3D Object Representation

Connelly Barnes CS 4810: Graphics

Acknowledgment: slides by Jason Lawrence, Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin

3D Object Representation

• How do we ... • Represent 3D objects in a computer?

oConstruct such representations quickly and/or automatically with a computer?

oManipulate 3D objects with a computer?

Different methods for different object representations

How can this object be represented in a computer?

3D Objects

H&B Figure 10.46

3D Objects

Imaging Economics

How about this one?

3D Objects

H&B Figure 9.9

Representations of Geometry

- 3D Representations provide the foundations for oComputer Graphics
 oComputer-Aided Geometric Design
 oVisualization
 oRobotics
- They are languages for describing geometry data structures algorithms

Data structures determine algorithms!

3D Object Representations

- Raw data
 oPoint cloud
 oRange image
 oPolygon soup
- Surfaces

 oMesh
 oSubdivision
 oParametric
 oImplicit

- Solids

 oVoxels
 oBSP tree
 oCSG
 oSweep
- High-level structures
 oScene graph
 oSkeleton
 oApplication specific

Point Cloud

Unstructured set of 3D point samples
 oAcquired from range finder, random sampling, particle system implementations, etc

Czech Academy of Sciences

Point Cloud

Unstructured set of 3D point samples
 oAcquired from range finder, random sampling, particle system implementations, etc

Czech Academy of Sciences

Range Image

An image storing depth instead of color
 oAcquired from range scanners — e.g. Microsoft Kinect

Range Image	Tesselation	Range Surface

Brian Curless SIGGRAPH 99 Course #4 Notes

Polygon Soup

 Unstructured set of polygons
 oCreated with interactive modeling systems, combining range images, etc.

3D Object Representations

- Raw data
 oPoint cloud
 oRange image
 oPolygon soup
- Surfaces

 oMesh
 oSubdivision
 oParametric
 oImplicit

- Solids

 oVoxels
 oBSP tree
 oCSG
 oSweep
- High-level structures
 oScene graph
 oSkeleton
 oApplication specific

Mesh

Connected set of polygons (usually triangles)
 oMay not be closed

Stanford Graphics Laboratory

Subdivision Surface

 Coarse mesh & subdivision rule
 oDefine smooth surface as limit of sequence of refinements

Zorin & Schroeder SIGGRAPH 99 Course Notes

Parametric Surface

Tensor product spline patches
 oCareful use of constraints to maintain continuity

Implicit Surface

• Points satisfying: F(x,y,z) = 0

Polygonal Model

Implicit Model

Bill Lorensen SIGGRAPH 99 Course #4 Notes

3D Object Representations

- Raw data
 oPoint cloud
 oRange image
 oPolygon soup
- Surfaces

 oMesh
 oSubdivision
 oParametric
 oImplicit

- Solids

 oVoxels
 oBSP tree
 oCSG
 oSweep
- High-level structures
 oScene graph
 oSkeleton
 oApplication specific

Voxels

Uniform grid of volumetric samples
 oAcquired from CT, MRI, etc.

Stanford Graphics Laboratory

BSP Tree

Binary space partition with solid cells labeled
 oConstructed from polygonal representations

Binary Tree

Constructive Solid Geometry (CSG)

 Hierarchy of boolean set operations (union, difference, intersect) applied to simple shapes

FvDFH Figure 12.27

H&B Figure 9.9

Sweep

Solid swept by curve along trajectory

Sweep

Solid swept by curve along trajectory

oCurve may be arbitrary

oSweep polygon may deform (scale, rotate) with respect to the path orientation

Example of Several Representations

- <u>Scalable KinectFusion</u>
- Which representations are being used?

3D Object Representations

- Raw data
 oPoint cloud
 oRange image
 oPolygon soup
- Surfaces

 oMesh
 oSubdivision
 oParametric
 oImplicit

- Solids

 oVoxels
 oBSP tree
 oCSG
 oSweep
- High-level structures
 oScene graph
 oSkeleton
 oApplication specific

Scene Graph

Union of objects at leaf nodes

Bell Laboratories

avalon.viewpoint.com

Skeleton

Graph of curves with radii

Stanford Graphics Laboratory

Application Specific

Apo A-1 (Theoretical Biophysics Group, University of Illinois at Urbana-Champaign)

Architectural Floorplan

Equivalence of Representations

• Thesis:

oEach fundamental representation has enough expressive power to model the shape of any geometric object

olt is possible to perform all geometric operations with any fundamental representation!

 Analogous to Turing-Equivalence:
 OAll computers today are Turing-equivalent, but we still have many different processors

Computational Differences

- Efficiency

 OCombinatorial complexity
 OSpace/time trade-offs
 ONumerical accuracy/stability
- Simplicity

 oEase of acquisition
 oHardware acceleration
- Usability

 What makes a good surface representation? **o**Concise oLocal support **o**Affine invariant oArbitrary topology oGuaranteed continuity **o**Natural parameterization **o**Efficient display oEfficient intersections

H&B Figure 10.46

 What makes a good surface representation? **o**Concise oLocal support oAffine invariant oArbitrary topology oGuaranteed continuity **o**Natural parameterization **o**Efficient display oEfficient intersections

Not Local Support

 What makes a good surface representation? **o**Concise oLocal support oAffine invariant oArbitrary topology oGuaranteed continuity **o**Natural parameterization oEfficient display oEfficient intersections

 What makes a good surface representation? **o**Concise oLocal support oAffine invariant oArbitrary topology oGuaranteed continuity **o**Natural parameterization oEfficient display oEfficient intersections **Topological Genus**

Equivalences

 What makes a good surface representation? **o**Concise oLocal support oAffine invariant oArbitrary topology oGuaranteed continuity **o**Natural parameterization oEfficient display oEfficient intersections

 What makes a good surface representation? **o**Concise oLocal support oAffine invariant oArbitrary topology oGuaranteed continuity **o**Natural parameterization oEfficient display oEfficient intersections

A Parameterization (not necessarily natural)

 What makes a good surface representation? **o**Concise oLocal support **o**Affine invariant oArbitrary topology oGuaranteed continuity oNatural parameterization **o**Efficient display oEfficient intersections