
3D Rendering

Connelly Barnes

CS 4810: Graphics

Acknowledgment: slides by Jason Lawrence, Misha Kazhdan, Allison Klein, Tom
Funkhouser, Adam Finkelstein and David Dobkin

Rendering
• Generate an image from geometric primitives

Rendering

Geometric
Primitives

Raster
Image

Rendering
• Generate an image from geometric primitives

Rendering

3D 2D

3D Rendering Example

What issues must be addressed by a  
3D rendering system?

Overview
• 3D scene representation

• 3D viewer representation

• Visible surface determination

• Lighting simulation

Overview
• 3D scene representation

• 3D viewer representation

• Visible surface determination

• Lighting simulation

How is the 3D scene
described in a computer?

3D Scene Representation
• Scene is usually approximated by 3D primitives
oPoint
oLine segment
oPolygon
oPolyhedron
oCurved surface
oSolid object
oetc.

3D Point
• Specifies a location

Origin

3D Point
• Specifies a location
oRepresented by three coordinates
oInfinitely small

typedef struct {
 Coordinate x;
 Coordinate y;
 Coordinate z;
} Point;

(x,y,z)

Origin

3D Vector

• Specifies a direction and a magnitude

3D Vector

• Specifies a direction and a magnitude
oRepresented by three coordinates
oMagnitude ||V|| = sqrt(dx dx + dy dy + dz dz)
oHas no location

typedef struct {
 Coordinate dx;
 Coordinate dy;
 Coordinate dz;
} Vector;

(dx,dy,dz)

3D Vector
• Specifies a direction and a magnitude
oRepresented by three coordinates
oMagnitude ||V|| = sqrt(dx dx + dy dy + dz dz)
oHas no location

• Dot product of two 3D vectors
oV1·V2 = dx1dx2 + dy1dy2 + dz1dz2

oV1·V2 = ||V1 || || V2 || cos(Θ)

typedef struct {
 Coordinate dx;
 Coordinate dy;
 Coordinate dz;
} Vector;

(dx1,dy1,dz1)

(dx2,dy2 ,dz2)Θ

Linear Algebra: a Little Review
• What is…?

• V1 · V1 = ?

Linear Algebra: a Little Review
• What is…?

• V1 · V1 = dx dx + dy dy + dz dz

Linear Algebra: a Little Review
• What is…?

• V1 · V1 = (Magnitude)2

Linear Algebra: a Little Review
• V1 · V1 = (Magnitude)2

• Now, let V1 and V2 both be unit-length vectors.

• What is…?

• V1 · V1 =

Linear Algebra: a Little Review
• V1 · V1 = (Magnitude)2

• Now, let V1 and V2 both be unit-length vectors.

• What is…?

• V1 · V1 = ||V1 || || V1 || cos(Θ)

Linear Algebra: a Little Review
• V1 · V1 = (Magnitude)2

• Now, let V1 and V2 both be unit-length vectors.

• What is…?

• V1 · V1 = ||V1 || || V1 || cos(Θ) = cos(Θ)

Linear Algebra: a Little Review
• V1 · V1 = (Magnitude)2

• Now, let V1 and V2 both be unit-length vectors.

• What is…?

• V1 · V1 = ||V1 || || V1 || cos(Θ) = cos(Θ) = cos(0)

Linear Algebra: a Little Review
• V1 · V1 = (Magnitude)2

• Now, let V1 and V2 both be unit-length vectors.

• What is…?

• V1 · V1 = 1

Linear Algebra: a Little Review
• V1 · V1 = (Magnitude)2

• Now, let V1 and V2 both be unit-length vectors.

• What is…?

• V1 · V1 = 1

• V1 · V2 =

Linear Algebra: a Little Review
• V1 · V1 = (Magnitude)2

• Now, let V1 and V2 both be unit-length vectors.

• What is…?

• V1 · V1 = 1

• V1 · V2 = ||V1 || || V2 || cos(Θ)

Linear Algebra: a Little Review
• V1 · V1 = (Magnitude)2

• Now, let V1 and V2 both be unit-length vectors.

• What is…?

• V1 · V1 = 1

• V1 · V2 = ||V1 || || V2 || cos(Θ) = cos(Θ)

Linear Algebra: a Little Review
• V1 · V1 = (Magnitude)2

• Now, let V1 and V2 both be unit-length vectors.

• What is…?

• V1 · V1 = 1

• V1 · V2 = cos(Θ) = (adjacent / hyp)

(dx1,dy1,dz1)

(dx2,dy2 ,dz2)Θ

Linear Algebra: a Little Review
• V1 · V1 = (Magnitude)2

• Now, let V1 and V2 both be unit-length vectors.

• What is…?

• V1 · V1 = 1

• V1 · V2 = (adjacent / 1)

(dx1,dy1,dz1)

(dx2,dy2 ,dz2)Θ

Linear Algebra: a Little Review
• V1 · V1 = (Magnitude)2

• Now, let V1 and V2 both be unit-length vectors.

• What is…?

• V1 · V1 = 1

• V1 · V2 = length of V1 projected
onto V2 (or vice-versa)

(dx1,dy1,dz1)

(dx2,dy2 ,dz2)Θ

3D Vector
• Specifies a direction and a magnitude
oRepresented by three coordinates
oMagnitude ||V|| = sqrt(dx dx + dy dy + dz dz)
oHas no location

• Cross product of two 3D vectors
oV1×V2 = Vector normal to plane V1 , V2
o|| V1 × V2 || = ||V1 || || V2 || sin(Θ)

typedef struct {
 Coordinate dx;
 Coordinate dy;
 Coordinate dz;
} Vector;

(dx1,dy1,dz1)

(dx2,dy2 ,dz2)Θ

Linear Algebra: More Review
• Let C = A × B:
oCx = AyBz - AzBy
oCy = AzBx - AxBz
oCz = AxBy - AyBx

• A × B = - B × A (remember “right-hand” rule)

• We can do similar derivations to show:
oV1×V2= ||V1 || || V2 || sin(Θ)n, where n is unit vector normal

to V1 and V2

o|| V1 × V1 || = 0
o|| V1 × (-V1) || = 0

• http://physics.syr.edu/courses/java-suite/crosspro.html

3D Line Segment
• Linear path between two points

Origin

3D Line Segment
• Use a linear combination of two points
oParametric representation:

»P = P1 + t (P2 - P1), (0 ≤ t ≤ 1)

typedef struct {
 Point P1;
 Point P2;
} Segment;

P1

P2

Origin

3D Ray
• Line segment with one endpoint at infinity
oParametric representation:

»P = P1 + t V, (0 <= t < ∞)

typedef struct {
 Point P1;
 Vector V;
} Ray;

P1

V

Origin

3D Line
• Line segment with both endpoints at infinity
oParametric representation:

»P = P1 + t V, (-∞ < t < ∞)

P1

typedef struct {
 Point P1;
 Vector V;
} Line;

V

Origin

Origin

3D Plane
• A linear combination of three points

P1

P3P2

Origin

3D Plane
• A linear combination of three points
oImplicit representation:

»P·N + d = 0, or
»ax + by + cz + d = 0

oN is the plane “normal”
»Unit-length vector
»Perpendicular to plane

typedef struct {
 Vector N;
 Distance d;
} Plane; P1

N = (a,b,c)

d

P3P2

3D Polygon
• Area “inside” a sequence of coplanar points
oTriangle
oQuadrilateral
oConvex
oStar-shaped
oConcave
oSelf-intersecting

oHoles (use > 1 polygon struct)

typedef struct {
 Point *points;
 int npoints;
} Polygon;

Points are in counter-clockwise order

3D Sphere
• All points at distance “r” from point “(cx, cy, cz)”
oImplicit representation:

»(x - cx)2 + (y - cy)2 + (z - cz)2 = r 2
oParametric representation:

»x = r cos(φ) cos(Θ) + cx

»y = r cos(φ) sin(Θ) + cy

»z = r sin(φ) + cz

typedef struct {
 Point center;
 Distance radius;
} Sphere;

r

Origin

Other 3D primitives
• Cone

• Cylinder

• Ellipsoid

• Box

• Etc.

3D Geometric Primitives
• More detail on 3D modeling later in course
oPoint
oLine segment
oPolygon
oPolyhedron
oCurved surface
oSolid object
oetc.

Overview
• 3D scene representation

• 3D viewer representation

• Visible surface determination

• Lighting simulation

How is the viewing device
described in a computer?

Camera Models

• The most common model is pin-hole camera
oAll captured light rays arrive along paths toward focal point without

lens distortion (everything is in focus)

View plane

Eye position
(focal point)

Camera Parameters
• What are the parameters of a camera?

Camera Parameters
• Position
oEye position (px, py, pz)

• Orientation
oView direction (dx, dy, dz)
oUp direction (ux, uy, uz)

• Aperture
oField of view (xfov, yfov)

• Film plane
o“Look at” point
oView plane normal right

back

Up direction

Eye
Position

View direction

View
Plane

“Look at”
Point

Other Models: Depth of Field

Close Focused Distance Focused

P. Haeberli

Other Models: Motion Blur
• Mimics effect of open camera shutter

• Gives perceptual effect of high-speed motion

• Generally involves temporal super-sampling

Other Models: Lens Distortion
• Camera lens bends light, especially at edges

• Common types are barrel and pincushion

Barrel Distortion Pincushion Distortion

Other Models: Lens Distortion
• Camera lens bends light, especially at edges

• Common types are barrel and pincushion

Barrel Distortion No Distortion

Other Models: Lens Distortion
Lens flares are another kind of distortion

Star Wars: Knights of the Old Republic
(BioWare)

Overview
• 3D scene representation

• 3D viewer representation

• Visible surface determination

• Lighting simulation

How can the front-most surface
be found with an algorithm?

Visible Surface Determination
• The color of each pixel on the view plane  

depends on the radiance emanating from  
visible surfaces

View plane
Eye position

Simplest method
is ray casting

Rays
through

view plane

Ray Casting
• For each sample …
oConstruct ray from eye position through view plane
oFind first surface intersected by ray through pixel
oCompute color of sample based on surface radiance

Ray Casting
• For each sample …
oConstruct ray from eye position through view plane
oFind first surface intersected by ray through pixel
oCompute color of sample based on surface radiance

Visible Surface Determination
• For each sample …
oConstruct ray from eye position through view plane
oFind first surface intersected by ray through pixel
oCompute color of sample based on surface radiance

More efficient algorithms
utilize spatial coherence!

Rendering Algorithms
Rendering is a problem in  

sampling and reconstruction!

Overview
• 3D scene representation

• 3D viewer representation

• Visible surface determination

» Lighting simulation

How do we compute the
radiance for each sample ray?

Lighting Simulation
• Lighting parameters
oLight source emission
oSurface reflectance
oAtmospheric attenuation

Lighting Simulation
• Lighting parameters
oLight source emission
oSurface reflectance
oAtmospheric attenuation

N
N

Camera

Surface

Light
Source

Lighting Simulation
• Lighting parameters
oLight source emission
oSurface reflectance
oAtmospheric attenuation

Durand & Dorsey Siggraph ‘02
Real-Time Volumetric Shadows 

paper [Chen et al. 2011]

http://groups.csail.mit.edu/graphics/mmvs/

Lighting Simulation
• Direct illumination
oRay casting
oPolygon shading

• Global illumination
oRay tracing
oMonte Carlo methods
oRadiosity methods

More on these
methods later!

N
N

Camera

Surface

Light
Source

N

Summary
• Major issues in 3D rendering
o3D scene representation
o3D viewer representation
oVisible surface determination
oLighting simulation

• Concluding note
oAccurate physical simulation  

is complex and intractable
»Rendering algorithms apply  
many approximations to simplify  
representations and computations

Next Lecture
• Ray intersections

• Light and reflectance models

• Indirect illumination

For assignment #2, you will write a ray tracer!

Rendered by
Tor Olav Kristensen

using POV-Ray 

