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Textures

We know how to go from this…       to this

J. Birn
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Textures
• How can we go about drawing surfaces with complex 

detail?
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Textures
• How can we go about drawing surfaces with complex 

detail?

• We could tessellate the sphere 
in a complex fashion and then 
associate the appropriate 
material properties to each vertex

Target Model

Complex Surface



Textures
• How can we go about drawing surfaces with complex 

detail?

• We could use a simple 
tessellation and use the location 
of surface points to look up the 
appropriate color values

Target Model

Simple Surface

Texture Image



Textures
• Advantages:
oThe 3D model remains simple
oIt is easier to design/modify a texture image than it is to 

design/modify a surface in 3D.

Target Model
Simple Surface

Texture Image



Textures
Properties:

• Alter shading of individual pixels

• Implemented as part of shading process

• Rely on maps being stored as 1D, 2D, or 3D images

• Subject to aliasing errors



Textures
General Implementation Approach:

• Associate a collection of coordinates (s1,…,sn) to 
every vertex (0≤si≤1)

• Use the color of the image at position (s1,…,sn) to 
define the color of a vertex



Another Example: Brick Wall



Another Example: Brick Wall
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2D Texture
• Coordinates described by variables s and t and range 

over interval (0,1)

• Texture elements are called texels

• Often 4 bytes (rgba) per texel

t

s



2D Texture

t

s

glBegin(GL_TRIANGLE); 
glTexCoord2f(0.0, 0.0); 
glVertex3f(0.0, 0.0, 0.0); 

glTexCoord2f(1.0, 0.0); 
glVertex3f(1.0, 0.0, 0.0); 

glTexCoord2f(1.0, 1.0); 
glVertex3f(1.0, 1.0, 0.0); 
glEnd();



3D Rendering Pipeline (for direct illumination)

3D Primitives

Image

2D Image Coordinates

3D Modeling Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

2D Screen Coordinates

3D World Coordinates

2D Image Coordinates

Texture mapping

Lighting

Camera
Transformation

Modeling
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Projection
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Clipping

Viewport
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Scan
Conversion



Overview
• Texture mapping methods
oParameterization
oMapping
oFiltering

• Texture mapping applications
oModulation textures
oIllumination mapping
oBump mapping
oEnvironment mapping
oShadow maps
oVolume Textures



Parameterization

geometry

+ =

image texture map

• Q: How do we decide where on the geometry 
each color from the image should go?



Option: Unfold/Map Entire Surface

[Piponi2000]



Option: Unfold/Map Entire Surface
• Tricky, because mapped surface may have severe 

distortions 

• However, because texture is continuous, may be 
easier to think about

Gu et al. 2003



Option: Unfold/Map Entire Surface
• Tricky, because mapped surface may have severe 

distortions 

• However, because texture is continuous, may be 
easier to think about

Gu et al. 2003

In general, it is impossible to parameterize a 
complex shape to a simple base domain so that 

both angles and areas are preserved



Option: Atlas

[Sander2001]

charts atlas surface
Can be produced automatically by software such as MeshLab



Option: Atlas
• Less distortion on each little piece of atlas

• Need to pack patches to reduce wasted space in 
texture image

• May be more difficult to think about the relationships 
between the different pieces



Overview
• Texture mapping methods
oParameterization
oMapping
oFiltering

• Texture mapping applications
oModulation textures
oIllumination mapping
oBump mapping
oEnvironment mapping
oShadow Maps
oVolume textures



Texture Mapping
• Steps:
oDefine texture
oSpecify mapping from surface to texture
oLookup texture values during scan conversion
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Texture Mapping
• Scan conversion:
oInterpolate texture coordinates down/across scan lines
oDo perspective divide at each pixel based on mapping 

from screen space to 3-space
(s1,t1)

I3

(s2,t2)

(s3,t3)



Texture Mapping

Linear interpolation 
of texture coordinates  

in screen space

Correct interpolation 
with perspective divide

Hill Figure 8.42



Perspective Correct Texture Mapping

From Wikipedia:  
 
Perspective correct mapping interpolates after  
dividing by depth z, then uses its interpolated  
reciprocal to recover the correct coordinate:  
 
 
 
 
 
 
 
Here alpha is the interpolation parameter working in 2D 
screen space coordinates.

Hill Figure 8.42



Overview
• Texture mapping methods
oParameterization
oMapping
oFiltering

• Texture mapping applications
oModulation textures
oIllumination mapping
oBump mapping
oEnvironment mapping
oShadow maps
oVolume Textures



Texture Filtering

Angel Figure 9.4

Must sample texture to determine color at each pixel in 
image



Texture Filtering
Must sample texture to determine color at each pixel in 

image

• In general, the transformation from screen space to 
texture space does not preserve area
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Texture Filtering
Must sample texture to determine color at each pixel in 

image

• In general, the transformation from screen space to 
texture space does not preserve area

• Need to compute the average of the pixels in texture 
space to get the color for screen space
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Texture Filtering
Must sample texture to determine color at each pixel in 

image

• In general, the transformation from screen space to 
texture space does not preserver area

• Need to compute the average of the pixels in texture 
space to get the color for screen space
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Minification

If the distortion is very large, this will 
require a lot of texture look-ups/adds.



Texture Filtering
Size of filter depends on the projective deformation

• Can prefilter images for better performance
oMip maps
oSummed area tables
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Mip Maps
• Keep textures prefiltered at multiple resolutions
oFor each pixel, use the mip-map closest level 
oFast, easy for hardware
oSimilar to “Gaussian pyramid”



Mip Maps
• Keep textures prefiltered at multiple resolutions
oFor each pixel, use the mip-map closest level 
oFast, easy for hardware

Average over  
a few pixels



Mip Maps
• Keep textures prefiltered at multiple resolutions
oFor each pixel, use the mip-map closest level 
oFast, easy for hardware

Average over  
many pixels



Mip Maps
• Keep textures prefiltered at multiple resolutions
oFor each pixel, use the mip-map closest level 
oFast, easy for hardware

Again: we’re trading aliasing for blurring!



Mip Maps
• Keep textures prefiltered at multiple resolutions
oFor each pixel, use the mip-map closest level 
oFast, easy for hardware

• This type of filtering is isotropic:
oIt doesn’t take into account that there is more 

compression in the vertical direction than in the horizontal 
one

Again: we’re trading aliasing for blurring!
s

t



Summed-area tables
Key Idea:

• Approximate the summation/integration over an 
arbitrary region by a summation/integration over an 
axis-aligned rectangle.
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Summed-area tables
Key Idea:

• Approximate the summation/integration over an 
arbitrary region by a summation/integration over an 
axis-aligned rectangle.

• Perform the integration quickly by pre-computing 
integrals and leveraging the formula
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Summed-area tables
Key Idea:

• Approximate the summation/integration over an 
arbitrary region by a summation/integration over an 
axis-aligned rectangle.

• Perform the integration quickly by pre-computing 
integrals and leveraging the formula
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Summed-area tables
• Precompute the values of the integral:

• Each texel is the sum of all texels below and to the 
left of it

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

4 8 12 16

3 6 9 12

2 4 6 8

1 2 3 4

Original image Summed area table

Courtesy Simon Green



Summed-area tables
• Now, suppose I have some pixel on screen that maps 

to these pixels in my texture. What to do?
oExplicitly computing the average (applying a box filter) is 

too slow!

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

Original image



Summed-area tables
• Now, suppose I have some pixel on screen that maps 

to these pixels in my texture. What to do?
oExplicitly computing the average (applying a box filter) is 

too slow!
oUse summed-area table formula

Sum([0,1]×[3,3]) = S(3,3) – S(0,3) – S(3,1) + S(0,1)
             = 16 – 8 – 4 + 2 = 6

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

Original image Summed-area table

4 8 12 16
3 6 9 12
2 4 6 8
1 2 3 4



Summed-area tables
• Now, suppose I have some pixel on screen that maps 

to these pixels in my texture. What to do?
oExplicitly computing the average (applying a box filter) is 

too slow!
oUse summed-area table formula

Sum([0,1]×[3,3]) = S(3,3) – S(0,3) – S(3,1) + S(0,1)
             = 16 – 8 – 4 + 2 = 6

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

Original image Summed-area table

4 8 12 16
3 6 9 12
2 4 6 8
1 2 3 4

Average([0,1]×[3,3]) = Sum([0,1]×[3,3])/Area([0,1]×[3,3]) = 6/6 =1



Overview
• Texture mapping methods
oParameterization
oMapping
oFiltering

• Texture mapping applications
oModulation textures
oIllumination mapping
oBump mapping
oEnvironment mapping
oVolume Textures



Modulation textures
Map texture values to scale factor

Modulation



Illumination Mapping
Map texture values to any material parameter

Modulation Diffuse



Illumination Mapping
Map texture values to any material parameter

Modulation Diffuse Specular



Bump Mapping
• Recall that many parts of our lighting calculation 

depend on surface normals

Surface

N
L

θ



Bump Mapping

P. Rheingans 



Bump Mapping

P. Rheingans 

Phong shading approximates 
smoothly curved surface 



Bump Mapping

P. Rheingans 

Phong shading approximates 
smoothly curved surface 

We can store perturbations to  
normals in a texture map 



Bump Mapping

P. Rheingans 

Phong shading approximates 
smoothly curved surface 

Now Phong shading gives the 
appearance of a bumpy surface 



Bump Mapping

H&B Figure 14.100



Bump Mapping

Note that bump mapping  
does not change object silhouette 

Siggraph.org



Environment Mapping
• Generate a spherical/cubic map of the environment 

around the model.



Environment Mapping
• Generate a spherical/cubic map of the environment 

around the model.

• Texture values are reflected off surface patch 



Environment Mapping
Texture values are reflected off surface patch 

P. Debevec



Environment Maps / Light Probes

63



Cube Maps

64



Solid textures
Texture values indexed by 

3D location (x,y,z)
• Expensive storage, or

• Compute on the fly, 
e.g. Perlin noise à



3D Rendering Pipeline (for direct illumination)

3D Primitives

Image

2D Image Coordinates

3D Modeling Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates
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