(More) Algorithms for Cameras:
Edge Detection
Modeling Cameras/Obijects

Connelly Barnes

Outline

* Edge Detection: Canny, etc.

 Modeling cameras/objects:
— Model Fitting: Hough Transform and RANSAC
— Modeling Multiple Cameras
— Optical Flow

Canny edge detector

e This is probably the most widely used edge
detector in computer vision

e Theoretical model: step-edges corrupted by
additive Gaussian noise

e Canny has shown that the first derivative of

the Gaussian closely approximates the
operator that optimizes the product of
signal-to-noise ratio and localization

J. Canny, A Computational Approach To Edge Detection, IEEE
Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

Source: L. Fei-Fei

Example

original image (Lena)

Derivative of Gaussian filter

2 jAz

x-direction y-direction

Compute Gradients (DoG)

Gradient Magnitude

Get Orientation at Each Pixel

e Threshold at minimum level

* @Get orientation

theta = atan2(gy, gx)

Non-maximum suppression for each
orientation (“thinning”)

® ® ® o o
P
@ ® @
_ |
Gradient /
® ® O o ®
r
® o ® ®

Source: D. Forsyth

At g, we have a
maximum if the
value is larger than
those at both p and
at r. Interpolate to
get these values.

Before Non-max Suppression

After non-max suppression

Hysteresis thresholding

* Threshold at low/high levels to get weak/strong edge pixels

Do connected components, starting from strong edge pixels

Hysteresis thresholding

* Check that maximum value of gradient
value is sufficiently large

— drop-outs? use hysteresis

* use a high threshold to start edge curves and a low
threshold to continue them.

Source: S. Seitz

Final Canny Edges

Implementations

* MATLAB: edge(im, ‘canny’)
* Python: skimage.filter.canny()
e C++: OpenCV canny()

Smoother Edges

e Canny faithfully tracks along noisy edges
 Kang et al. 2007 “Coherent Line Drawing”:

 Smoother edges by blurring vector field along
the edge direction before line extraction.

Kang et al. 2007

Outline

* Edge Detection: Canny, etc.

* Basics of modeling cameras/objects:
— Model Fitting: Hough Transform and RANSAC
— Modeling Multiple Cameras
— Optical Flow

Fitting: find the parameters of a model that
best fit the data

Alignment: find the parameters of the
transformation that best aligh matched points

Fitting and Alignment

* Design challenges
— Design a suitable goodness of fit measure

* Similarity should reflect application goals
* Encode robustness to outliers and noise
— Design an optimization method

* Avoid local optima
* Find best parameters quickly

Fitting and Alignment: Methods

* Global optimization / Search for parameters
— Least squares fit
— Robust least squares

— |terative closest point (ICP)

 Hypothesize and test

— Generalized Hough transform
— RANSAC

Simple example: Fitting a line

Least squares line fitting

eData: (xl, yl), sy (xrp yn) t me+b
*Line equation: y, =mx; + b I ’
*Find (m, b) to minimize :
. l (xia yz)
E = Ei=1(yi — mxl _b)2 >
o) -xl 1] -yl 11
; m . | m . 2
W [I AR I
xn 1 yn
=y'y-2(Ap)'y +(Ap)’ (Ap)
dE
— =2A"Ap-2A"y=0
i p M Matlab:p = 2 \ v;

ATAp=ATy=p=(ATA) ATy=A"y

Modified from S. Lazebnik

Least squares (global) optimization

Good
e Clearly specified objective
* Optimization is easy

Bad
* May not be what you want to optimize
e Sensitive to outliers

— Bad matches, extra points

 Doesn’t allow you to get multiple good fits
— Detecting multiple objects, lines, etc.

Robust least squares (to deal with outliers)

General approach:
minimize n
E olu(x.,0f0) w = (i -mx-by

u, (x,,) —residual of i point w.r.t. model parameters ¢
p —robust function with scale parameter o

The robust function p
« Favors a configuration
with small residuals

» Constant penalty for large
residuals

Slide from S. Savarese

Robust Estimator

1. Initialize: e.g., choose &by least squares fit and
o=1.5: median(ermr)

ervor(0,data,)’

2. Choose params to minimize: E o> +error(6,data.)’
— E.g., numerical optimization

4. Repeat (2) and (3) until convergence

Hough Transform: Outline

1. Create a grid of parameter values

2. Each point votes for a set of parameters,
incrementing those values in grid

3. Find maximum or local maxima in grid

Hough transform

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High
Energy Accelerators and Instrumentation, 1959

Given a set of points, find the curve or line that explains
the data points best

Hough space

y=mx+Db

Slide from S. Savarese

Hough transform

y \ m
X
y m
@
X

Slide from S. Savarese

Hough transform

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High
Energy Accelerators and Instrumentation, 1959

Issue : parameter space [m,b] is unbounded...

Use a polar representation for the parameter space

Hough space

Xxcos@ +ysinf =p

Slide from S. Savarese

Hough transform - experiments

features votes

Slide from S. Savarese

Hough transform - experiments

Noisy data

features votes

Need to adjust grid size or smooth

Slide from S. Savarese

Hough transform - experiments

features votes

Issue: spurious peaks due to uniform noise

Slide from S. Savarese

Hough Transform

« How would we find circles?
— Of fixed radius
— Of unknown radius

* How would we detect an object with
several parts?

Object

Hough transform conclusions
Good

* Robust to outliers: each point votes separately
« Fairly efficient (much faster than trying all sets of parameters)
« Provides multiple good fits

Bad

« Some sensitivity to noise

* Bin size trades off between noise tolerance, precision, and
speed/memory

— Can be hard to find sweet spot

* Not suitable for more than a few parameters
— grid size grows exponentially

Common applications

 Line fitting (also circles, ellipses, etc.)

* Object instance recognition (parameters are affine transform)
« Object category recognition (parameters are position/scale)

RANSAC ° o
(RANdom SAmple Consensus) : ‘ ‘ ‘
Fischler & Bolles in ‘81. “ "
@
o o °
o ® o
O ®

Algorithm:

1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC ° o
o o ®
Line fitting example O
.‘:
e ©
@ ® 0
O O

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

lllustration by Savarese

RANSAC

Line fitting example

Algorithm:
1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC

Line fitting example

N, =6

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

How to choose parameters?

 Number of samples N

— Choose N so that, with probability p, at least one random sample is
free from outliers (e.g. p=0.99) (outlier ratio: e)

 Number of sampled points s
— Minimum number needed to fit the model

 Distance threshold 6

— Choose § so that a good point with noise is likely (e.g., prob=0.95) within threshold
— Zero-mean Gaussian noise with std. dev. 0: t2=3.8402

proportion of outliers e

N =log(l-p)/ log((1-ef) s 5% 10% 20% 25% 30% 40% 50%
2 2 3) 6 7 11 17
3 3 4 4 9 11 19 35
4 3) 9 13 17 34 72
) 4 6 12 17 26 o7 146
6 4 4 16 24 37 97 293
4 4 8 20 33 54 163 588
8) 9 26 44 /8 272 1177

modified from M. Pollefeys

RANSAC conclusions
Good

Robust to outliers

« Applicable for larger number of objective function
parameters than Hough transform

« Optimization parameters are easier to choose than
Hough transform

Bad

« Computational time grows quickly with fraction of outliers
and number of parameters

* Not good for getting muiltiple fits

Common applications
« Computing a homography (e.g., image stitching)
« Estimating fundamental matrix (relating two views)

Outline

* Edge Detection: Canny, etc.

* Basics of modeling cameras/objects:
— Model Fitting: Hough Transform and RANSAC
— Modeling Multiple Cameras
— Optical Flow

Da

Homography

* |n classic games, e.g. Mario Kart, the ground is
just a texture mapped plane:

Mario Kart (YouTube)

* Any two images a and b of a planar surface
are related by a homography.

* |n homogeneous coordinates:

Tq w'xp "hi1 hia his
Ya 7p;) = | o Yp | > H, = ho1 haa has
1 w' h31 h32 hss

Da

Homography

* Discussion questions:

* |f we had two images of a planar scene, how
would we find the homography between them?

* How many corresponding points would we need
to fit the homography?

Point p_ in image a, point p’, in image b

Tq w'xp "hi1 hia his
Ya 7p;) = | o Yp | > H, = ho1 haa has
1 w' h31 h32 hss

Epipolar constraint

. —

Geometry of two \)iews constrains where the
corresponding pixel for some image point in the first view
must occur in the second view.

* |t must be on the line carved out by a plane
connecting the world point and optical centers.

Epipolar Geometry
Point in scene X

Projection into X 1' Epipolar line: ex-Xg

left view X X 2o
3 o
X By e
0
O .‘I'.'..:'.' O
L e
= Epipolar plane:

Optical center O,

Joins X, O, O _ _
Left view Right view

Epipolar geometry: terms

Baseline: line joining the camera centers
Epipole: point of intersection of baseline with image plane
Epipolar plane: plane containing baseline and world point

Epipolar line: intersection of epipolar plane with the image
plane

All epipolar lines intersect at the epipole

An epipolar plane intersects the left and right image planes
In epipolar lines

Why is the epipolar constraint useful?

Epipolar constraint

This is useful because it reduces the correspondence
problem to a 1D search along an epipolar line.

Image from Andrew Zisserman

Example

Can often rectify a pair of images so the epipolar lines become horizontal.

Outline

* Edge Detection: Canny, etc.

* Basics of modeling cameras/objects:
— Model Fitting: Hough Transform and RANSAC
— Modeling Multiple Cameras
— Optical Flow

Optical Flow

* Problem: given a video, how can we find the
correspondences between pixels in
subsequent frames?

Source: Paul Sastrasinh, Brown University CS 1290

Feature tracking

 Many problems, such as structure from
motion require matching points

* |f motion is small, tracking is an easy way to
get them

150

ooioo wsle

S P G 20T B

Feature tracking

* Challenges
— Figure out which features can be tracked
— Efficiently track across frames

— Some points may change appearance over time
(e.g., due to rotation, moving into shadows, etc.)

— Drift: small errors can accumulate as appearance
model is updated

— Points may appear or disappear: need to be able
to add/delete tracked points

Feature tracking

./ Q °
N o
o—r I o .
I(x.,0) I(x,p,t+1)

e Given two subsequent frames, estimate the point
translation

« Key assumptions of Lucas-Kanade Tracker

« Brightness constancy: projection of the same point looks the
same in every frame
« Small motion: points do not move very far

« Spatial coherence: points move like their neighbors

The brightness constancy constraint

(z,y)
O\dlsplacement = (u,v)

(@)
(z+u,y+v)

I(x,,) I(x,y,t+1)

* Brightness Constancy Equation:
I(x,y,t)=1(x+u,y+v,t+1)

Take Taylor expansion of I(x+u, y+v, t+1) at (x,y,¢) to linearize the right side:

Image derivative along x Derivative along t

I(x+u,y+vt+1)=I(x,y,t) =+ u+1l,v+I,
Hence,]x°u+1y-v+[t ~ () %VI'[U V]T+It =()

The brightness constancy constraint

Can we use this equation to recover image motion (u,v) at
each pixel?
VI{u v] +1, =0
* How many equations and unknowns per pixel?

*One equation (this is a scalar equation!), two unknowns (u,v)

The component of the motion perpendicular to the
gradient (i.e., parallel to the edge) cannot be measured

If (u, v) satisfies the equation, gradient
so does (u+u’, v+v’) if

VI°[u' V']T =0

(u,v)

(W'.v) ‘(u+u’,v+v’)
edge

The aperture problem

\ Actual motion

The aperture problem

Perceived motion

The barber pole illusion

http://en.wikipedia.org/wiki/Barberpole illusion

The barber pole illusion

http://en.wikipedia.org/wiki/Barberpole illusion

Solving the ambiguity...

B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In
Proceedings of the International Joint Conference on Artificial Intelligence, pp. 674—679, 1981.

* How to get more equations for a pixel?
e Spatial coherence constraint

. Assume the pixel’s neighbors have the same (u,v)
— If we use a 5x5 window, that gives us 25 equations per pixel

0= I;(p;) + VI(p;) - [u v]

- Ix(p1) Iy(p1) - Ii(p1) |
I:(p2) Iy(p2) [u } — | Lip2)
_ f:v(I;25) fy(1;25) _ _ ft(1;25) _

Solving the ambiguity...

e Least squares problem:

- I:(p1) Iy(p1) | - I1(p1) |
Lo(p2) Iy(p2) { 0] _ | I(p2) | A d=0b
: : v : 25x2 2x1 256x1
| Ix(p2s) Iy(p2s) | | It(p2s) |

Matching patches across images

* Overconstrained linear system

- I:(p1) Iy(p1) | - I1(p1) |
Lo(p2) Iy(p2) { 0] _ | I(p2) | A d=0b
: : v : 25x2 2x1 256x1
| Ix(p2s) Iy(p2s) | | It(p2s) |

Least squares solution for d given by (ATA) d= ATb

N hly SELiIy|[uw]_ [Sk
SLI, SELL || v| = | S

Al A Al

The summations are over all pixels in the K x K window

Conditions for solvability

Optimal (u, v) satisfies Lucas-Kanade equation

Sl SEy | [u] _ [S
// SLly, SELIy || v]|~ | S L

AT A Alp

When is this solvable? |.e., what are good points to
track?

« ATA should be invertible
« ATA should not be too small due to noise

— eigenvalues A, and A , of ATA should not be too small
« ATA should be well-conditioned

— M 4/ A, should not be too large (» , = larger eigenvalue)

N Does this remind you of anything?

Criteria for Harris corner detector

Low-texture region

Svi(vn!

— gradients have small magnitude
—small A,, small A,

Edge

S vivn?

— gradients very large or very small
— large A, small A,

High-texture region

S vivn?

— gradients are different, large magnitudes
— large A4, large A,

The aperture problem resolved

&

\ Actual motion

The aperture problem resolved

\:erceived motion

Dealing with larger movements: Iterative

refinement .)
S L, Original (x,y) position

1. Initialize (X’,y’) = (x,y)

2. Compute (u,v) by L=1I(x', y, i+ d) - I(x, 3,)
2" moment matrix for feature .

patch in first image displacement

3. Shift window by (u, v): x’=x’"+u; y’'=y’+v;
Recalculate /,

5. Repeat steps 2-4 until small change

Use interpolation for subpixel values

Dealing with larger movements: coarse-to-
fine registration

’)\ ll\\

N

11\ ll\\\
AN 1y

-—> run iterative L-K 4_-

upsample

- — > run IteratlveL K ‘—-

Gaussian pyramid of image 1 (t) Gaussian pyramid of image 2 (t+1)

Lucas-Kanade Optical Flow

* Same as Lucas-Kanade feature tracking, but
for each pixel

— As we saw, works better for textured pixels

* Operations can be done one frame at a time,
rather than pixel by pixel

— Efficient

Example of Optical Flow

YouTube Video

