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Camera Obscura

Camera Obscura, Gemma Frisius, 1558

[Slide content from Efros]

Camera is Latin for chamber/room, obscura means dark




Camera Obscura

Camera Obscura, Gemma Frisius, 1558
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[Image from Efros]

Used by Euclid (300 B.C.) to show light travels in straight rays




Pinhole Camera

object film

lllustration by Steve Seitz

- Blurry image results if all rays reach film




Pinhole Camera

object barrier film
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Center of Projection
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lllustration by Steve Seitz

- Pinhole camera has small aperture size.

- All objects are in focus — depth of field infinite



New Worlds Mission (NASA)




Pinhole Camera




Pinhole Camera

Fix object size and imaging plane distance: hl. o —

d
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Perspective
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Modeling projection

PP

(x' y', -d)
" ' (X, ¥, 2)
COP

X

The coordinate system

* We will use the pin-hole model as an approximation

« Put the optical center (Center Of Projection) at the origin

« Put the image plane (Projection Plane) in front of the COP
= Why?

 The camera looks down the negative z axis
— we need this if we want right-handed-coordinates

Slide by Steve Seitz



Modeling projection

Yy
A PP
e d ...... ( X’. y" ..d)
" (X, Y, 2)
COP
Z «

Projection equations

« Compute intersection with PP of ray from (x,y,z) to COP
* Derived using similar triangles (on board)

L Y
(xvya Z) — (_d_v _d_v _d)
Z Z
« We get the projection by throwing out the last coordinate:

(,y,2) = (—d=, —d?)
A A

Slide by Steve Seitz



Homogeneous coordinates

Is this a linear transformation?
* no—division by z is nonlinear

Trick: add one more coordinate:

T
T
(z,y) = | v (z,y,2) = |V
1 A
- - I 1 ]
homogeneous image homogeneous scene
coordinates coordinates

Converting from homogeneous coordinates

y | = (¢/w,y/w) | = @lw,y/w,z/w)

Slide by Steve Seitz



Perspective Projection

Projection is a matrix multiply using homogeneous
coordinates:

"1 0 0o o0]]" ] N y
01 0 O Z = | 4y | =(=d=, —d%)
00 -1/d 0] —z/d ® ©

divide by third coordinate

This is known as perspective projection

 The matrix is the projection matrix
e Can also formulate as a 4x4

10 0 O01Tz] [ =z

01 0 0|y Y x J
— = (—d=, —dZ

00 1 0]z 2 (=7 )

00 —-1/d O] |1 | —z/d

te

divide by fourth coordinat |
Slide by Steve Seitz




Homogeneous Coordinates

e Used in graphics/vision when transforming
geometry prior to projection on the screen.

o e.g. to translate (7), scale (S), rotate (R),
then perspective project (P) a point p:

q =PRSTp

e PRST 4x4 matrices, pq 4x1 vectors




Homogeneous Coordinates

e [ransformation matrices found in OpenGL
documentation:

o glTranslate
o glScale
o glRotate

o Derivation of Rotation Matrices in R3

e Can look at some of these on the board




Discussion Question 1

* Suppose R is a rotation matrix by angle 0.

r*(l—¢c)+c¢ axy(l—c)—2s x2(1—c)+ys

ry(l—c)+2zs y*(l—c)+e¢ yz(l —¢)—xs

rz(l—c)—ys wyzll—c)+ xs ::2(1 - () +c

0 0 0

where ¢ =cosfl. s = sinf#

« What is R-1? Geometrically? In matrix form?




Discussion Question?

» Will a straight line in the world
become a straight line after
projection on to the image plane
of a camera?

* Why or why not?
« Can you prove it?
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Camera Calibration

« Want a 4x4 homogeneous coordinate
matrix C that transforms world
coordinates p (4x1) to screen
coordinates s (4x1).

* A common convention is to drop the “z”
part of the screen coordinate (depth).




Camera Calibration (Wikipedia)

R: 3x3, T: 3x1, A: 3x3

A: Intrinsic parameters of camera:
internal properties of the lens, sensor.




Camera Calibration (Wikipedia)

R: 3x3, T: 3x1, A: 3x3

R, T. Extrinsic parameters of camera:
its orientation and position
(but note: T is not camera position).




Intrinsic Camera Parameters (Wikipedia)

The parameters a; = f-m; and o, = f - m,
represent focal length in terms of pixels, where m_, and
m,, are the scale factors relating pixels to distance and f
is the focal length in terms of distance. 1l ~ represents

the skew coefficient between the x and the y axis, and is
often 0. ug and vy represent the principal point, which
would be ideally in the centre of the image.



Camera Calibration in Practice

OpenCV:

calibrateCamera(InputArrayOfArrays objectPoints,
InputArrayOfArrays imagePoints,
Size imageSize,
InputOutputArray cameraMatrix, ...)

Estimates camera parameters given multiple views of a
calibration pattern. B

OpenCV camera calibration tutorial
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Relative Sensitivity

Electromagnetlc Spectrum
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http://www.yorku.ca/eye/photopik.htm



Visible Light

Why do we see light of these wavelengths?

10000 C

...because that’s where the
Sun radiates EM energy
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Region © Stephen E. Palmer, 2002




The Physics of Light

Any patch of light can be completely described
physically by its spectrum: the number of photons
(per time unit) at each wavelength 400 - 700 nm.

# Photons
(per ms.) |

400 500 600 700

Wavelength (nm.)

© Stephen E. Palmer, 2002




The Physics of Light

Some examples of the spectra of light sources
A. Ruby Laser B. Gallium Phosphide Crystal
w w
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C. Tungsten Lightbulb D. Normal Daylight
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© Stephen E. Palmer, 2002




—_L The Physics of Light

Some examples of the reflectance spectra of surfaces

Yellow Blue Purple

% Photons Reflected

400 700 400 700 400 700 400 700
Wavelength (nm)

© Stephen E. Palmer, 2002




Ordinary Human Vision (Trichromatism)
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Perceptual Sensitivity

100-

Kye color sensitivity

L] Recommendation for HDTV:
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Tetrachromatism

Bird cone
responses

330 nm 400 nm

Ultraviolet [N B

Most birds, and many other animals, have cones for ultraviolet light.
Some humans, mostly female, seem to have slight tetrachromatism.




Color Spectra
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Color Image

CopgrIgnt ¢ 2000 philgBmit,edu




Images in Python/MATLAB

* Image as array: h x w x channels

l(y,Xx,channel)
* Red channel, upper left corner:

MATLAB: I(1,1,1), Python: 1[0,0,0]

row

column —> R
0.92 | 0.93 | 0.94 | 0.97 | 0.62 | 0.37 | 0.85 | 0.97 | 0.93 | 0.92 | 0.99
095 | 0.89 | 0.82 | 0.89 | 0.56 | 0.31 | 0.75 | 0.92 | 0.81 | 0.95 | 0.91 , G
0.89 | 0.72 | 0.51 | 0.55 | 0.51 | 0.42 | 0.57 | 0.41 | 0.49 | 0.91 | 0.92 .92 | 0.99
0.96 | 0.95 | 0.88 | 0.94 | 0.56 | 0.46 | 0.91 | 0.87 | 0.90 | 0.97 | 0.95 .95 | 0.91 ,
071 | 0.81 | 0.81 | 0.87 | 0.57 | 0.37 | 0.80 | 0.88 | 0.89 | 0.79 | 0.85 .91 | 0.92 32 | 0.99
0.49 | 0.62 | 0.60 | 0.58 | 0.50 | 0.60 | 0.58 | 0.50 | 0.61 | 0.45 | 0.33 .97 | 0.95 35 | 0.91
0.86 | 0.84 | 0.74 | 0.58 | 0.51 | 0.39 | 0.73 | 092 | 091 | 049 | 0.74 .79 | 0.85 31 | 0.92
0.96 | 0.67 | 0.54 | 0.85 | 0.48 | 0.37 | 0.88 | 0.90 | 0.94 | 0.82 | 0.93 .45 | 0.33 37 | 0.95
0.69 | 0.49 | 0.56 | 0.66 | 0.43 | 0.42 | 0.77 | 0.73 | 0.71 | 090 | 0.99 .49 | 0.74 79 | 0.85
079 | 0.73 | 0.90 | 0.67 | 0.33 | 0.61 | 0.69 | 0.79 | 0.73 | 093 | 0.97 .82 | 093 %5 [ 0.33
091 | 0.94 | 0.89 | 0.49 | 0.41 | 0.78 | 0.78 | 0.77 | 0.89 | 0.99 | 0.93 .90 | 0.99 13 | 0.74
079 | 0.73 | 0.90 | 0.67 | 033 | 0.61 | 069 | 0.79 | 0.73 | 0.93 | 0.97 32 | 0.93
091 | 094 | 089 | 0.49 | 0.41 | 0.78 | 0.78 | 0.77 | 0.89 | 0.99 | 0.93 20 | 0.99
079 | 0.73 | 0.90 | 0.67 | 033 | 0.61 | 069 | 0.79 | 0.73 | 0.93 | 0.97
091 | 094 | 089 | 0.49 | 0.41 | 078 | 0.78 | 0.77 | 0.89 | 0.99 | 0.93




Video Cube

V(t, y, X, channel)



Color spaces: RGB

Default color space

(G=0,B=0)

G

(R=0,B=0)

Some drawbacks (R=0,G=0)

» Strongly correlated channels
* Non-perceptual

Image from: http://en.wikipedia.org/wiki/File:RGB_color_solid_cube.png



Color spaces: HSV

Intuitive color space

Hue

, [
| = " = v
&U{’ e i (H=1,v=1)

Saturation "y ’




Color spaces: L*a™b”

“Perceptually uniform” color space

a
(L=65,b=0)

b

(L=65,a=0)
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Convolution

Convolution takes a windowed average of an image F with a

filter H, where the filter is flipped horizontally and vertically
before being applied:

It IS written:

Gli, 5] = Z Z Hlu,v|F|i —u, 7 — v]

u=—kv=-—k
G=HxF

Slide by Steve Seitz



Convolution is nice!

e Notation: p=c*a

* Convolution is a multiplication-like operation
— commutative axb =bxa
— associative ax (bxc) = (axb)*c
— distributes over addition a * (b + C) =axb+axc
— scalars factor out aaxb = axab = a(a xb)
— identity: unit impulse e = [...,0,0, 1,0,0, ...]
a*e=a

* Conceptually no distinction between filter and signal

* Usefulness of associativity
— often apply several filters one after another: (((a * b,) * b,) * bs)
— this is equivalent to applying one filter:a * (b, * b, * b,)

© 2006 Steve Marschner ¢ 28



Practice with linear filters

0 0 0

1 )
0 0 ®
0 0 0

Source: D. Lowe



Practice with linear filters

0 0 0
0 1 0
0 0 0

Filtered
(no change)

Source: D. Lowe



Practice with linear filters

0| 010

?
o

0] 010

Source: D. Lowe



Practice with linear filters

0 0 0
0 0 1
0 0 0

Shifted left
By 1 pixel

Source: D. Lowe



Other filters

110 |-1
2|0 |-2
110 |-1

Separable (show on board)



Other filters

Vertical Edge
(absolute value)



Other filters

Separable (show on board)



Other filters

Horizontal Edge
(absolute value)

Separable (show on board)



Sinc filter

SIN X

J(x)=

Spatial Kernel

 |deal for Nyquist-Shannon: removes high frequencies

1.5

1.0

0.5

0.0

"""""""""""""""""
| o O

— o ®

| o) o
_0‘5-...1...1...1...|...|...
-1.5 -1.0 -0.5 0.0 0.5 1.0

Frequency Response

« Often a bit higher quality than Gaussian
* But can introduce ringing (oscillations) due to sine

1.5



Important filter. Gaussian

Weight contributions of neighboring pixels by nearness

0.003 0.013 0.022 0.013 0.003
0.013 0.059 0.097 0.059 0.013
0.022 0.097 0.159 0.097 0.022
0.013 0.059 0.097 0.059 0.013
0.003 0.013 0.022 0.013 0.003

5x5 0=1

. 1 _(x2+§,2)
p— e 20
V.

Same shape in spatial and frequency domain
(Fourier transform of Gaussian is Gaussian)

Slide credit: Christopher Rasmussen



Gaussian filters

Remove “high-frequency” components
from the image (low-pass filter)

* |Images become more smooth

Convolution with self is another Gaussian

So can smooth with sma
same result as larger-wic

l-width kernel, repeat, and get
th kernel would have

Convolving two times wit

N Gaussian kernel of width o is

same as convolving once with kernel of width o2

Source: K. Grauman



Practical matters

* How big should the filter be”
Values at edges should be near zero
Rule of thumb for Gaussian: set filter half-

width to about 3 o

Normalize truncated
kernel. Why?

Effect of &

J = .'w'.
01 -
D 1 | | | 1 1 1
0 2 4 G & 10 12 14 L= 13 20

Side by Derek Hoiem



Size of Output?

 MATLAB: conv2(g,f,shape)
* Python: scipy.signal.convolve2d(g,f,shape)

— shape = “full’ : output size is sum of sizes of f and g
— shape = ‘same’ : output size is same as f
— shape = ‘valid’ : output size is difference of sizes of f, g

o full ] same valid
Q g

g - g

Source: S. Lazebnik



Image half-sizing

This image is too big to i
fit on the screen. How @&
can we reduce it?

How to generate a half-
sized version?



Image sub-sampling

Throw away every other row and

column to create a 1/2 size image
- called image sub-sampling

Slide by Steve Seitz



Image sub-sampling

B

L AR

1/2 1/4 (2x zoom) 1/8 (4x zoom)

Aliasing! What do we do?

Slide by Steve Seitz



Gaussian (lowpass) pre-filtering

Gaussian 1/2

Solution: filter the image, then subsample
* Filter size should double for each % size reduction. Why?

Slide by Steve Seitz



Subsampling with Gaussian pre-filtering

Gaussian 1/2

Slide by Steve Seitz



Compare with...

e

1/2 1/4 (2x zoom) 1/8 (4x zoom)

Slide by Steve Seitz



Gaussian (lowpass) pre-filtering

Gaussian 1/2

Solution: filter the image, then subsample
* Filter size should double for each % size reduction. Why?
 How can we speed this up? Slide by Steve Seitz



Image Pyramids

Idea: Represent NxN image as a “pyramid” of
1x1, 2x2, 4x4,..., 2¥x2X images (assuming N=2)

level k(=1 pixle\

/ /\\ .
ST 7 T

|~ /%

| 7 g

level k- I/ / ]'l./

\

T A A A, S

i J S SN S
J S LV

/ :

level 0 (= original image)

Known as a Gaussian Pyramid [Burt and Adelson, 1983]
* |n computer graphics, a mip map [Williams, 1983]
* A precursor to wavelet transform

Slide by Steve Seitz



Figure from David Forsyth



