
3D Polygon Rendering Pipeline

CS 4810: Graphics

Acknowledgment: slides by Jason Lawrence, Misha Kazhdan, Allison Klein, Tom
Funkhouser, Adam Finkelstein and David Dobkin

Road Map for Next Lectures
• Leaving ray-tracing

• Moving on to polygon-based rendering
oRendering pipeline (today)
oClipping
oScan conversion & shading
oTexture-mapping
oHidden-surface removal

• Polygon-based rendering is what happens on your
PC (think NVIDIA, etc.)

3D Polygon Rendering
• Many applications use rendering of 3D polygons

with direct illumination

3D Polygon Rendering
• Many applications use rendering of 3D polygons

with direct illumination

3D Polygon Rendering
• Many applications use rendering of 3D polygons

with direct illumination

Ray Casting Revisited
• For each sample …
oConstruct ray from eye position through view plane
oFind first surface intersected by ray through pixel
oCompute color of sample based on surface radiance

More efficient algorithms
utilize spatial coherence!

3D Polygon Rendering
• Logical inverse of ray casting

• Idea: Instead of sending rays from the camera into the
scene, send rays from the scene into the camera.

3D Polygon Rendering
• Ray casting: pick pixel and figure out what color it

should be based on what object its ray hits

• Polygon rendering: pick polygon and figure out what
pixels it should affect

3D Rendering Pipeline (direct illumination)

3D Geometric Primitives

Image

This is a pipelined
sequence of operations
to draw a 3D primitive

into a 2D image

Modeling
Transformation

Camera
Transformation

Projection
Transformation

Lighting

Clipping

Scan
Conversion

3D Rendering Pipeline (direct illumination)

Transform from current (local) coordinate system
into 3D world coordinate system

Modeling
Transformation

Camera
Transformation

Projection
Transformation

Lighting

Clipping

Scan
Conversion

3D Geometric Primitives

Image

Transform into 3D camera coordinate system

3D Rendering Pipeline (for direct illumination)

Transform into 3D world coordinate systemModeling
Transformation

Camera
Transformation

Projection
Transformation

Lighting

Clipping

Scan
Conversion

3D Geometric Primitives

Image

Illuminate according to lighting and reflectance

3D Rendering Pipeline (for direct illumination)

Transform into 3D world coordinate systemModeling
Transformation

Camera
Transformation

Projection
Transformation

Lighting

Clipping

Scan
Conversion

Transform into 3D camera coordinate system

3D Geometric Primitives

Image

Illuminate according to lighting and reflectance

Transform into 3D camera coordinate system

3D Rendering Pipeline (for direct illumination)

Transform into 3D world coordinate system

Transform into 2D camera coordinate system

Modeling
Transformation

Camera
Transformation

Projection
Transformation

Lighting

Clipping

Scan
Conversion

3D Geometric Primitives

Image

3D Rendering Pipeline (for direct illumination)

Transform into 3D world coordinate system

Clip (parts of) primitives outside camera’s view

Transform into 2D camera coordinate system

Modeling
Transformation

Camera
Transformation

Projection
Transformation

Lighting

Clipping

Scan
Conversion

Illuminate according to lighting and reflectance

Transform into 3D camera coordinate system

3D Geometric Primitives

Image

3D Rendering Pipeline (for direct illumination)

Transform into 3D world coordinate system

Draw pixels (includes texturing, hidden surface, ...)

Clip (parts of) primitives outside camera’s view

Transform into 2D camera coordinate system

Modeling
Transformation

Camera
Transformation

Projection
Transformation

Lighting

Clipping

Scan
Conversion

Illuminate according to lighting and reflectance

Transform into 3D camera coordinate system

3D Geometric Primitives

Image

Transform into 3D camera coordinate system

Illuminate according to lighting and reflectance

Transformations

Transform into 3D world coordinate system

Draw pixels (includes texturing, hidden surface, etc.)

Clip primitives outside camera’s view

Transform into 2D camera coordinate system

Modeling
Transformation

Camera
Transformation

Projection
Transformation

Lighting

Clipping

Scan
Conversion

3D Geometric Primitives

Image

Transformations

Modeling
Transformation

Camera
Transformation

2D Image Coordinates

Projection
Transformation

Window-to-Viewport
Transformation

3D Object Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

Transformations map points from
one coordinate system to another

p(x,y,z)

p’(x’,y’)
3D World

Coordinates

3D Camera
Coordinates

3D Object
Coordinates

x

z

y

Viewing Transformations

Modeling
Transformation

Camera
Transformation

2D Image Coordinates

Projection
Transformation

Window-to-Viewport
Transformation

3D Object Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

p(x,y,z)

p’(x’,y’)

Viewing Transformations

Viewing Transformation
• Mapping from world to camera coordinates
oEye position maps to origin
oRight vector maps to X axis
oUp vector maps to Y axis
oBack vector maps to Z axis

x

-z

y

World

right
up

back

Camera

View
plane

Camera Coordinates

Camera right vector
maps to X axis

Camera up vector
maps to Y axis

Camera back vector
maps to Z axis
(pointing out of page)

• Canonical coordinate system
oConvention is right-handed (looking down -z axis)
oConvenient for projection, clipping, etc.

x

y

z

Finding the Viewing Transformation
• We have the camera (in world coordinates)

• We want T taking objects from world to camera

• Trick: find T-1 taking objects in camera to world

?

Finding the Viewing Transformation
• Trick: map from camera coordinates to world
oOrigin maps to eye position
oZ axis maps to Back vector
oY axis maps to Up vector
oX axis maps to Right vector

• This matrix is T-1 so we invert it to get T … easy!

Finding the Viewing Transformation
• Trick: map from camera coordinates to world
oRemember, with homogeneous coordinates, we divide

through by w values…
oSo if we know actual point in 3D, w = 1
oEasy to find code to invert a matrix

• This matrix is T-1 so we invert it to get T … easy!

Viewing Transformations

Modeling
Transformation

Camera
Transformation

2D Image Coordinates

Projection
Transformation

Window-to-Viewport
Transformation

3D Object Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

p(x,y,z)

p’(x’,y’)

Viewing Transformations

Projection
• General definition:
oA linear transformation of points in n-space to  
m-space (m<n)

• In computer graphics:
oMap 3D camera coordinates to 2D screen coordinates

Taxonomy of Projections

FvDFH Figure 6.13

Projection
• Two general classes of projections, both of which  

shoot rays from the scene, through the view plane:
oParallel Projection:

»Rays converge at a point at infinity and are parallel
oPerspective “Projection”:

»Rays converge at a finite point, giving rise to perspective
distortion

View Plane View Plane

Taxonomy of Projections

FvDFH Figure 6.13

Parallel Projection

Angel Figure 5.4

• Center of projection is at infinity
oDirection of projection (DOP) same for all points

DOP

View
Plane

Parallel Projection
• Parallel lines remain parallel

• Relative proportions of objects preserved

• Angles are not preserved

• Less realistic looking
oFar away objects don’t get smaller

Taxonomy of Projections

FvDFH Figure 6.13

Orthographic Projections

Angel Figure 5.5
Top

Side Front

• DOP perpendicular to view plane

Isometric

Orthographic Projections

Angel Figure 5.5
Top

Side Front

• DOP perpendicular to view plane

Isometric

• Lines perpendicular to the view plane vanish

• Faces parallel to the view plane are un-distorted.

Taxonomy of Projections

FvDFH Figure 6.13

Cavalier
(DOP α = 45o)

Cabinet
(DOP α = 63.4o)

1

1
1

1

1
1/2

Oblique Projections

H&B Figure 12.21

• DOP not perpendicular to view plane

• φ describes the angle of the projection of the
view plane’s normal

• L represents the scale factor applied to the view
plane’s normal

Parallel Projection Matrix

H&B Figure 12.21

• General parallel projection transformation:

Cavalier
(DOP α = 45o)

Cabinet
(DOP α = 63.4o)

1

1
1

1

1
1/2


xp

yp

�
=


1 0 L cos �

0 1 L sin �

�2

4
x

y

z

3

5

Parallel Projection View Volume

H&B Figure 12.30

Taxonomy of Projections

FVFHP Figure 6.10

Perspective “Projection”

Angel Figure 5.9

• Map points onto “view plane” along “projectors”
emanating from “center of projection” (COP)

Center of
Projection

View
Plane

Proj
ec

tor
s

Perspective Projection

Angel Figure 5.10

3-Point
Perspective

2-Point
Perspective

1-Point
Perspective

• How many vanishing points?

Number of vanishing points
determined by number of axes

parallel to the view plane

x xx

y
y y

z

z
z

Perspective Projection
• Perspective “projection” is not really a projection

because it is not a linear map from 3D to 2D.
oParallel lines do not remain parallel!

Perspective Projection View Volume

H&B Figure 12.30

View
Plane

Perspective Projection
• What are the coordinates of the point resulting from

projection of (x0,y0,z0) onto the view plane at a
distance of D along the z-axis?

(0,0,0) z

-y

-z

y

D

View
Plane

(x0,y0,z0)

Perspective Projection
• Use the fact that for any point (x0,y0,z0) and any

scalar α, the points (x0,y0,z0) and (αx0, αy0, αz0) map
to the same location:

(0,0,0) z

-y

-z

y

D
(x0,y0,z0)

View
Plane

(2x0,2y0,2z0)

Perspective Projection
• Use the fact that for any point (x0,y0,z0) and any

scalar α, the points (x0,y0,z0) and (αx0, αy0, αz0) map
to the same location.

• Since we want the position of the point on the line
that intersect the image plane at a distance of D
along the z-axis:

(0,0,0) z-z

y

D
(x0,y0,z0)

View Plane

(x0, y0, z0)!
✓

x0
D

z0
, y0

D

z0
, D

◆

Perspective Projection Matrix
• 4x4 matrix representation?

Perspective Projection Matrix
• 4x4 matrix representation?

We want to divide by the
z coordinate. How do we  
do that with a 4x4 matrix?

Perspective Projection Matrix
• 4x4 matrix representation?

We want to divide by the
z coordinate. How do we  
do that with a 4x4 matrix?

Recall that in homogenous 
coordinates: 
(x, y, z, w) = (x/w, y/w, z/w, 1)

Perspective Projection Matrix

We want to divide by the
z coordinate. How do we  
do that with a 4x4 matrix?

Recall that in homogenous 
coordinates: 
(x, y, z, w) = (x/w, y/w, z/w, 1)

✓
xcD

zc
,

ycD

zc
, D, 1

◆

⇣
xc, yc, zc,

zc

D

⌘

• 4x4 matrix representation?

Perspective Projection Matrix

We want to divide by the
z coordinate. How do we  
do that with a 4x4 matrix?

Recall that in homogenous 
coordinates: 
(x, y, z, w) = (x/w, y/w, z/w, 1)

• 4x4 matrix representation?

✓
xcD

zc
,

ycD

zc
, D, 1

◆

⇣
xc, yc, zc,

zc

D

⌘

Taxonomy of Projections

FVFHP Figure 6.10

Classical Projections

Angel Figure 5.3

Perspective vs. Parallel
• Perspective projection

+Size varies inversely with distance - looks realistic
–Distance and angles are not preserved
–Only parallel lines that are parallel to the  

view plane remain parallel

• Parallel projection
+Good for exact measurements
+Parallel lines remain parallel
+Angles are preserved on faces 

parallel to the view plane
–Less realistic looking

