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Overview
• Rotations and SVD

• Interpolating/Approximating Points
o Vectors
o Unit-Vectors

• Interpolating/Approximating Transformations
o Matrices
o Rotations

» SVD Factorization
» Euler Angles
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Recall that the dot-product between two vectors can 
be expressed as a matrix multiplication:
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Since this is true for all v and w, this means that:
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Rotations
What are rotations?

• A rotation R is a linear transformation that has 
determinant equal to one and preserves the angle 
between any two vectors.

• A rotation R is a linear transformation that has 
determinant equal to one and whose transpose is 
equal to its inverse.

• A rotation in 3D can be specified by a 3x3 matrix.
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Rotations
What are rotations?

• A rotation in 3D can also be specified by:
o its axis of rotation w (||w||=1) and
o its angle of rotation θ

Properties:
o The rotation corresponding to (θ,w) is the same as the 

rotation corresponding to (-θ,-w).
o Given two rotations corresponding to (θ1,w) and (θ2,w), 

the product of the rotations corresponds to (θ1+θ2,w).
o Given a rotation corresponding (θ,w), the rotation raised 

to the power α corresponds to (αθ,w).How do we define the product of rotations 
corresponding to (θ1,w1) and (θ2,w2)?



SVD
Any mxn matrix M can be expressed in terms of its 

Singular Value Decomposition as: 
 
 
where:
o U is an nxn rotation matrix,
o V is an mxm rotation matrix, and
o D is an mxn diagonal matrix (i.e off-diagonals are all 0).



SVD
Applications:

• Compression

• Model Alignment

• Matrix Inversion

• Solving Over-Constrained Linear Equations
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Matrix Inversion:

If we have an nxn invertible matrix M, we can use 
SVD to compute the inverse of M.

Expressing M in terms of its SVD gives: 
 
 
where:
o U is an nxn rotation matrix,
o V is an nxn rotation matrix, and
o D is an nxn diagonal matrix (i.e off-diagonals are all 0).
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SVD
Matrix Inversion:

If we have an nxn invertible matrix M, we can use 
SVD to compute the inverse of M.

We can express M-1 as: 

Since:
o U is a rotation, U-1=Ut.
o V is a rotation, V-1=Vt.



SVD
Matrix Inversion:

If we have an nxn invertible matrix M, we can use 
SVD to compute the inverse of M.

We can express M-1 as: 

Since:
o D is a diagonal matrix:
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SVD
Solving Over-Constrained Linear Equations:

If we have m equations in n unknowns, with m≥n, 
the problem is over-constrained and there is no 
general solution.

However, using SVD, we can find the values of {x1,
…,xn} that get us as close to {y1,…,ym} as 
possible.



SVD
Solving Over-Constrained Linear Equations:

If we express the matrix A in terms of its SVD: 
 
then we can set the matrix A* to be:

 
where D* is the diagonal matrix with: 

 

This is called the pseudo-inverse of A.
That is, we invert A as much as possible.



SVD
Solving Over-Constrained Linear Equations:

If we set: 
 
 
this gives us the values of {x1,…,xn} that most 
nearly solve the initial equation:
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Vectors
Given a collection of n control points {p0,…,pn-1}, 

define a curve Φ(t) that approximates/interpolates 
the points.

Linear Interpolation:
o Interpolating
o C0 continuous
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Vectors
Given a collection of n control points {p0,…,pn-1}, 

define a curve Φ(t) that approximates/interpolates 
the points.

Catmull-Rom Splines (Cardinal Splines with t=0):
o Interpolating
o C1 continuous
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Vectors
Given a collection of n control points {p0,…,pn-1}, 

define a curve Φ(t) that approximates/interpolates 
the points.

Uniform Cubic B-Splines:
o Approximating
o C2 continuous
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Unit-Vectors
What if we add the additional constraint that the 

points {p0,…,pn-1} and the curve Φ(t) have to lie on 
the unit circle/sphere (||pi||=1, ||Φ(t)||=1)?



Unit-Vectors
What if we add the additional constraint that the 

points {p0,…,pn-1} and the curve Φ(t) have to lie on 
the unit circle/sphere (||pi||=1, ||Φ(t)||=1)?

We can’t interpolate/approximate the points as 
before, because the in-between points don’t have 
to lie on the unit circle/sphere!
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Unit-Vectors
What if we add the additional constraint that the 

points {p0,…,pn-1} and the curve Φ(t) have to lie on 
the unit circle/sphere (||pi||=1, ||Φ(t)||=1)?

We can normalize the in-between points by sending 
them to the closest circle/sphere point:

p0
p1

Φ(t)=(1-t)p0+tp1



Curve Normalization
Limitations:

• The normalized curve is not always well defined.

p0 p1

Φ(t)=(1-t)p0+tp1



Curve Normalization
Limitations:

• The normalized curve is not always well defined.

• Just because points are uniformly distributed on 
the original curve, does not mean that they will be 
uniformly distributed on the normalized one.

p0 p1

Φ(t)=(1-t)p0+tp1



Curve Normalization
Limitations:

• The normalized curve is not always well defined.

• Just because points are uniformly distributed on 
the original curve, does not mean that they will 
be uniformly distributed on the normalized one.

SLERP:

If we set:
o p0=(cosθ0,sinθ0)
o p1=(cosθ1,sinθ1)

We can set:

p0 p1
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Matrices
Given a collection of n matrices {M0,…,Mn-1}, define 

a curve Φ(t) that approximates/interpolates the 
matrices.

As with vectors:

• Linear Interpolation: 

• Catmull-Rom Interpolation: 

• Uniform Cubic B-Spline Approximation:
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Rotations
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Rotations
What if we add the additional constraint that the 

matrices {M0,…,Mn-1} and the values of the curve 
Φ(t) have to be rotations?

We can’t interpolate/approximate the matrices as 
before, because the in-between matrices don’t 
have to be rotations!

We could try to normalize, by mapping every matrix 
Φ(t) to the nearest rotation.



Challenge
Given a matrix M, how do you find the rotation 

matrix R that is closest to M?



SVD Factorization
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matrix R that is closest to M?

Singular Value Decomposition (SVD) allows us to 
express any M as a diagonal matrix, multiplied on 
the left and right by the rotations R1 and R2:



SVD Factorization
Given a matrix M, how do you find the rotation 

matrix R that is closest to M?

Singular Value Decomposition (SVD) allows us to 
express any M as a diagonal matrix, multiplied on 
the left and right by the rotations R1 and R2:

The closest rotation R to M is then just the rotation:

To be fully correct, you need to ensure that the 
product of sgn(λi) is 1. If not, you need to flip 
the sign of the sgn(λi) where |λi| is smallest.



Euler Angles
Every rotation matrix R can be expressed as:
o some rotation about the x-axis, multiplied by
o some rotation about the y-axis, multiplied by
o some rotation about the z-axis:

The angles (θ,φ,ψ) are called the Euler angles.
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Euler Angles
Instead of blending matrices and then normalizing 

using SVD, we can blend the Euler angles:
o For each Mk, compute the Euler angles (θk,φk,ψk)
o Interpolate/Approximate the Euler angles:

» Linear Interpolation
» Catmull-Rom Interpolation:



Euler Angles
Instead of blending matrices and then normalizing 

using SVD, we can blend the Euler angles:
o For each Mk, compute the Euler angles (θk,φk,ψk)
o Interpolate/Approximate the Euler angles:

» Linear Interpolation
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Euler Angles
Instead of blending matrices and then normalizing 

using SVD, we can blend the Euler angles:
o For each Mk, compute the Euler angles (θk,φk,ψk)
o Interpolate/Approximate the Euler angles:

» Linear Interpolation
» Catmull-Rom Interpolation
» Uniform Cubic B-Spline Approximation

o Set the value of the in-between matrix to:


