Animating Transformations

Connelly Barnes
CS445: Graphics

Acknowledgment: slides by Jason Lawrence, Misha Kazhdan, Allison Klein, Tom
Funkhouser, Adam Finkelstein and David Dobkin

-

J




-
Overview

* Rotations and SVD

* Interpolating/Approximating Points
o Vectors
o Unit-Vectors

- Interpolating/Approximating Transformations
o Matrices
o Rotations
» SVD Factorization
» Euler Angles




/

Rotations

What are rotations?




/

Rotations

What are rotations?

- Arotation R is a linear transformation that has
determinant equal to one and preserves the angle
between any two vectors:

v.w)=R¥LRW))




-

Rotations

What are rotations?

- Arotation R is a linear transformation that has
determinant equal to one and preserves the angle
between any two vectors:

v.w)=R¥LRW))

Recall that the dot-product between two vectors can
be expressed as a matrix multiplication:

V.wW)=v'w




-
Rotations

What are rotations?

- Arotation R is a linear transformation that has
determinant equal to one and preserves the angle
between any two vectors:

v.w)=R¥LRW))

This implies that:
v'w =(RV) (Rw)




-
Rotations

What are rotations?

- Arotation R is a linear transformation that has
determinant equal to one and preserves the angle
between any two vectors:

v.w)=R¥LRW))

This implies that:
v'w =RV ) (Rw)

v RR W




-
Rotations

What are rotations?

- Arotation R is a linear transformation that has
determinant equal to one and preserves the angle
between any two vectors:

v.w)=R¥LRW))

This implies that:
v'w =(Rv) " (Rw)

v RR W

Since this is true for all v and w, this means that:
_ R‘R =Identity <===)» R'=R"




-
Rotations

What are rotations?

- Arotation R is a linear transformation that has
determinant equal to one and preserves the angle
between any two vectors.

- Arotation Ris a linear transformation that has
determinant equal to one and whose transpose is
equal to its inverse.




4 )
Rotations

What are rotations?

- Arotation R is a linear transformation that has
determinant equal to one and preserves the angle
between any two vectors.

- Arotation Ris a linear transformation that has
determinant equal to one and whose transpose is
equal to its inverse.

 Arotation in 3D can be specified by a 3x3 matrix.




-

Rotations

What are rotations?

« Arotation in 3D can also be specified by:
o its axis of rotation w (llwil=1) and
o its angle of rotation 6




-
Rotations

What are rotations?

« Arotation in 3D can also be specified by:
o its axis of rotation w (llwil=1) and
o its angle of rotation 6

Properties:

o The rotation corresponding to (6,w) is the same as the
rotation corresponding to (-0,-w).




/

Rotations

What are rotations?

« Arotation in 3D can also be specified by:
o its axis of rotation w (llwil=1) and
o its angle of rotation 6

Properties:
o The rotation corresponding to (6,w) is the same as the
rotation corresponding to (-0,-w).
o Given two rotations corresponding to (6,,w) and (6,,w),
the product of the rotations corresponds to (0,+0,,w).




/

Rotations

What are rotations?

« Arotation in 3D can also be specified by:
o its axis of rotation w (llwil=1) and
o its angle of rotation 6

Properties:
o The rotation corresponding to (6,w) is the same as the
rotation corresponding to (-0,-w).
o Given two rotations corresponding to (6,,w) and (6,,w),
the product of the rotations corresponds to (0,+0,,w).

o Given a rotation corresponding (6,w), the rotation raised
to the power o corresponds to (a6, w).

J




-

Rotations

What are rotations?

« Arotation in 3D can also be specified by:
o its axis of rotation w (llml=1) and
o its angle of rotation 6

Properties:

o The rotation corresponding to (6,w) is the same as the
rotation corresponding to (-0,-w).
o Given two rotations corresponding to (6,,w) and (6,,w),

the product of the rotations corresponds to (6,+6,,w).

o Gi
to

I I - |- & A YR Y NN P I 1

How do we define the product of rotations
corresponding to (0,,w,) and (0,,w,)?

ed

J




-
SVD

Any mxn matrix M can be expressed in terms of its
Singular Value Decomposition as:

M =UDV"

where:

o Uis an nxn rotation matrix,

o Vis an mxm rotation matrix, and

o D is an mxn diagonal matrix (i.e off-diagonals are all 0).




-
SVD

Applications:

« Compression
* Model Alignment
« Matrix Inversion

+ Solving Over-Constrained Linear Equations




/

SVD

Matrix Inversion:

If we have an nxn invertible matrix M, we can use
SVD to compute the inverse of M.




4 a
SVD

Matrix Inversion:

If we have an nxn invertible matrix M, we can use
SVD to compute the inverse of M.

Expressing M in terms of its SVD gives:

M =UDV '

where:

o Uis an nxn rotation matrix,

o Vis an nxn rotation matrix, and

o D is an nxn diagonal matrix (i.e off-diagonals are all 0).

- J




SVD

Matrix Inversion:

If we have an nxn invertible matrix M, we can use
SVD to compute the inverse of M.

We can express M as:
M~ =@Epr)'




/

SVD

Matrix Inversion:

If we have an nxn invertible matrix M, we can use
SVD to compute the inverse of M.

We can express M as:
M =@Epr) =¢")p'U-




SVD

Matrix Inversion:

If we have an nxn invertible matrix M, we can use
SVD to compute the inverse of M.

We can express M as:
M =@Epr) =¢")p'U-
SInCe _ VD—IUt

o Uis a rotation, U=
o Vs a rotation, V1=W.




SVD

Matrix Inversion:

If we have an nxn invertible matrix M, we can use
SVD to compute the inverse of M.

We can express M as:
M =@Epr) =¢")p'U-

SInCe | | _ VD—IUt
o D is a diagonal matrix:
MO0 0) /A 0 - 0 0 )
0A,--- 0 0+ 0 1A 0 0
D=|:! i ! ¥ e==D'=| ! i F
00 0= 0 0 A, 0 =
00--0 A7 0 0 - 0 I/A7




/

SVD

Solving Over-Constrained Linear Equations:

If we have m equations in n unknowns, with nr>n,
the problem is over-constrained and there is no
general solution.

(a,,---a,, \

/3{1\7 /yl\

\aln”.amn)_.\xnj \ym/




-
SVD

Solving Over-Constrained Linear Equations:

If we have m equations in n unknowns, with m=n,
the problem is over-constrained and there is no

general solution.
(a,,-a,, l

/3{1\_

\aln o .amn )

\Xn )

(1)

\Vm ]

However, using SVD, we can find the values of {x;,
...,X.} that get us as close to {y;,,...,y,.} as

\—_possible.




s A
SVD

Solving Over-Constrained Linear Equations:

If we express the matrix A in terms of its SVD:

A=UDV"
then we can set the matrix A" to be:
A"=VD'U"
where D is the diagonal matrix with:
D 1/D. ifD; =0
"o otherwise

This is called the pseudo-inverse of A.

That 1s, we invert 4 as much as possible. \




-
SVD

Solving Over-Constrained Linear Equations:

If we set:

XX, ) =AY,y )
this gives us the values of {x,,...,x,} that most
nearly solve the initial equation:

A, X, ] =y, Yo )




-
Overview

« Rotations and SVD

* Interpolating/Approximating Points
o Vectors
o Unit-Vectors

* Interpolating/Approximating Transformations
o Matrices
o Rotations
» SVD Factorization
» Euler Angles




/

Vectors

Given a collection of n control points {p,,...,p,.:},

define a curve ®(1) that approximates/interpolates
the points.




-
Vectors

Given a collection of n control points {p,,..-,P,.1};
define a curve ®(1) that approximates/interpolates

the points.
Linear Interpolation:

o Interpolating D,

o (P continuous

A 2 be D (?)
@) N@zm
D(7) ] Ps
O, (t)=~10-t)p; +p,,

P3
D(?)

\ Do (I)S(t) P4




-
Vectors

Given a collection of n control points {p,,...,p,.:},

define a curve ®(1) that approximates/interpolates
the points.

Catmull-Rom Splines (Cardinal Splines with t=0):
o Interpolating o,
o C' continuous

q Ps

O, (t)=CR,t)p,_, +CR,(t)p, +CR, ()P, +CR,(T)py.,

P3
D(?)
P4

\_ o, D,(7)

0




-
Vectors

Given a collection of n control points {p,,...,p,.:},

define a curve ®(1) that approximates/interpolates
the points.

Uniform Cubic B-Splines:
0 Approximating o,
o (2 contmuous

Pé.

/\\A) (1) &

O, t)=B,;C)p_, +B, ;)P +st(t)pk+1+833(t)pk+2

Ps

D (?)

D,(?) ®
N .Po 3 P4




/

Unit-Vectors

What if we add the additional constraint that the
points {p,,...,P,.,;r and the curve ®(f) have to lie on

the unit circle/sphere (lipll=1, [I®(H)lI=1)7?




-
Unit-Vectors

What if we add the additional constraint that the
points {p,,...,P,.,;r and the curve ®(f) have to lie on

the unit circle/sphere (lipll=1, [I®(H)lI=1)7?

We can't interpolate/approximate the points as
before, because the in-between points don’t have

to lie on the unit circle/sphere! O()=(1-Hp+p,
o p '//P]‘
Py /P N

-
S~ = S~ =




-
Unit-Vectors

What if we add the additional constraint that the
points {p,,...,P,.,;r and the curve ®(f) have to lie on

the unit circle/sphere (lipll=1, [I®(H)lI=1)7?

We can normalize the in-between points by sending

them to the closest C|rcle/sphererpe+g{t'—

3
"0 o)

< (O=(1-0)pgtp,

-~ -




-
Curve Normalization

Limitations:

- The normalized curve is not always well defined.

- -~

-
Sm——-




-
Curve Normalization

Limitations:

- The normalized curve is not always well defined.

- Just because points are uniformly distributed on
the original curve, does not mean that they will be

uniformly distributed on the normalized one.
D)
O o]

o
o
.

"

.

.

.

.

.

.

.

.

.

.... -

“ “
pol ‘e . * \
1 ..'0 1 “‘ ]
'''''
! b2 1
! [
| 1
\ 1
\
\
\
\

P(O)=(1-Opytip,

R S S




4 )
Curve Normalization

Limitations:

- The normalized curve is not always well defined.

- Just because points are uniformly distributed on
the original curve, does not mean that they will
be uniformly distributed on the normalized one.

SLERP: /\
If we set: Py

D
0 pP,=(cos0,,sinb,) E
o p;=(cosh,sinb,) \ ,
D(t) = (cos((1-1)0, +18,),sin((1-t)9, +10,))

. We can set:




-
Overview

Interpolating/Approximating
 Rotations and SVD

* Interpolating/Approximating Points
o Vectors
o Unit-Vectors

* Interpolating/Approximating Transformations
o Matrices
o Rotations
» SVD Factorization
» Euler Angles




/

Matrices

Given a collection of n matrices {M,,...,M__,}, define

a curve ®(1) that approximates/interpolates the
matrices.




-

Matrices

Given a collection of n matrices {M,,...,M__,}, define

a curve ®(1) that approximates/interpolates the
matrices.

As with vectors:

 Linear Interpolation:
D, (t)=(1-)M; +tM,

- Catmull-Rom Interpolation:
P; ) =CR, @M, +CR, )M, +CR, )M, +CR,; )M, ,,

 Uniform Cubic B-Spline A)pl\}i)roximation:
(I)i (t ) = Bo,3(t )M k-1 T B1,3(t K T Bz,3(t )Mk+1 + B3,3(t )M k +2

J




/

Rotations

What if we add the additional constraint that the
matrices {M,,...,M,_,} and the values of the curve

d (1) have to be rotations?




-

Rotations

What if we add the additional constraint that the
matrices {M,,...,M,_,} and the values of the curve

d (1) have to be rotations?

We can'’t interpolate/approximate the matrices as
before, because the in-between matrices don’t
have to be rotations!




-

Rotations

What if we add the additional constraint that the
matrices {M,,...,M,_,} and the values of the curve

d (1) have to be rotations?

We can'’t interpolate/approximate the matrices as
before, because the in-between matrices don’t
have to be rotations!

We could try to normalize, by mapping every matrix
d(1) to the nearest rotation.




/

Challenge

Given a matrix M, how do you find the rotation
matrix R that is closest to M?




-

SVD Factorization

Given a matrix M, how do you find the rotation
matrix R that is closest to M?

Singular Value Decomposition (SVD) allows us to
express any M as a diagonal matrix, multiplied on
the left and right by the rotations R, and R.:

(A 0 0)

M=R/|0A, O0R,

L0 0N, T




-
SVD Factorization

Given a matrix M, how do you find the rotation
matrix R that is closest to M?

Singular Value Decomposition (SVD) allows us to
express any M as a diagonal matrix, multiplied on
the left and right by the rotations R, and R.:

To be fully correct, you need to ensure that the
product of sgn(A,) 1s 1. If not, you need to flip

the sign of the sgn(A;) where |\ is smallest.
\ =7/

The closest rota is%rlhlj toMis U‘ner\l just the rotation:

R =R, 0 sgn(h,) 0 R,
_ 0 0 sgn(h;)]




/

Euler Angles

Every rotation matrix R can be expressed as:
0 some rotation about the x-axis, multiplied by
0 some rotation about the y-axis, multiplied by
0 some rotation about the z-axis:

RO,9p)=R, ®R, (@R, W)

The angles (0,¢,1) are called the Euler angles.




/

Euler Angles

Instead of blending matrices and then normalizing
using SVD, we can blend the Euler angles:
o For each M,, compute the Euler angles (0,,¢,,y,)




/

Euler Angles

Instead of blending matrices and then normalizing
using SVD, we can blend the Euler angles:
o For each M,, compute the Euler angles (0,,¢,,y,)

o Interpolate/Approximate the Euler angles:




/

Euler Angles

Instead of blending matrices and then normalizing
using SVD, we can blend the Euler angles:
o For each M,, compute the Euler angles (0,,¢,,y,)

o Interpolate/Approximate the Euler angles:

» Linear Interpolation:
0, =~10-1)8, +16,,,

O (1) = A=), +1¢,,,
P @) =A-t), +0p,,,




/

Euler Angles

Instead of blending matrices and then normalizing
using SVD, we can blend the Euler angles:
o For each M,, compute the Euler angles (0,,¢,,y,)
o Interpolate/Approximate the Euler angles:
» Linear Interpolation
» Catmull-Rom Interpolation:
0,(1) = CRy(1)0,_, + CR(1)0, + CR,(1)0,,, + CR;(£)0,,,
q)k (t) = CRO (t)q)k—l + CRI (t)q)k + CRz (t)¢k+l + CR3 (t)¢k+2
P k(t) = CRO (t)lp -1t CR1 (t)lp Tt CRz (t)lp kel T CR3 (t)lp k+2




/

Euler Angles

Instead of blending matrices and then normalizing
using SVD, we can blend the Euler angles:
o For each M,, compute the Euler angles (0,,¢,,y,)

o Interpolate/Approximate the Euler angles:
» Linear Interpolation
» Catmull-Rom Interpolation

» Uniform Cubic B-Spline Approximation:
0,(t)=B,,()0,_, +B,5(1)0, + B, ;(1)0,,, + B; ;(1)0,,,
b, (1) = By 5 (), + B, 5 ()0, + B, 5 (1), + B 5 ()P,
P, (7) = Bo,3 (R ey + BI,3 (thp, + B2,3 (W e + B3,3 (W 12




/

Euler Angles

Instead of blending matrices and then normalizing
using SVD, we can blend the Euler angles:
o For each M,, compute the Euler angles (0,,¢,,y,)

o Interpolate/Approximate the Euler angles:
» Linear Interpolation
» Catmull-Rom Interpolation
» Uniform Cubic B-Spline Approximation
0 Set the value of the in-between matrix to:

D, (1) =R, 0,@))R,(§;())R.(W,(?))




