
Animating Transformations

Connelly Barnes

CS445: Graphics

Acknowledgment: slides by Jason Lawrence, Misha Kazhdan, Allison Klein, Tom
Funkhouser, Adam Finkelstein and David Dobkin

Overview
• Rotations and SVD

• Interpolating/Approximating Points
o Vectors
o Unit-Vectors

• Interpolating/Approximating Transformations
o Matrices
o Rotations

» SVD Factorization
» Euler Angles

Rotations
What are rotations?

Rotations
What are rotations?

• A rotation R is a linear transformation that has
determinant equal to one and preserves the angle
between any two vectors:

Rotations
What are rotations?

• A rotation R is a linear transformation that has
determinant equal to one and preserves the angle
between any two vectors:

Recall that the dot-product between two vectors can
be expressed as a matrix multiplication:

Rotations
What are rotations?

• A rotation R is a linear transformation that has
determinant equal to one and preserves the angle
between any two vectors:

This implies that:

Rotations
What are rotations?

• A rotation R is a linear transformation that has
determinant equal to one and preserves the angle
between any two vectors:

This implies that:

Rotations
What are rotations?

• A rotation R is a linear transformation that has
determinant equal to one and preserves the angle
between any two vectors:

This implies that:

 

Since this is true for all v and w, this means that:

Rotations
What are rotations?

• A rotation R is a linear transformation that has
determinant equal to one and preserves the angle
between any two vectors.

• A rotation R is a linear transformation that has
determinant equal to one and whose transpose is
equal to its inverse.

Rotations
What are rotations?

• A rotation R is a linear transformation that has
determinant equal to one and preserves the angle
between any two vectors.

• A rotation R is a linear transformation that has
determinant equal to one and whose transpose is
equal to its inverse.

• A rotation in 3D can be specified by a 3x3 matrix.

Rotations
What are rotations?

• A rotation in 3D can also be specified by:
o its axis of rotation w (||w||=1) and
o its angle of rotation θ

θ

w

Rotations
What are rotations?

• A rotation in 3D can also be specified by:
o its axis of rotation w (||w||=1) and
o its angle of rotation θ

Properties:
o The rotation corresponding to (θ,w) is the same as the

rotation corresponding to (-θ,-w).

Rotations
What are rotations?

• A rotation in 3D can also be specified by:
o its axis of rotation w (||w||=1) and
o its angle of rotation θ

Properties:
o The rotation corresponding to (θ,w) is the same as the

rotation corresponding to (-θ,-w).
o Given two rotations corresponding to (θ1,w) and (θ2,w),

the product of the rotations corresponds to (θ1+θ2,w).

Rotations
What are rotations?

• A rotation in 3D can also be specified by:
o its axis of rotation w (||w||=1) and
o its angle of rotation θ

Properties:
o The rotation corresponding to (θ,w) is the same as the

rotation corresponding to (-θ,-w).
o Given two rotations corresponding to (θ1,w) and (θ2,w),

the product of the rotations corresponds to (θ1+θ2,w).
o Given a rotation corresponding (θ,w), the rotation raised

to the power α corresponds to (αθ,w).

Rotations
What are rotations?

• A rotation in 3D can also be specified by:
o its axis of rotation w (||w||=1) and
o its angle of rotation θ

Properties:
o The rotation corresponding to (θ,w) is the same as the

rotation corresponding to (-θ,-w).
o Given two rotations corresponding to (θ1,w) and (θ2,w),

the product of the rotations corresponds to (θ1+θ2,w).
o Given a rotation corresponding (θ,w), the rotation raised

to the power α corresponds to (αθ,w).How do we define the product of rotations
corresponding to (θ1,w1) and (θ2,w2)?

SVD
Any mxn matrix M can be expressed in terms of its

Singular Value Decomposition as: 
 
 
where:
o U is an nxn rotation matrix,
o V is an mxm rotation matrix, and
o D is an mxn diagonal matrix (i.e off-diagonals are all 0).

SVD
Applications:

• Compression

• Model Alignment

• Matrix Inversion

• Solving Over-Constrained Linear Equations

SVD
Matrix Inversion:

If we have an nxn invertible matrix M, we can use
SVD to compute the inverse of M.

SVD
Matrix Inversion:

If we have an nxn invertible matrix M, we can use
SVD to compute the inverse of M.

Expressing M in terms of its SVD gives: 
 
 
where:
o U is an nxn rotation matrix,
o V is an nxn rotation matrix, and
o D is an nxn diagonal matrix (i.e off-diagonals are all 0).

SVD
Matrix Inversion:

If we have an nxn invertible matrix M, we can use
SVD to compute the inverse of M.

We can express M-1 as: 
 
 

SVD
Matrix Inversion:

If we have an nxn invertible matrix M, we can use
SVD to compute the inverse of M.

We can express M-1 as: 
 
 

SVD
Matrix Inversion:

If we have an nxn invertible matrix M, we can use
SVD to compute the inverse of M.

We can express M-1 as: 

Since:
o U is a rotation, U-1=Ut.
o V is a rotation, V-1=Vt.

SVD
Matrix Inversion:

If we have an nxn invertible matrix M, we can use
SVD to compute the inverse of M.

We can express M-1 as: 

Since:
o D is a diagonal matrix:

SVD
Solving Over-Constrained Linear Equations:

If we have m equations in n unknowns, with m>n,
the problem is over-constrained and there is no
general solution.

SVD
Solving Over-Constrained Linear Equations:

If we have m equations in n unknowns, with m≥n,
the problem is over-constrained and there is no
general solution.

However, using SVD, we can find the values of {x1,
…,xn} that get us as close to {y1,…,ym} as
possible.

SVD
Solving Over-Constrained Linear Equations:

If we express the matrix A in terms of its SVD: 
 
then we can set the matrix A* to be:

 
where D* is the diagonal matrix with:

 

This is called the pseudo-inverse of A.
That is, we invert A as much as possible.

SVD
Solving Over-Constrained Linear Equations:

If we set: 
 
 
this gives us the values of {x1,…,xn} that most
nearly solve the initial equation:

Overview
• Rotations and SVD

• Interpolating/Approximating Points
o Vectors
o Unit-Vectors

• Interpolating/Approximating Transformations
o Matrices
o Rotations

» SVD Factorization
» Euler Angles

Vectors
Given a collection of n control points {p0,…,pn-1},

define a curve Φ(t) that approximates/interpolates
the points.

Vectors
Given a collection of n control points {p0,…,pn-1},

define a curve Φ(t) that approximates/interpolates
the points.

Linear Interpolation:
o Interpolating
o C0 continuous

p0

p1

p5

p6

p7

p2

p3

Φ1(t) Φ2(t)

Φ3(t)

Φ4(t)

Φ5(t)Φ0(t)

p4

Φ6(t)

Vectors
Given a collection of n control points {p0,…,pn-1},

define a curve Φ(t) that approximates/interpolates
the points.

Catmull-Rom Splines (Cardinal Splines with t=0):
o Interpolating
o C1 continuous

p0

p3

p4

p7

Φ1(t) Φ2(t)

Φ3(t)

Φ4(t)

Φ5(t)

p6

p5

p1 p2

Vectors
Given a collection of n control points {p0,…,pn-1},

define a curve Φ(t) that approximates/interpolates
the points.

Uniform Cubic B-Splines:
o Approximating
o C2 continuous

p0

p3

p7

Φ1(t)
Φ2(t)

Φ3(t)
Φ4(t)

Φ5(t)

p6

p5

p4

p1 p2

Unit-Vectors
What if we add the additional constraint that the

points {p0,…,pn-1} and the curve Φ(t) have to lie on
the unit circle/sphere (||pi||=1, ||Φ(t)||=1)?

Unit-Vectors
What if we add the additional constraint that the

points {p0,…,pn-1} and the curve Φ(t) have to lie on
the unit circle/sphere (||pi||=1, ||Φ(t)||=1)?

We can’t interpolate/approximate the points as
before, because the in-between points don’t have
to lie on the unit circle/sphere!

p0
p1

p0
p1

Φ(t)=(1-t)p0+tp1

Unit-Vectors
What if we add the additional constraint that the

points {p0,…,pn-1} and the curve Φ(t) have to lie on
the unit circle/sphere (||pi||=1, ||Φ(t)||=1)?

We can normalize the in-between points by sending
them to the closest circle/sphere point:

p0
p1

Φ(t)=(1-t)p0+tp1

Curve Normalization
Limitations:

• The normalized curve is not always well defined.

p0 p1

Φ(t)=(1-t)p0+tp1

Curve Normalization
Limitations:

• The normalized curve is not always well defined.

• Just because points are uniformly distributed on
the original curve, does not mean that they will be
uniformly distributed on the normalized one.

p0 p1

Φ(t)=(1-t)p0+tp1

Curve Normalization
Limitations:

• The normalized curve is not always well defined.

• Just because points are uniformly distributed on
the original curve, does not mean that they will
be uniformly distributed on the normalized one.

SLERP:

If we set:
o p0=(cosθ0,sinθ0)
o p1=(cosθ1,sinθ1)

We can set:

p0 p1

Overview
Interpolating/Approximating

• Rotations and SVD

• Interpolating/Approximating Points
o Vectors
o Unit-Vectors

• Interpolating/Approximating Transformations
o Matrices
o Rotations

» SVD Factorization
» Euler Angles

Matrices
Given a collection of n matrices {M0,…,Mn-1}, define

a curve Φ(t) that approximates/interpolates the
matrices.

Matrices
Given a collection of n matrices {M0,…,Mn-1}, define

a curve Φ(t) that approximates/interpolates the
matrices.

As with vectors:

• Linear Interpolation: 

• Catmull-Rom Interpolation: 

• Uniform Cubic B-Spline Approximation:

Rotations
What if we add the additional constraint that the

matrices {M0,…,Mn-1} and the values of the curve
Φ(t) have to be rotations?

Rotations
What if we add the additional constraint that the

matrices {M0,…,Mn-1} and the values of the curve
Φ(t) have to be rotations?

We can’t interpolate/approximate the matrices as
before, because the in-between matrices don’t
have to be rotations!

Rotations
What if we add the additional constraint that the

matrices {M0,…,Mn-1} and the values of the curve
Φ(t) have to be rotations?

We can’t interpolate/approximate the matrices as
before, because the in-between matrices don’t
have to be rotations!

We could try to normalize, by mapping every matrix
Φ(t) to the nearest rotation.

Challenge
Given a matrix M, how do you find the rotation

matrix R that is closest to M?

SVD Factorization
Given a matrix M, how do you find the rotation

matrix R that is closest to M?

Singular Value Decomposition (SVD) allows us to
express any M as a diagonal matrix, multiplied on
the left and right by the rotations R1 and R2:

SVD Factorization
Given a matrix M, how do you find the rotation

matrix R that is closest to M?

Singular Value Decomposition (SVD) allows us to
express any M as a diagonal matrix, multiplied on
the left and right by the rotations R1 and R2:

The closest rotation R to M is then just the rotation:

To be fully correct, you need to ensure that the
product of sgn(λi) is 1. If not, you need to flip
the sign of the sgn(λi) where |λi| is smallest.

Euler Angles
Every rotation matrix R can be expressed as:
o some rotation about the x-axis, multiplied by
o some rotation about the y-axis, multiplied by
o some rotation about the z-axis:

The angles (θ,φ,ψ) are called the Euler angles.

Euler Angles
Instead of blending matrices and then normalizing

using SVD, we can blend the Euler angles:
o For each Mk, compute the Euler angles (θk,φk,ψk)

Euler Angles
Instead of blending matrices and then normalizing

using SVD, we can blend the Euler angles:
o For each Mk, compute the Euler angles (θk,φk,ψk)
o Interpolate/Approximate the Euler angles:

Euler Angles
Instead of blending matrices and then normalizing

using SVD, we can blend the Euler angles:
o For each Mk, compute the Euler angles (θk,φk,ψk)
o Interpolate/Approximate the Euler angles:

» Linear Interpolation: 

Euler Angles
Instead of blending matrices and then normalizing

using SVD, we can blend the Euler angles:
o For each Mk, compute the Euler angles (θk,φk,ψk)
o Interpolate/Approximate the Euler angles:

» Linear Interpolation
» Catmull-Rom Interpolation:

Euler Angles
Instead of blending matrices and then normalizing

using SVD, we can blend the Euler angles:
o For each Mk, compute the Euler angles (θk,φk,ψk)
o Interpolate/Approximate the Euler angles:

» Linear Interpolation
» Catmull-Rom Interpolation
» Uniform Cubic B-Spline Approximation:

Euler Angles
Instead of blending matrices and then normalizing

using SVD, we can blend the Euler angles:
o For each Mk, compute the Euler angles (θk,φk,ψk)
o Interpolate/Approximate the Euler angles:

» Linear Interpolation
» Catmull-Rom Interpolation
» Uniform Cubic B-Spline Approximation

o Set the value of the in-between matrix to:

