceived as a lower-frequency signal. This
masking of higher frequencies as lower ones is referred to as
aliasing.

π-π

Aliasing

96

‣ When a high-frequency signal is sampled with insufficiently many
samples, it will be perceived as a lower-frequency signal. This
masking of higher frequencies as lower ones is referred to as
aliasing.

π-π

Aliasing

97

‣ When a high-frequency signal is sampled with insufficiently many
samples, it will be perceived as a lower-frequency signal. This
masking of higher frequencies as lower ones is referred to as
aliasing.

π-π

Temporal Aliasing

98

‣ Artifacts due to limited temporal resolution

99

Nearest
Neighbor

Sampling

100

‣ There are two problems:
‣ You don’t have enough samples to correctly reconstruct your

high-frequency information
‣ You corrupt the low-frequency information because the high-

frequencies mask themselves as lower ones.

Anti-Aliasing

101

Two possible ways to address aliasing:
‣ Sample at higher rate
• Pre-filter to form band-limited signal

Anti-Aliasing

102

Two possible ways to address aliasing:
‣ Sample at higher rate
‣ Not always possible
‣ Still rendering to fixed resolution

• Pre-filter to form band-limited signal

Anti-Aliasing

103

Two possible ways to address aliasing:
• Sample at higher rate
‣ Pre-filter to form a band-limited signal
‣ You still don’t get your high frequencies, but at least the low

frequencies are uncorrupted.

Fourier Analysis

104

‣ If we just look at how much information each frequency
contributes, we obtain the power spectrum of the signal:

Initial Function

…

+ + + +

+ + + +

=

Fourier Analysis

105

‣ If we just look at how much information each frequency
contributes, we obtain the power spectrum of the signal:

Initial Function

…

+ + + +

+ + + +

=

Power Spectrum

Pre-Filtering

106

‣ Band-limit by discarding the high-frequency components of the
Frequency decomposition.

Initial Power Spectrum Band-Limited Power Spectrum

Pre-Filtering

107

‣ Band-limit by discarding the high-frequency components of the
Fourier decomposition.

‣ We can do this by multiplying the frequency components by a 0/1
function:

1

X =

Initial Power Spectrum Band-Limited SpectrumFrequency Filter

Pre-Filtering

108

‣ Band-limit by discarding the high-frequency components of the
Fourier decomposition.

‣ We can do this by multiplying the frequency components by a 0/1
function:

1

X =

Initial Power Spectrum Band-Limited SpectrumFrequency Filter

Fourier Theory

109

‣ A fundamental fact from Fourier theory is that multiplication in the
frequency domain is equivalent to convolution in the spatial
domain.

Convolution

110

‣ To convolve two functions f and g, we resample the function f
using the weights given by g.

f(θ)

g(θ)1

Convolution

111

‣ To convolve two functions f and g, we resample the function f
using the weights given by g.

f(θ)

g(θ)

(f∗g)(θ)

1

1 0

Convolution

112

‣ To convolve two functions f and g, we resample the function f
using the weights given by g.

f(θ)

g(θ)
.6

(f∗g)(θ)

.4

.6 .4 0

Convolution

113

‣ To convolve two functions f and g, we resample the function f
using the weights given by g.

f(θ)

(f∗g)(θ)

g(θ)
.6
.4

.4 .6 0

Convolution

114

‣ To convolve two functions f and g, we resample the function f
using the weights given by g.

f(θ)

g(θ)

(f∗g)(θ)

1

1 00

Convolution

115

‣ To convolve two functions f and g, we resample the function f
using the weights given by g.

f(θ)

g(θ)
.6

(f∗g)(θ)

.4

.6 .40

Convolution

116

‣ To convolve two functions f and g, we resample the function f
using the weights given by g.

f(θ)

(f∗g)(θ)

g(θ)
.6
.4

.4 .60

Convolution

117

‣ To convolve two functions f and g, we resample the function f
using the weights given by g.

f(θ)

g(θ)

(f∗g)(θ)

1

10 0

Convolution

118

‣ To convolve two functions f and g, we resample the function f
using the weights given by g.

f(θ)

g(θ)

0.5

(f∗g)(θ)
.5 .50

Convolution

119

‣ To convolve two functions f and g, we resample the function f
using the weights given by g.

f(θ)

g(θ)

(f∗g)(θ)

1

10 0

Convolution

120

‣ To convolve two functions f and g, we resample the function f
using the weights given by g.

f(θ)

g(θ)

(f∗g)(θ)

1

10

Convolution

121

‣ To convolve two functions f and g, we resample the function f
using the weights given by g.

‣ Nearest point, bilinear, and Gaussian interpolation are just
convolutions with different filters.

*

*

*

=

=

=

Convolution

122

‣ Recall that convolution in the spatial domain is the equal to
multiplication in the frequency domain.

‣ In order to avoid aliasing, we need to convolve with a filter whose
power spectrum has value:
‣ 1 at low frequencies
‣ 0 at high frequencies

1

X =

Initial Power Spectrum Band-Limited SpectrumFrequency Filter

Nearest Point Convolution

123

* =

Filter Spectrum

Discrete Samples Reconstruction Filter Reconstructed Function

Bilinear Convolution

124

* =
Discrete Samples Reconstruction Filter Reconstructed Function

Filter Spectrum

Gaussian Convolution

125

* =
Discrete Samples Reconstruction Filter Reconstructed Function

Filter Spectrum

Convolution

126

‣ The ideal filter for avoiding aliasing has a power spectrum with
values:
‣ 1 at low frequencies
‣ 0 at high frequencies

‣ The sinc function has such a power spectrum and is referred to
as the ideal reconstruction filter:

The Sinc Filter

127

‣ The ideal filter for avoiding aliasing has a power spectrum with
values:
‣ 1 at low frequencies
‣ 0 at high frequencies

‣ The sinc function has such a power spectrum and is referred to
as the ideal reconstruction filter:

Reconstruction Filter

Filter Spectrum

The Sinc Filter

128

‣ Limitations:
‣ Has negative values, giving rise to negative weights in the

interpolation.
‣ The discontinuity in the frequency domain (power spectrum)

results in ringing artifacts known as the Gibbs Phenomenon.

Reconstruction Filter

* =

Initial Function Reconstructed Function

The Sinc Filter

129

‣ Limitations:
‣ Has negative values, giving rise to negative weights in the

interpolation.
‣ The discontinuity in the frequency domain (power spectrum)

results in ringing artifacts near spatial discontinuities, known
as the Gibbs Phenomenon.

Reconstruction Filter

* =

Initial Function Reconstructed Function

Summary

130

There are different ways to sample an image:
‣ Nearest Point Sampling
‣ Linear Sampling
‣ Gaussian Sampling
‣ Sinc Sampling

These methods have advantages and disadvantages.

Summary – Nearest

131

üCan be implemented efficiently because the filter is non-zero in a
very small region.

? Interpolates the samples.
û Is discontinuous.
ûDoes not address the aliasing problem, giving bad results when a

signal is under-sampled.

* =

Discrete Samples Reconstruction Filter Reconstructed Function

Summary – Linear

132

üCan be implemented efficiently because the filter is non-zero in a
very small region.

? Interpolates the samples.
û Is not smooth.
ûPartially addresses the aliasing problem, but can still give bad

results when a signal is under-sampled.

* =

Discrete Samples Reconstruction Filter Reconstructed Function

Summary – Gaussian

133

û Is slow to implement because the filter is non-zero in a large
region.

? Does not interpolate the samples.
üIs smooth.
üAddresses the aliasing problem by killing off the high frequencies.

* =

Discrete Samples Reconstruction Filter Reconstructed Function

Summary – Sinc

134

û Is slow to implement because the filter is non-zero in a large
region.

? Does not interpolate the samples.
ûAssigns negative weights.
ûRinging at discontinuities.
üAddresses the aliasing problem by killing off the high frequencies.

* =

Discrete Samples Reconstruction Filter Reconstructed Function

Summary

135

Question:
‣ Is it good if a reconstruction method is interpolating? (Consider

the case when you are down-scaling an image?)

Summary

136

It appears that we have been mixing the sampling problem with
the reconstruction problem.

However, our motivation for the choice of filter is the same in
both cases. We want a filter whose spectrum goes to zero so
that:

‣ Sampling: High frequency samples are killed off, the
signal becomes band-limited, and we can sample
discretely.

‣ Reconstruction: We do not end up reconstructing a
function with high frequency components.

Image Sampling

137

Given a signal sampled at m positions, if we would like to re-
sample at n positions we need to:

1. Reconstruct a function with maximum non-zero frequency
no larger than min(m/2,n/2).

2. Sample the reconstructed function at the n positions.

Image Sampling

138

Example:

Image Sampling

139

Example:

Image Sampling

140

Example:

Gaussian Sampling

141

Recall:
To avoid aliasing, we kill off high-frequency components, by

convolving with a function whose power spectrum is zero
at high frequencies.

We use a Gaussian for function reconstruction and sampling
because it smoothly kills of the high frequency
components.

Gaussian Sampling

142

Q: What variance Gaussian should we use?
A: The variance of the Gaussian should be between 0.5 and 1.0

times the distance between samples.

Gaussian Sampling

143

Q: What variance Gaussian should we use?
A: The variance of the Gaussian should be between 0.5 and 1.0

times the distance between samples.

Power spectra of the Gaussians used for reconstructing and
sampling a function with 20 samples

Gaussian Sampling

144

Scaling Example:
Q: Suppose we have data represented by 20 samples that we would

like to down-sample to 5 samples. What variance should we use?

Gaussian Sampling

145

Scaling Example:
Q: Suppose we have data represented by 20 samples that we would

like to down-sample to 5 samples. What variance should we use?
A: The distance between two adjacent samples in the final array

corresponds to a distance of 4 units in the initial array. 
The variance of the Gaussian should be between 2.0 and 4.0.

Gaussian Sampling

146

Scaling Example:
Q: Suppose we have data represented by 20 samples that we would

like to up-sample to 40 samples. What variance should we use?

Gaussian Sampling

147

Scaling Example:
Q: Suppose we have data represented by 20 samples that we would

like to up-sample to 40 samples. What variance should we use?
A: Because the initial samples can’t represent frequencies higher

than 10, we shouldn’t use a Gaussian with smaller variance since
this would introduce high-frequency components into the
reconstruction. The variance of the Gaussian should remain
between 0.5 and 1.0.

