Large-scale Data-driven Graphics and Vision: Basics of Image, Video, and Optics

Connelly Barnes

Basics of Image, Video, Optics

- Today:
 - Pinhole camera model
 - Modeling camera projections: homogeneous coordinates
 - Camera calibration
 - Color
 - Convolutions

Basics of Image, Video, Optics

- Today:
 - Pinhole camera model
 - Modeling camera projections: homogeneous coordinates
 - Camera calibration
 - Color
 - Convolutions

Camera Obscura

Slide content from Efros]

Camera is Latin for chamber/room, obscura means dark

Camera Obscura

[Image from Efros]

Used by Euclid (300 B.C.) to show light travels in straight rays

Pinhole Camera

- Blurry image results if all rays reach film

Pinhole Camera

- Pinhole camera has small aperture size.
- All objects are in focus depth of field infinite

New Worlds Mission (NASA)

Pinhole Camera

Similar triangles gives optics law:

$$\frac{h_i}{h_o} = \frac{d_i}{d_o}$$

Pinhole Camera

Fix object size and imaging plane distance:

$$h_i \propto \frac{1}{d_o}$$

Perspective

Basics of Image, Video, Optics

- Today:
 - Pinhole camera model
 - Modeling camera projections: homogeneous coordinates
 - Camera calibration
 - Color
 - Convolutions

Modeling projection

The coordinate system

- We will use the pin-hole model as an approximation
- Put the optical center (Center Of Projection) at the origin
- Put the image plane (Projection Plane) in front of the COP
 Why?
- The camera looks down the negative z axis
 - we need this if we want right-handed-coordinates

Modeling projection

Projection equations

- Compute intersection with PP of ray from (x,y,z) to COP
- Derived using similar triangles (on board)

$$(x,y,z) \rightarrow (-d\frac{x}{z}, -d\frac{y}{z}, -d)$$

We get the projection by throwing out the last coordinate:

$$(x,y,z) \to (-d\frac{x}{z}, -d\frac{y}{z})$$

Homogeneous coordinates

Is this a linear transformation?

no—division by z is nonlinear

Trick: add one more coordinate:

$$(x,y) \Rightarrow \left[egin{array}{c} x \\ y \\ 1 \end{array} \right]$$

homogeneous image coordinates

$$(x,y,z) \Rightarrow \left[egin{array}{c} x \ y \ z \ 1 \end{array}
ight]$$

homogeneous scene coordinates

Converting from homogeneous coordinates

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w) \qquad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$

Perspective Projection

Projection is a matrix multiply using homogeneous coordinates:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ -z/d \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

divide by third coordinate

This is known as perspective projection

- The matrix is the projection matrix
- Can also formulate as a 4x4

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ -z/d \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

divide by fourth coordinate
Slide by Steve Seitz

Homogeneous Coordinates

- Used in graphics/vision when transforming geometry prior to projection on the screen.
 - e.g. to translate (T), scale (S), rotate (R),
 then perspective project (P) a point p:

$$q = PRSTp$$

• PRST 4x4 matrices, pq 4x1 vectors

Homogeneous Coordinates

- Transformation matrices found in OpenGL documentation:
 - glTranslate
 - o glScale
 - o glRotate
 - Derivation of Rotation Matrices in R3
- Can look at some of these on the board

Discussion Question 1

Suppose R is a rotation matrix by angle θ.

$$\begin{pmatrix} x^{2}(1-c) + c & xy(1-c) - zs & xz(1-c) + ys & 0 \\ xy(1-c) + zs & y^{2}(1-c) + c & yz(1-c) - xs & 0 \\ xz(1-c) - ys & yz(1-c) + xs & z^{2}(1-c) + c & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
where $c = \cos \theta$, $s = \sin \theta$

What is R⁻¹? Geometrically? In matrix form?

Discussion Question?

 Will a straight line in the world become a straight line after projection on to the image plane of a camera?

- Why or why not?
- Can you prove it?

Basics of Image, Video, Optics

- Today:
 - Pinhole camera model
 - Modeling camera projections: homogeneous coordinates
 - Camera calibration
 - Color
 - Convolutions

Camera Calibration

- Want a 4x4 homogeneous coordinate matrix C that transforms world coordinates p (4x1) to screen coordinates s (4x1).
- A common convention is to drop the "z" part of the screen coordinate (depth).

Camera Calibration (Wikipedia)

$$egin{bmatrix} z_c egin{bmatrix} u \ v \ 1 \end{bmatrix} = A egin{bmatrix} R & T \end{bmatrix} egin{bmatrix} x_w \ y_w \ z_w \ 1 \end{bmatrix}$$

R: 3x3, T: 3x1, A: 3x3

A: Intrinsic parameters of camera: internal properties of the lens, sensor.

Camera Calibration (Wikipedia)

$$egin{bmatrix} z_c egin{bmatrix} u \ v \ 1 \end{bmatrix} = A egin{bmatrix} R & T \end{bmatrix} egin{bmatrix} x_w \ y_w \ z_w \ 1 \end{bmatrix}$$

R: 3x3, T: 3x1, A: 3x3

R, T: Extrinsic parameters of camera: its orientation and position (but note: T is not camera position).

Intrinsic Camera Parameters (Wikipedia)

$$A = egin{bmatrix} lpha_x & \gamma & u_0 \ 0 & lpha_y & v_0 \ 0 & 0 & 1 \end{bmatrix}$$

The parameters $lpha_x = f \cdot m_x$ and $lpha_v = f \cdot m_v$ represent focal length in terms of pixels, where m_x and m_v are the <u>scale factors</u> relating pixels to distance and fis the <u>focal length</u> in terms of distance. $^{[1]}\gamma$ represents the skew coefficient between the x and the y axis, and is often 0. u_0 and v_0 represent the principal point, which would be ideally in the centre of the image.

Camera Calibration in Practice

OpenCV:

calibrateCamera(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, Size imageSize, InputOutputArray cameraMatrix, ...)

Estimates camera parameters given multiple views of a calibration pattern.

OpenCV camera calibration tutorial

Basics of Image, Video, Optics

- Today:
 - Pinhole camera model
 - Modeling camera projections: homogeneous coordinates
 - Camera calibration
 - Color
 - Convolutions

Electromagnetic Spectrum

Human Luminance Sensitivity Function

Visible Light

The Physics of Light

Any patch of light can be completely described physically by its spectrum: the number of photons (per time unit) at each wavelength 400 - 700 nm.

The Physics of Light

Some examples of the spectra of light sources

The Physics of Light

Some examples of the <u>reflectance</u> spectra of <u>surfaces</u>

Ordinary Human Vision (Trichromatism)

Perceptual Sensitivity

ITU Recommendation for HDTV: Y = 0.21 R + 0.72 G + 0.07 B

Evolved to detect vegetation, berries?

Tetrachromatism

Bird cone responses

Most birds, and many other animals, have cones for ultraviolet light. Some humans, mostly female, seem to have slight tetrachromatism.

Color Spectra

Color Image

Images in Python/MATLAB

- Image as array: h x w x channels I(y,x,channel)
- Red channel, upper left corner:
 MATLAB: I(1,1,1), Python: I[0,0,0]

	colu	ımn												\rightarrow	R			
row	0.92	0.93	0.94	0.9	7 0.6	0.3	7 0.8	85	0.97	7 0	.93	0.92	0.9	9				
	0.95	0.89	0.82	0.8	9 0.5	6 0.3	1 0.	75	0.92	2 0	.81	0.95	0.9	1			. (G
	0.89	0.72	0.51	0.5	5 0.5	0.4	2 0.	57	0.41	<u> </u>	.49	0.91	0.9	<u>.9</u>	2	0.99		
	0.96	0.95	0.88	0.9	4 0.5	6 0.4	6 0.9	91	0.87	7 0	.90	0.97	7 0.9	<u>.9</u>	5	0.91	_	
	0.71	0.81	0.81	0.8	7 0.5	7 0.3	7 0.8	30	0.88	3 0	.89	0.79	0.8	<u>.9</u>	1	0.92) 2	0.99
	0.49	0.62	0.60	0.5	8 0.5	0.6	0.5	58	0.50) 0	.61	0.45	0.3	<u>.9</u>	7	0.95) 5	0.91
	0.86	0.84	0.74	0.5	8 0.5	1 0.3	9 0.	73	0.92	2 0	.91	0.49	0.7	<u>'4 .7</u>	9	0.85	<u>}1</u>	0.92
	0.96	0.67	0.54	0.8	5 0.4	8 0.3	7 0.8	88	0.90	0 0	.94	0.82	0.9	<u>3 .4</u>	5	0.33) 7	0.95
	0.69	0.49	0.56	0.6	6 0.4	3 0.4	2 0.	77	0.73	3 0	.71	0.90	0.9	9 .4	.9	0.74	<u>79</u>	0.85
	0.79	0.73	0.90	0.6	7 0.3	3 0.6	0.0	69	0.79) 0	.73	0.93	0.9	7 <u>.8</u>	2	0.93	<u> 15</u>	0.33
W	0.91	0.94	0.89	0.4	9 0.4	1 0.7	8 0.	78	0.77	7 0	.89	0.99	0.9	3 <u>.9</u>	0	0.99	<u> 19</u>	0.74
		C).79	0.73	0.90	0.67	0.33	0.	.61	0.69) (0.79	0.73	0.9	3	0.97	32	0.93
		C).91	0.94	0.89	0.49	0.41	0.	.78	0.78	3 (0.77	0.89	0.9	9	0.93) 0	0.99
				0.7	79 0.	73 0.	90 0	.67	0.3	3	0.61	0.6	9 0.	79	0.73	0	.93	0.97
				0.9	91 0.	94 0.	89 0	.49	0.4	1	0.78	0.7	8 0.	77	0.89	0	.99	0.93

Video Cube

V(t, y, x, channel)

Color spaces: RGB

Default color space

Some drawbacks

- Strongly correlated channels
- Non-perceptual

Color spaces: HSV

Intuitive color space

S (H=1,V=1)

V (H=1,S=0)

Color spaces: L*a*b*

"Perceptually uniform" color space

(a=0,b=0)

a (L=65,b=0)

b (L=65,a=0)

Basics of Image, Video, Optics

- Today:
 - Pinhole camera model
 - Modeling camera projections: homogeneous coordinates
 - Camera calibration
 - Color
 - Convolutions

Convolution

Convolution takes a windowed average of an image *F* with a filter *H*, where the filter is flipped horizontally and vertically before being applied:

It is written:

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

$$G = H \star F$$

Convolution is nice!

- Notation: $b = c \star a$
- Convolution is a multiplication-like operation
 - commutative $a \star b = b \star a$
 - associative $a \star (b \star c) = (a \star b) \star c$
 - distributes over addition $a\star(b+c)=a\star b+a\star c$
 - scalars factor out $\alpha a \star b = a \star \alpha b = \alpha (a \star b)$
 - identity: unit impulse e = [..., 0, 0, 1, 0, 0, ...] $a \star e = a$
- Conceptually no distinction between filter and signal
- Usefulness of associativity
 - often apply several filters one after another: $(((a * b_1) * b_2) * b_3)$
 - this is equivalent to applying one filter: a * $(b_1 * b_2 * b_3)$

0	0	0
0	1	0
0	0	0

Original

Original

Filtered (no change)

0	0	0
0	0	1
0	0	0

Original

Original

0	0	0
0	0	1
0	0	0

Shifted left By 1 pixel

1	0	-1
2	0	-2
1	0	-1

•

Sobel

Separable (show on board)

1	0	-1
2	0	-2
1	0	-1

Sobel

Vertical Edge (absolute value)

1	2	1
0	0	0
-1	-2	-1

Sobel

?

Separable (show on board)

1	2	1				
0	0	0				
-1	-2	-1				
Sobel						

Separable (show on board)

Horizontal Edge (absolute value)

Sinc filter

Spatial Kernel

Frequency Response

- Ideal for Nyquist-Shannon: removes high frequencies
- Often a bit higher quality than Gaussian
- But can introduce ringing (oscillations) due to sine

Important filter: Gaussian

Weight contributions of neighboring pixels by nearness

0.003	0.013	0.022	0.013	0.003
0.013	0.059	0.097	0.059	0.013
0.022	0.097	0.159	0.097	0.022
0.013	0.059	0.097	0.059	0.013
0.003	0.013	0.022	0.013	0.003

$$5 \times 5$$
, $\sigma = 1$

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$

Same shape in spatial and frequency domain (Fourier transform of Gaussian is Gaussian)

Gaussian filters

Remove "high-frequency" components from the image (low-pass filter)

Images become more smooth

Convolution with self is another Gaussian

- So can smooth with small-width kernel, repeat, and get same result as larger-width kernel would have
- Convolving two times with Gaussian kernel of width σ is same as convolving once with kernel of width $\sigma\sqrt{2}$

Practical matters

- How big should the filter be?
- Values at edges should be near zero
- Rule of thumb for Gaussian: set filter half
 - width to about 3 σ
- Normalize truncated kernel. Why?

Side by Derek Hoiem

Size of Output?

- MATLAB: conv2(g,f,shape)
- Python: scipy.signal.convolve2d(g,f,shape)
 - shape = 'full': output size is sum of sizes of f and g
 - shape = 'same': output size is same as f
 - shape = 'valid': output size is difference of sizes of f, g

Source: S. Lazebnik

Image half-sizing

This image is too big to fit on the screen. How can we reduce it?

How to generate a half-sized version?

Image sub-sampling

1/8

1/4

Throw away every other row and column to create a 1/2 size image - called *image sub-sampling*

Image sub-sampling

Aliasing! What do we do?

Gaussian (lowpass) pre-filtering

G 1/4

Gaussian 1/2

Solution: filter the image, then subsample

Filter size should double for each ½ size reduction. Why?

Subsampling with Gaussian pre-filtering

Compare with...

Gaussian (lowpass) pre-filtering

G 1/4

Gaussian 1/2

Solution: filter the image, then subsample

- Filter size should double for each ½ size reduction. Why?
- How can we speed this up?

Image Pyramids

Known as a Gaussian Pyramid [Burt and Adelson, 1983]

- In computer graphics, a mip map [Williams, 1983]
- A precursor to wavelet transform

