Review of Basics of 3D Object Representation

Connelly Barnes

CS 6501: Large-scale data-driven graphics and vision

Acknowledgment: slides by Jason Lawrence, Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin

3D Object Representation

• How do we ... • Represent 3D objects in a computer?

oConstruct such representations quickly and/or automatically with a computer?

oManipulate 3D objects with a computer?

Different methods for different object representations

How can this object be represented in a computer?

3D Objects

H&B Figure 10.46

3D Objects

Imaging Economics

How about this one?

3D Objects

H&B Figure 9.9

Representations of Geometry

- 3D Representations provide the foundations for oComputer Graphics
 oComputer-Aided Geometric Design
 oVisualization
 oRobotics
- They are languages for describing geometry data structures algorithms

Data structures determine algorithms!

3D Object Representations

Raw data
 oPoint cloud
 oRange image
 oPolygon soup

Solids
 oVoxels

Surfaces

 oMesh
 oParametric
 oImplicit

See <u>slides</u> from the graphics class for more!

Point Cloud

Unstructured set of 3D point samples
 oAcquired from range finder, random sampling, particle system implementations, etc

Czech Academy of Sciences

Point Cloud

Unstructured set of 3D point samples
 oAcquired from range finder, random sampling, particle system implementations, etc

Czech Academy of Sciences

Range Image

An image storing depth instead of color
 oAcquired from range scanners — e.g. Microsoft Kinect

Range Image	Tesselation	Range Surface

Brian Curless SIGGRAPH 99 Course #4 Notes

Polygon Soup

 Unstructured set of polygons
 oCreated with interactive modeling systems, combining range images, etc.

3D Object Representations

Raw data
 oPoint cloud
 oRange image
 oPolygon soup

Solids
 oVoxels

Surfaces
 oMesh
 oParametric
 oImplicit

Mesh

Connected set of polygons (usually triangles)
 oMay not be closed

Stanford Graphics Laboratory

Parametric Surface

Tensor product spline patches
 oCareful use of constraints to maintain continuity

Implicit Surface

• Points satisfying: F(x,y,z) = 0

Polygonal Model

Implicit Model

Bill Lorensen SIGGRAPH 99 Course #4 Notes

3D Object Representations

- Raw data
 oPoint cloud
 oRange image
 oPolygon soup
- Surfaces

 oMesh
 oSubdivision
 oParametric
 oImplicit

Solids
 oVoxels

Voxels

Uniform grid of volumetric samples
 oAcquired from CT, MRI, etc.

Stanford Graphics Laboratory

Equivalence of Representations

• Thesis:

oEach fundamental representation has enough expressive power to model the shape of any geometric object

olt is possible to perform all geometric operations with any fundamental representation!

 Analogous to Turing-Equivalence:
 OAll computers today are Turing-equivalent, but we still have many different processors

Computational Differences

- Efficiency

 OCombinatorial complexity
 OSpace/time trade-offs
 ONumerical accuracy/stability
- Simplicity

 oEase of acquisition
 oHardware acceleration
- Usability