Barycentric Coordinates (and Some Texture Mapping)

Connelly Barnes CS 4810: Graphics

Acknowledgment: slides by Jason Lawrence, Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin

Triangles

These are the basic building blocks of 3D models.

 Often 3D models are complex, and the surfaces are represented by a triangulated approximation.

Triangles

A triangle is defined by three non-collinear vertices:

 Any point q in the triangle is on the line segment between one vertex and some other point q' on the opposite edge.

- Any point q in the triangle is on the line segment between one vertex and some other point q' on the opposite edge.
- Any point on the triangle can be expressed as:
 - $q = \{ \alpha p_1 + \beta p_2 + \gamma p_3 \mid \alpha + \beta + \gamma = 1, \alpha, \beta, \gamma \ge 0 \}$

- Any point q in the triangle is on the line segment between one vertex and some other point q' on the opposite edge.
- Any point on the triangle can be expressed as:
 - $q = \{ \alpha p_1 + \beta p_2 + \gamma p_3 \mid \alpha + \beta + \gamma = 1, \alpha, \beta, \gamma \ge 0 \}$

- Any point q in the triangle is on the line segment between one vertex and some other point q' on the opposite edge.
- Any point on the triangle can be expressed as:
 - $q = \{ \alpha p_1 + \beta p_2 + \gamma p_3 \mid \alpha + \beta + \gamma = 1, \alpha, \beta, \gamma \ge 0 \}$

- Any point q in the triangle is on the line segment between one vertex and some other point q' on the opposite edge.
- Any point on the triangle can be expressed as:
 - $q = \{ \alpha p_1 + \beta p_2 + \gamma p_3 \mid \alpha + \beta + \gamma = 1, \alpha, \beta, \gamma \ge 0 \}$

The barycentric coordinates of a point q:

```
\mathbf{q} = \alpha \mathbf{p}_1 + \beta \mathbf{p}_2 + \gamma \mathbf{p}_3
```

allow us to express q as a weighted average of the vertices of the triangles.

Any point on the triangle can be expressed as:

• $q = \{ \alpha p_1 + \beta p_2 + \gamma p_3 \mid \alpha + \beta + \gamma = 1, \alpha, \beta, \gamma \ge 0 \}$

<u>Questions</u>:

•What happens if α , β , or $\gamma < 0$?

Any point on the triangle can be expressed as:

• $q = \{ \alpha p_1 + \beta p_2 + \gamma p_3 \mid \alpha + \beta + \gamma = 1, \alpha, \beta, \gamma \ge 0 \}$

<u>Questions</u>:

What happens if α,β, or γ < 0?
oq is not inside the triangle but it is in the plane spanned by p₁, p₂, and p₃.

Any point on the triangle can be expressed as:

• $q = \{ \alpha p_1 + \beta p_2 + \gamma p_3 \mid \alpha + \beta + \gamma = 1, \alpha, \beta, \gamma \ge 0 \}$

<u>Questions</u>:

•What happens if α , β , or $\gamma < 0$?

•What happens if $\alpha + \beta + \gamma \neq 1$?

Any point on the triangle can be expressed as:

• $q = \{ \alpha p_1 + \beta p_2 + \gamma p_3 \mid \alpha + \beta + \gamma = 1, \alpha, \beta, \gamma \ge 0 \}$

<u>Questions</u>:

•What happens if α , β , or $\gamma < 0$?

•What happens if $\alpha + \beta + \gamma \neq 1$? oq is not in the plane spanned by p_1 , p_2 , and p_3 .

Any point on the triangle can be expressed as:

• $q = \{ \alpha p_1 + \beta p_2 + \gamma p_3 \mid \alpha + \beta + \gamma = 1, \alpha, \beta, \gamma \ge 0 \}$

<u>Questions</u>:

•What happens if α , β , or $\gamma < 0$?

•What happens if $\alpha + \beta + \gamma \neq 1$?

<u>Note</u>: If we force $\alpha = 1-\beta-\gamma$, we always get $\alpha + \beta + \gamma = 1$ so the point *q* is always in the plane containing the triangle

Barycentric coordinates are needed in:

- Ray-Tracing, to test for intersection
- Rendering, to interpolate triangle information

Barycentric coordinates are needed in:

- Ray-Tracing, to test for intersection
- Rendering, to interpolate triangle information

```
Float TriangleIntersect(Ray r, Triangle tgl) {

Plane p=PlaneContaining( tgl );

Float t = IntersectionDistance( r, p );

if (t < 0) { return -1;}

else {

(\alpha, \beta, \gamma) = Barycentric( r(t), tgl);

if (\alpha < 0 or \beta < 0 or \gamma < 0) { return -1;}

else { return t; }

}
```

Barycentric coordinates are needed in:

- Ray-Tracing, to test for intersection
- Rendering, to interpolate triangle information
 oIn 3D models, information is often associated with vertices rather than triangles (e.g. color, normals, etc.)

For example:

 We could associate the same normal/color to every point on the face of a triangle by computing:

$$\mathbf{n} = \frac{(\mathbf{p}_2 - \mathbf{p}_1) \times (\mathbf{p}_3 - \mathbf{p}_1)}{\|(\mathbf{p}_2 - \mathbf{p}_1) \times (\mathbf{p}_3 - \mathbf{p}_1)\|}$$

For example:

 We could associate the same normal/color to every point on the face of a triangle by computing:

$$\mathbf{n} = \frac{(\mathbf{p}_2 - \mathbf{p}_1) \times (\mathbf{p}_3 - \mathbf{p}_1)}{\|(\mathbf{p}_2 - \mathbf{p}_1) \times (\mathbf{p}_3 - \mathbf{p}_1)\|}$$

This gives rise to flat shading/ coloring across the faces

Instead:

• We could associate normals to every vertex: $T = ((p_1, n_1), (p_2, n_2), (p_3, n_3))$ so that the normal at some point *q* in the triangle is the interpolation of the normals at the vertices:

Instead:

• We could associate normals to every vertex: $T = ((p_1, n_1), (p_2, n_2), (p_3, n_3))$ so that the normal at some point *q* in the triangle is the interpolation of the normals at the vertices:

Triangle Normals

Interpolated Point Normals

So given the points p_1 , p_2 , and p_3 , how do we compute the barycentric coordinates of a point q in the plane spanned by p_1 , p_2 , and p_3 ?

Matrix Inversion:

We can approach this is as a linear system with three equations and two unknowns:

$$q_{x} = (1 - \beta - \gamma) p_{1x} + \beta p_{2x} + \gamma p_{2x}$$

$$q_{y} = (1 - \beta - \gamma) p_{1y} + \beta p_{2y} + \gamma p_{2y}$$

$$q_{z} = (1 - \beta - \gamma) p_{1z} + \beta p_{2z} + \gamma p_{2z}$$

So given the points p_1 , p_2 , and p_3 , how do we compute the barycentric coordinates of a point q in the plane spanned by p_1 , p_2 , and p_3 ?

So given the points p_1 , p_2 , and p_3 , how do we compute the barycentric coordinates of a point q in the plane spanned by p_1 , p_2 , and p_3 ?

Texture Mapping (Briefly, More Later)

J. Birn

How can we go about drawing surfaces with complex detail?

Target Model

How can we go about drawing surfaces with complex detail?

 We could tessellate the sphere in a complex fashion and then associate the appropriate material properties to each vertex

How can we go about drawing surfaces with complex detail?

 We could use a simple tessellation and use the location of surface points to look up the appropriate color values

• Advantages:

oThe 3D model remains simple
oIt is easier to design/modify a texture image than it is to design/modify a surface in 3D.

Another Example: Brick Wall

2D Texture

- Coordinates described by variables s and t and range over interval (0,1)
- Texture elements are called *texels*
- Often 4 bytes (rgba) per texel

Texture Mapping a Sphere

 How do you generate texture coordinates at each intersection point?

