
Texture Mapping

Connelly Barnes

CS 4810: Graphics

Acknowledgment: slides by Jason Lawrence, Misha Kazhdan, Allison Klein, Tom
Funkhouser, Adam Finkelstein and David Dobkin

Textures

We know how to go from this… to this

J. Birn

Textures

But what about this… to this?

J. Birn

Textures
• How can we go about drawing surfaces with complex

detail?

Target Model

Textures
• How can we go about drawing surfaces with complex

detail?

• We could tessellate the sphere 
in a complex fashion and then 
associate the appropriate 
material properties to each vertex

Target Model

Complex Surface

Textures
• How can we go about drawing surfaces with complex

detail?

• We could use a simple 
tessellation and use the location 
of surface points to look up the 
appropriate color values

Target Model

Simple Surface

Texture Image

Textures
• Advantages:
oThe 3D model remains simple
oIt is easier to design/modify a texture image than it is to

design/modify a surface in 3D.

Target Model
Simple Surface

Texture Image

Textures
Properties:

• Alter shading of individual pixels

• Implemented as part of shading process

• Rely on maps being stored as 1D, 2D, or 3D images

• Subject to aliasing errors

Textures
General Implementation Approach:

• Associate a collection of coordinates (s1,…,sn) to
every vertex (0≤si≤1)

• Use the color of the image at position (s1,…,sn) to
define the color of a vertex

Another Example: Brick Wall

Another Example: Brick Wall

+

2D Texture
• Coordinates described by variables s and t and range

over interval (0,1)

• Texture elements are called texels

• Often 4 bytes (rgba) per texel

t

s

2D Texture

t

s

glBegin(GL_TRIANGLE);
glTexCoord2f(0.0, 0.0);
glVertex3f(0.0, 0.0, 0.0);

glTexCoord2f(1.0, 0.0);
glVertex3f(1.0, 0.0, 0.0);

glTexCoord2f(1.0, 1.0);
glVertex3f(1.0, 1.0, 0.0);
glEnd();

3D Rendering Pipeline (for direct illumination)

3D Primitives

Image

2D Image Coordinates

3D Modeling Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

2D Screen Coordinates

3D World Coordinates

2D Image Coordinates

Texture mapping

Lighting

Camera
Transformation

Modeling
Transformation

Projection
Transformation

Clipping

Viewport
Transformation

Scan
Conversion

Overview
• Texture mapping methods
oParameterization
oMapping
oFiltering

• Texture mapping applications
oModulation textures
oIllumination mapping
oBump mapping
oEnvironment mapping
oShadow maps
oVolume Textures

Parameterization

geometry

+ =

image texture map

• Q: How do we decide where on the geometry 
each color from the image should go?

Option: Unfold/Map Entire Surface

[Piponi2000]

Option: Unfold/Map Entire Surface
• Tricky, because mapped surface may have severe

distortions

• However, because texture is continuous, may be
easier to think about

Gu et al. 2003

Option: Unfold/Map Entire Surface
• Tricky, because mapped surface may have severe

distortions

• However, because texture is continuous, may be
easier to think about

Gu et al. 2003

In general, it is impossible to parameterize a
complex shape to a simple base domain so that

both angles and areas are preserved

Option: Atlas

[Sander2001]

charts atlas surface
Can be produced automatically by software such as MeshLab

Option: Atlas
• Less distortion on each little piece of atlas

• Need to pack patches to reduce wasted space in
texture image

• May be more difficult to think about the relationships
between the different pieces

Overview
• Texture mapping methods
oParameterization
oMapping
oFiltering

• Texture mapping applications
oModulation textures
oIllumination mapping
oBump mapping
oEnvironment mapping
oShadow Maps
oVolume textures

Texture Mapping
• Steps:
oDefine texture
oSpecify mapping from surface to texture
oLookup texture values during scan conversion

(0,0)

(1,0)

(0,1)

u
v

x

y

Modeling
Coordinate

System

Image
Coordinate

System

s

t

Texture
Coordinate

System

(1,1)

Texture Mapping
• Scan conversion:
oInterpolate texture coordinates down/across scan lines
oDo perspective divide at each pixel based on mapping

from screen space to 3-space
(s1,t1)

I3

(s2,t2)

(s3,t3)

Texture Mapping

Linear interpolation
of texture coordinates  

in screen space

Correct interpolation
with perspective divide

Hill Figure 8.42

Perspective Correct Texture Mapping

From Wikipedia:  
 
Perspective correct mapping interpolates after  
dividing by depth z, then uses its interpolated  
reciprocal to recover the correct coordinate:  
 
 
 
 
 
 
 
Here alpha is the interpolation parameter working in 2D
screen space coordinates.

Hill Figure 8.42

Overview
• Texture mapping methods
oParameterization
oMapping
oFiltering

• Texture mapping applications
oModulation textures
oIllumination mapping
oBump mapping
oEnvironment mapping
oShadow maps
oVolume Textures

Texture Filtering

Angel Figure 9.4

Must sample texture to determine color at each pixel in
image

Texture Filtering
Must sample texture to determine color at each pixel in

image

• In general, the transformation from screen space to
texture space does not preserve area

s

t

x

y

Minification

Texture Filtering
Must sample texture to determine color at each pixel in

image

• In general, the transformation from screen space to
texture space does not preserve area

• Need to compute the average of the pixels in texture
space to get the color for screen space

s

t

x

y

Minification

Texture Filtering
Must sample texture to determine color at each pixel in

image

• In general, the transformation from screen space to
texture space does not preserver area

• Need to compute the average of the pixels in texture
space to get the color for screen space

s

t

x

y

Minification

If the distortion is very large, this will
require a lot of texture look-ups/adds.

Texture Filtering
Size of filter depends on the projective deformation

• Can prefilter images for better performance
oMip maps
oSummed area tables

s

t

x

y

Minification

Mip Maps
• Keep textures prefiltered at multiple resolutions
oFor each pixel, use the mip-map closest level
oFast, easy for hardware
oSimilar to “Gaussian pyramid”

Mip Maps
• Keep textures prefiltered at multiple resolutions
oFor each pixel, use the mip-map closest level
oFast, easy for hardware

Average over  
a few pixels

Mip Maps
• Keep textures prefiltered at multiple resolutions
oFor each pixel, use the mip-map closest level
oFast, easy for hardware

Average over  
many pixels

Mip Maps
• Keep textures prefiltered at multiple resolutions
oFor each pixel, use the mip-map closest level
oFast, easy for hardware

Again: we’re trading aliasing for blurring!

Mip Maps
• Keep textures prefiltered at multiple resolutions
oFor each pixel, use the mip-map closest level
oFast, easy for hardware

• This type of filtering is isotropic:
oIt doesn’t take into account that there is more

compression in the vertical direction than in the horizontal
one

Again: we’re trading aliasing for blurring!
s

t

Summed-area tables
Key Idea:

• Approximate the summation/integration over an
arbitrary region by a summation/integration over an
axis-aligned rectangle.

s

t

s

t

(a,c)

(a,d) (b,d)

(b,c)

Summed-area tables
Key Idea:

• Approximate the summation/integration over an
arbitrary region by a summation/integration over an
axis-aligned rectangle.

• Perform the integration quickly by pre-computing
integrals and leveraging the formula

Summed-area tables
Key Idea:

• Approximate the summation/integration over an
arbitrary region by a summation/integration over an
axis-aligned rectangle.

• Perform the integration quickly by pre-computing
integrals and leveraging the formula

s

t

Summed-area tables
Key Idea:

• Approximate the summation/integration over an
arbitrary region by a summation/integration over an
axis-aligned rectangle.

• Perform the integration quickly by pre-computing
integrals and leveraging the formula

s

t

Summed-area tables
Key Idea:

• Approximate the summation/integration over an
arbitrary region by a summation/integration over an
axis-aligned rectangle.

• Perform the integration quickly by pre-computing
integrals and leveraging the formula

s

t

Summed-area tables
Key Idea:

• Approximate the summation/integration over an
arbitrary region by a summation/integration over an
axis-aligned rectangle.

• Perform the integration quickly by pre-computing
integrals and leveraging the formula

s

t

Summed-area tables
Key Idea:

• Approximate the summation/integration over an
arbitrary region by a summation/integration over an
axis-aligned rectangle.

• Perform the integration quickly by pre-computing
integrals and leveraging the formula

s

t

Summed-area tables
• Precompute the values of the integral:

• Each texel is the sum of all texels below and to the
left of it

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

4 8 12 16

3 6 9 12

2 4 6 8

1 2 3 4

Original image Summed area table

Courtesy Simon Green

Summed-area tables
• Now, suppose I have some pixel on screen that maps

to these pixels in my texture. What to do?
oExplicitly computing the average (applying a box filter) is

too slow!

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

Original image

Summed-area tables
• Now, suppose I have some pixel on screen that maps

to these pixels in my texture. What to do?
oExplicitly computing the average (applying a box filter) is

too slow!
oUse summed-area table formula

Sum([0,1]×[3,3]) = S(3,3) – S(0,3) – S(3,1) + S(0,1)
 = 16 – 8 – 4 + 2 = 6

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

Original image Summed-area table

4 8 12 16
3 6 9 12
2 4 6 8
1 2 3 4

Summed-area tables
• Now, suppose I have some pixel on screen that maps

to these pixels in my texture. What to do?
oExplicitly computing the average (applying a box filter) is

too slow!
oUse summed-area table formula

Sum([0,1]×[3,3]) = S(3,3) – S(0,3) – S(3,1) + S(0,1)
 = 16 – 8 – 4 + 2 = 6

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

Original image Summed-area table

4 8 12 16
3 6 9 12
2 4 6 8
1 2 3 4

Average([0,1]×[3,3]) = Sum([0,1]×[3,3])/Area([0,1]×[3,3]) = 6/6 =1

Overview
• Texture mapping methods
oParameterization
oMapping
oFiltering

• Texture mapping applications
oModulation textures
oIllumination mapping
oBump mapping
oEnvironment mapping
oVolume Textures

Modulation textures
Map texture values to scale factor

Modulation

Illumination Mapping
Map texture values to any material parameter

Modulation Diffuse

Illumination Mapping
Map texture values to any material parameter

Modulation Diffuse Specular

Bump Mapping
• Recall that many parts of our lighting calculation

depend on surface normals

Surface

N
L

θ

Bump Mapping

P. Rheingans

Bump Mapping

P. Rheingans

Phong shading approximates
smoothly curved surface

Bump Mapping

P. Rheingans

Phong shading approximates
smoothly curved surface

We can store perturbations to
normals in a texture map

Bump Mapping

P. Rheingans

Phong shading approximates
smoothly curved surface

Now Phong shading gives the 
appearance of a bumpy surface

Bump Mapping

H&B Figure 14.100

Bump Mapping

Note that bump mapping
does not change object silhouette

Siggraph.org

Environment Mapping
• Generate a spherical/cubic map of the environment

around the model.

Environment Mapping
• Generate a spherical/cubic map of the environment

around the model.

• Texture values are reflected off surface patch

Environment Mapping
Texture values are reflected off surface patch

P. Debevec

Environment Maps / Light Probes

63

Cube Maps

64

Solid textures
Texture values indexed by

3D location (x,y,z)
• Expensive storage, or

• Compute on the fly, 
e.g. Perlin noise à

3D Rendering Pipeline (for direct illumination)

3D Primitives

Image

2D Image Coordinates

3D Modeling Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

2D Screen Coordinates

3D World Coordinates

2D Image Coordinates

Lighting

Camera
Transformation

Modeling
Transformation

Projection
Transformation

Clipping

Viewport
Transformation

Scan
Conversion

