
Global Illumination

Connelly Barnes

CS 4810: Graphics

Acknowledgment: slides by Jason Lawrence, Misha Kazhdan, Allison Klein, Tom
Funkhouser, Adam Finkelstein and David Dobkin

Overview
• Direct Illumination
oEmission at light sources
oDirect light at surface points

• Global illumination
oShadows
oTransmissions
oInter-object reflections

Shadows
• Shadow term tells if light sources are blocked
oCast ray towards each light source Li. If the ray is

blocked, do not consider the contribution of the light.

Shadows
• Shadow term tells if light sources are blocked
oCast ray towards each light source Li

oSi = 0 if ray is blocked, Si = 1 otherwise

L1

L0

Shadow
Term

Shadows
• Shadow term tells if light sources are blocked
oCast ray towards each light source Li

oSi = 0 if ray is blocked, Si = 1 otherwise

L1

L0

S0=1:
• L0 contributes

Shadow
Term

Shadows
• Shadow term tells if light sources are blocked
oCast ray towards each light source Li

oSi = 0 if ray is blocked, Si = 1 otherwise

S0=1:
• L0 contributes
S1=0:
• L1 does not contribute

L1

L0

Shadow
Term

Ray Casting
• Trace primary rays from camera
oDirect illumination from unblocked lights only

Recursive Ray Tracing
• Also trace secondary rays from hit surfaces
o Consider contributions from:

1. Reflected Rays
2. Refracted Rays

Mirror Reflections
• Also trace secondary rays from hit surfaces
o Consider contributions from:

1. Reflected Rays
2. Refracted Rays

Radiance
for mirror

reflection ray

L1

L0

Mirror Reflections
• Also trace secondary rays from hit surfaces
o Consider contributions from:

1. Reflected Rays
2. Refracted Rays

Radiance
for mirror

reflection ray

L1

L0

Mirror Reflections
• Also trace secondary rays from hit surfaces
o Consider contributions from:

1. Reflected Rays
2. Refracted Rays

Radiance
for mirror

reflection ray

L1

L0

Mirror Reflections
• Also trace secondary rays from hit surfaces
o Consider contributions from:

1. Reflected Rays
2. Refracted Rays

Radiance
for mirror

reflection ray

L1

L0

Mirror Reflections
• Also trace secondary rays from hit surfaces
o Consider contributions from:

1. Reflected Rays
2. Refracted Rays

Radiance
for mirror

reflection ray

L1

L0

Mirror Reflections
• Also trace secondary rays from hit surfaces
o Consider contributions from:

1. Reflected Rays
2. Refracted Rays

Transparent Refraction
• Also trace secondary rays from hit surfaces
o Consider contributions from:

1. Reflected Rays
2. Refracted Rays

L1

L0

Radiance for
refraction ray

Transparent Refraction
• Also trace secondary rays from hit surfaces
o Consider contributions from:

1. Reflected Rays
2. Refracted Rays

L1

L0

Radiance for
refraction ray

Transparent Refraction
• Also trace secondary rays from hit surfaces
o Consider contributions from:

1. Reflected Rays
2. Refracted Rays

L1

L0

Radiance for
refraction ray

Transparent Refraction
• Also trace secondary rays from hit surfaces
o Consider contributions from:

1. Reflected Rays
2. Refracted Rays

L1

L0

Radiance for
refraction ray

Transparent Refraction
• Also trace secondary rays from hit surfaces
o Consider contributions from:

1. Reflected Rays
2. Refracted Rays

L1

L0

Radiance for
refraction ray

Transparent Refraction
• Also trace secondary rays from hit surfaces
o Consider contributions from:

1. Reflected Rays
2. Refracted Rays

Transparency and Shadow
• Problem:
o If a surface is transparent, then rays to the light source

may pass through the object

Over-shadowing

Transparency and Shadow
• Problem:
o If a surface is transparent, then rays to the light source

may pass through the object
o Need to modify the shadow term so that instead of

representing a binary (0/1) value, it gives the fraction of
light passing through.

Transparency and Shadow
• Problem:
o If a surface is transparent, then rays to the light source

may pass through the object
o Need to modify the shadow term so that instead of

representing a binary (0/1) value, it gives the fraction of
light passing through.

o Accumulate transparency values as the ray travels to the
light source.

Transparency and Shadow
• Accumulate transparency values as the ray travels

to the light source.

L1

L0

S0=1:
• L0 contributes fully

Transparency and Shadow
• Accumulate transparency values as the ray travels

to the light source.

L1

L0

S0=1:
• L0 contributes fully
S1=?

Transparency and Shadow
• Accumulate transparency values as the ray travels

to the light source.

L1

L0

S0=1:
• L0 contributes fully
S1=1*KT*?

KT

Transparency and Shadow
• Accumulate transparency values as the ray travels

to the light source.

L1

L0

KT

S0=1:
• L0 contributes fully
S1=1*KT*KT*?

Transparency and Shadow
• Accumulate transparency values as the ray travels

to the light source.

L1

L0

KT

S0=1:
• L0 contributes fully
S1=1*KT*KT:
• L1 contributes partially

Transparency and Shadow
• Accumulate transparency values as the ray travels

to the light source.

Transparent Refraction
• When a ray of light 

passes through a  
transparent object it
can bend.

Transparent Refraction
• When a ray of light passes through a transparent

object, the ray of light can bend, (θi ≠ θr).

N

L

T

θi

θr

Snell’s Law
• The way that light bends is determined by the indices

of refraction of the internal and external materials ηi
and ηr: N

L

T

θi

θr

ηi
ηr

The index of refraction of air is η=1.

Snell’s Law
• The way that light bends is determined by the indices

of refraction of the internal and external materials ηi
and ηr: N

L

T

θi

θr

ηi
ηr

Snell’s Law
• The way that light bends is determined by the

indices of refraction of the internal and external
materials ηi and ηr:

L1

L0

Snell’s Law
• The way that light bends is determined by the

indices of refraction of the internal and external
materials ηi and ηr:

L1

L0

Snell’s Law
• The way that light bends is determined by the

indices of refraction of the internal and external
materials ηi and ηr:

L1

L0

Snell’s Law
• The way that light bends is determined by the

indices of refraction of the internal and external
materials ηi and ηr:

L1

L0

Snell’s Law
• The way that light bends is determined by the

indices of refraction of the internal and external
materials ηi and ηr:

L1

L0

Snell’s Law
• The way that light bends is determined by the

indices of refraction of the internal and external
materials ηi and ηr:

Snell’s Law and Shadows
• Problem:
o If a surface is transparent, then rays to the light source

may not travel in a straight line

Snell’s Law and Shadows
• Problem:
o If a surface is transparent, then rays to the light source

may not travel in a straight line
o This is difficult to address with ray-tracing

General Issue
• How do we determine when to stop recursing?

General Issue
• How do we determine when to stop recursing?
o Depth of iteration

» Bounds the number of times a ray will bounce around
the scene

o Cut-off value
» Ignores contribution from bounces that contribute very

little

Putting it all Together

Image RayCast(Camera camera, Scene scene, int width, int height)
{
 Image image = new Image(width, height);
 for (int i = 0; i < width; i++) {
 for (int j = 0; j < height; j++) {
 Ray ray = ConstructRayThroughPixel(camera, i, j);
 Intersection hit = FindIntersection(ray, scene);
 image[i][j] = GetColor(scene, ray, hit);
 }
 }
 return image;
}

Without Illumination

Putting it all Together

Image RayCast(Camera camera, Scene scene, int width, int height)
{
 Image image = new Image(width, height);
 for (int i = 0; i < width; i++) {
 for (int j = 0; j < height; j++) {
 Ray ray = ConstructRayThroughPixel(camera, i, j);
 Intersection hit = FindIntersection(ray, scene);
 image[i][j] = GetColor(scene, ray, hit);
 }
 }
 return image;
}

With Illumination

Putting it all Together

Pixel GetColor(scene, ray, depth, cutOff){
 Pixel p(0,0,0)
 Ray reflect, refract
 Intersection hit=FindIntersection(ray, scene);
 if (hit){
 p += GetSurfaceColor(hit.position);

 reflect.direction = Reflect(ray.direction, hit.normal)
 reflect.position = hit.position + reflect.direction*ε
 if(depth >0 && hit.kSpec>cutOff)
 p += GetColor(scene, reflect, depth-1, cutOff/hit.kSpec)*hit.kSpec

 refract.direction = Refract(ray.direction, hit.normal, hit.ir)
 refract.position = hit.position + refract.direction*ε
 if(depth >0 && hit.kTran>cutOff)
 p += GetColor(scene, refract, depth-1, cutOff/hit.kTran) *hit.kTran
 }
 return p
}

Putting it all Together

Pixel GetColor(scene, ray, depth, cutOff){
 Pixel p(0,0,0)
 Ray reflect, refract
 Intersection hit=FindIntersection(ray, scene);
 if (hit){
 p += GetSurfaceColor(hit.position);

 reflect.direction = Reflect(ray.direction, hit.normal)
 reflect.position = hit.position + refract.direction*ε
 if(depth >0 && hit.kSpec>cutOff)
 p += GetColor(scene, reflect, depth-1, cutOff/hit.kSpec)*hit.kSpec

 refract.direction = Refract(ray.direction, hit.normal, hit.ir)
 refract.position = hit.position + refract.direction*ε
 if(depth >0 && hit.kTran>cutOff)
 p += GetColor(scene, refract, depth-1, cutOff/hit.kTran)*hit.kTran
 }
 return p
}

Putting it all Together

Pixel GetColor(scene, ray, depth, cutOff){
 Pixel p(0,0,0)
 Ray reflect, refract
 Intersection hit=FindIntersection(ray, scene);
 if (hit){
 p += GetSurfaceColor(hit.position);

 reflect.direction = Reflect(ray.direction, hit.normal)
 reflect.position = hit.position + reflect.direction *ε
 if(depth >0 && hit.kSpec>cutOff)
 p += GetColor(scene, reflect, depth-1, cutOff/hit.kSpec)*hit.kSpec

 refract.direction = Refract(ray.direction, hit.normal, hit.ir)
 refract.position = hit.position + refract.direction*ε
 if(depth >0 && hit.kTran>cutOff)
 p += GetColor(scene, refract, depth-1, cutOff/hit.kTran)*hit.kTran
 }
 return p
}

Putting it all Together

Pixel GetColor(scene, ray, depth, cutOff){
 Pixel p(0,0,0)
 Ray reflect, refract
 Intersection hit=FindIntersection(ray, scene);
 if (hit){
 p += GetSurfaceColor(hit.position);

 reflect.direction = Reflect(ray.direction, hit.normal)
 reflect.position = hit.position + reflect.direction *ε
 if(depth >0 && hit.kSpec>cutOff)
 p += GetColor(scene, reflect, depth-1, cutOff/hit.kSpec)*hit.kSpec

 refract.direction = Refract(ray.direction, hit.normal, hit.ir)
 refract.position = hit.position + refract.direction*ε
 if(depth >0 && hit.kTran>cutOff)
 p += GetColor(scene, refract, depth-1, cutOff/hit.kTran)*hit.kTran
 }
 return p
}

Putting it all Together

Pixel GetColor(scene, ray, depth, cutOff){
 Pixel p(0,0,0)
 Ray reflect, refract
 Intersection hit=FindIntersection(ray, scene);
 if (hit){
 p += GetSurfaceColor(hit.position);

 reflect.direction = Reflect(ray.direction, hit.normal)
 reflect.position = hit.position + reflect.direction *ε
 if(depth >0 && hit.kSpec>cutOff)
 p += GetColor(scene, reflect, depth-1, cutOff/hit.kSpec)

 refract.direction = Refract(ray.direction, hit.normal, hit.ir)
 refract.position = hit.position + refract.direction*ε
 if(depth >0 && hit.kTran>cutOff)
 p += GetColor(scene, refract, depth-1, cutOff/hit.kTran)
 }
 return p
}

Why do we need the ε terms?

Putting it all Together

Pixel GetColor(scene, ray, depth, cutOff){
 Pixel p(0,0,0)
 Ray reflect, refract
 Intersection hit=FindIntersection(ray, scene);
 if (hit){
 p += GetSurfaceColor(hit.position);

 reflect.direction = Reflect(ray.direction, hit.normal)
 reflect.position = hit.position + reflect.direction *ε
 if(depth >0 && hit.kSpec>cutOff)
 p += GetColor(scene, reflect, depth-1, cutOff/hit.kSpec)

 refract.direction = Refract(ray.direction, hit.normal, hit.ir)
 refract.position = hit.position + refract.direction*ε
 if(depth >0 && hit.kTran>cutOff)
 p += GetColor(scene, refract, depth-1, cutOff/hit.kTran)
 }
 return p
}

Why do we need the ε terms?

To ensure that the new ray does not
hit its starting location!

Illumination Examples
• Ray casting (direct illumination)

Courtesy Henrik Wann Jensen

Illumination Examples
• Soft Shadows

Courtesy Henrik Wann Jensen

Illumination Examples
• Caustics

Courtesy Henrik Wann Jensen

Illumination Examples
• Full Global Illumination

Courtesy Henrik Wann Jensen

Recursive Ray Tracing

Image RayTrace(Camera camera, Scene scene, int width, int height
 int depth, float cutOff){
 Image image = new Image(width, height);
 for (int i = 0; i < width; i++) {
 for (int j = 0; j < height; j++) {
 Ray ray = ConstructRayThroughPixel(camera, i, j);
 image[i][j] = GetColor(scene, ray, depth, cutOff);
 }
 }
 return image;
}

• GetColor is a recursive function

Summary
• Ray casting (direct Illumination)
oUsually use simple analytic approximations for  

light source emission and surface reflectance

• Recursive ray tracing (global illumination)
oIncorporate shadows, mirror reflections,  

and pure refractions

All of this is an approximation
so that it is practical to compute

