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Supervised, Unsupervised, Reinforcement

* 3 broad categories:

« Supervised learning: computer presented with example inputs
and desired outputs by a “teacher”, goal is to learn general rule
that maps inputs to outputs.

* Unsupervised learning: No output labels are given to the
algorithm, leaving it on its own to find structure in the inputs.

* Reinforcement learning: An agent determines what actions to
best take in an environment to maximize some notion of
cumulative reward.



What Kind of Learning is This?

* Learn given mput Image, whetherit is truck or car’? Training data:

Images are Creative Commons sources: [ 1], [2], [3], [4], [5], [6]



What Kind of Learning is This?

 We have a dataset of customers, each with 2 associated attributes
(x4 and x,). We want to discover groups of similar customers.

* * What features could we use as mputs 7%
* for a machine learning algorithm?

* A
****




What Kind of Learning is This?

Outtakes

[Peng et al., Terrain-Adaptive Locomotion..., SIGGRAPH 2016]
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Clustering

* Unsupervised learning
* Requires input data, but no labels
* Detects patterns, e.g.

* Groups of similar emails, similar web-
pages in search results

« Similar customer shopping patterns
* Regions of images

Slides adapted from David Sontag, Luke Zettlemoyer, Vibhav, Gogate, Carlos Guestrin, Andrew Moore, Dan Klein



Clustering

* ldea: group together similar instances
 Example: 2D point patterns

Slides adapted from David Sontag, Luke Zettlemoyer, Vibhav, Gogate, Carlos Guestrin, Andrew Moore, Dan Klein



Clustering

* ldea: group together similar instances
 Example: 2D point patterns

Slides adapted from David Sontag, Luke Zettlemoyer, Vibhav, Gogate, Carlos Guestrin, Andrew Moore, Dan Klein



Clustering

* ldea: group together similar instances

« Example: 2D point patterns
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Slides adapted from David Sontag, Luke Zettlemoyer, Vibhav, Gogate, Carlos Guestrin, Andrew Moore, Dan Klein




Clustering

* ldea: group together similar instances
* Problem: How to define “similar™?

* Problem: How many clusters?
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Slides adapted from David Sontag, Luke Zettlemoyer, Vibhav, Gogate, Carlos Guestrin, Andrew Moore, Dan Klein




Clustering
« Similarity: in Euclidean space R”, could be a distance function.

« For example: D(x,y) = |[|x—y||5
* Clustering results will depend on measure of similarity / dissimilarity
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Slides adapted from David Sontag, Luke Zettlemoyer, Vibhav, Gogate, Carlos Guestrin, Andrew Moore, Dan Klein




Clustering Algorithms

 Partitioning algorithms (flat) ‘ ]
+ K-means S ¥ 75
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* Hierarchical algorithms l r‘?l_
* Bottom-up: agglomerative é 3
* Top-down: divisive :é:< | C'" 18
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Slides adapted from David Sontag, Luke Zettlemoyer, Vibhav, Gogate, Carlos Guestrm?xndrew Moore, Dan Klein



Clustering Examples: Image Segmentation

* Divide an image into regions that are perceptually similar to humans.
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Slides adapted from James Hays, David Sontag, Luke Zettlemoyer, Vibhav, Gogate, Carlos Guestrin, Andrew Moore, Dan Klein



Clustering Examples: Biology

« Cluster species based on e.g. genetic or phenotype similarity.
A
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Slides adapted from David Sontag, Luke Zettlemoyer, Vibhav, Gogate, Carlos Guestrin, Andrew Moore, Dan Klein. Image: [ 1]
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Clustering: k-Means

* lterative clustering algorithm based on
partitioning (flat).

* |nitialize: Pick k random points as cluster
centers.

 |terate until convergence:

» Assign each point based on the closest
cluster center.

« Update each cluster center based on the
mean of the points assigned to it.



Clustering: k-Means Cluster centers

* lterative clustering algorithm based on O '/ \ O
partitioning (flat). O
O O
» Initialize: Pick k random points as cluster O
centers.
* lterate until convergence: QO
« Assign each point based on the closest O '®
cluster center. O ® O
« Update each cluster center based on the O

mean of the points assigned to it. O



What color

Clustering: k-Means should this
point be?
~a
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mean of the points assigned to it. O
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Clustering: k-Means

* lterative clustering algorithm based on
partitioning (flat).

* |nitialize: Pick k random points as cluster
centers.

 |terate until convergence:

« Assign each point based on the closest
cluster center.

« Update each cluster center based on the
mean of the points assigned to it.
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Clustering: k-Means

* lterative clustering algorithm based on
partitioning (flat).

* |nitialize: Pick k random points as cluster
centers.

 |terate until convergence:

* Assign each point based on the closest
cluster center.

 Update each cluster center based on the
mean of the points assigned to it.
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Clustering: k-Means Cluster centers

* lterative clustering algorithm based on O o
partitioning (flat). @
O
» Initialize: Pick k randon . — O
(?
centers. Any changes®
* lterate until convergence: O‘
« Assign each point based on the closest O
cluster center.
© o O
« Update each cluster center based on the O

mean of the points assigned to it. O



Clustering: k-Means

* lterative clustering algorithm based on
partitioning (flat).

* |nitialize: Pick k random points as cluster
centers.

 |terate until convergence:

« Assign each point based on the closest
cluster center.

« Update each cluster center based on the
mean of the points assigned to it.



Clustering: k-Means Result of k-Means:

* lterative clustering algorithm based on O O©
partitioning (flat). @
O O
» Initialize: Pick k random points as cluster O
centers.
 |terate until convergence: "
« Assign each point based on the closest O O
cluster center. O o ®
« Update each cluster center based on the O

mean of the points assigned to it. O



Clustering: k-Means Result of k-Means:

* Minimizes within-cluster sum of squares O O©
distance: ° @ °
argmm), dolx=mll® O
1=1 x€S;
* Here u; is the mean of the points belonging O
to cluster §;. ® O
* No guarantee algorithm will converge to O
global minimum. O O O
» Can run several times and take best result O

according to (1). O
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Linear Regression

* Uses a linear model to model relationship between dependent
variable y € R, and input (independent) variables x4, ..., x, € R"

* |s this supervised or unsupervised learning?
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Linear Regression

* Uses a linear model to model relationship between dependent
variable y € R, and input (independent) variables x4, ..., x, € R"

| )V
For each observation (data point) i=1, ..., m:

yi = W' Xi + b
= WyXjq + -+ WoXin + o+ b

Here x; ; 1s observation i of input variable ;.
Parameters of model: w, b.
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Linear Regression

« Can simply the model by adding additional input that is always one:
Xip+1 = 1 i=1,....m
* The corresponding parameter in w is called the intercept.

| )V
For each observation (data point) i=1, ..., m:

Yi = W:*X;
= WiXj1 t T Wpi1Xin41

Parameters of model: w.
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Linear Least Squares Regression

« Define an objective function or loss function to optimize the model
* One loss function: least squares (“least squared error”).

m
E = Z(W ‘X = ¥;)*
=1

Parameters of model: w.

e What 1s E for the 2D line

fitting case at right? (blackboard)
* How to minimize E?




Linear Least Squares Regression

Set derivatives of objective function with respect to parameters equal to zero.

__ — )% =
ow;  ow Z“” Xi

ZE(W X; —y)x; =0

Normal equations:

m
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Linear Least Squares Regression

* Normal equations in matrix form:

(XTX)W = XTy X 18 the matrix with x;,
being observation i of input variable ;.
_ (wTy) ‘wT
W= (X X) X'y y 1s the vector of dependent variable
(output) observations.



Linear Least Squares Example

* Suppose we have three observations (m=3) of one input variable x;:
1

Xl \
0 0
=05 0.5 0.6
1 0.9
0
0 0.5 1



Linear Least Squares Example

* Suppose we have three observations (m=3) of one input variable x;.
« Add additional constant variable Xx,:

X1 X5 y
0 1 0
0.5 1 0.6
1 1 0.9

0 17 0

' ' - 0.9
« X=105 1|,y=1]0.6|,sow= (XTX) 1XTy —
1 1. 10.9. [O'OSI




Linear Least Squares Example

1
y =0.9x + 0.05

X1
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« Measuring performance of a classifier



Linear Support Vector Machines (SVM)

* In linear regression, we had input variables x4, ..., x, and we
regressed them against a dependentvariable y e R

« But what if we want to make a classifier?
* For example, a binary classifier could predict eithery =-1, y = 1

* One simple option: use linear regression to find a linear model that
best fits the data

« But this will not necessarily generalize well to new inputs.



Linear Support Vector Machines (SVM)

 |dea: if data are separable by a linear hyperplane, then maximize
separation distance (margin) between points.

A
x2

From Wikipedia



Linear Support Vector Machines (SVM)

 Two hyperplanes:

w-r+b=1
and
w-T+b=—1.
» Distance between hyperplanes is:
2
|w]|

» So to maximize distance, minimize ||w]|

From Wikipedia



Linear Support Vector Machines (SVM)

* For each point/, either:

w-z; +b>1,ify; =1
or

w-z; +b< —1,ify; = —1.
This can be rewritten as, for each I

yi(w-x; +b) > 1

From Wikipedia



Linear Support Vector Machines (SVM)

Support Vectors

« S0 our minimization problem becomes:

Minimize ||w|| subject to the constraint:
yz’(ﬂ}‘ii-f-b)Zl i=1,....m

« Can be solved with quadratic programming

/
/

« Maximizes distance (margin) between two
classes of data

408 / 1
B3

From Wikipedia



Linear Support Vector Machines (SVM)

 If data are not linearly separable, can use a soft margin classifier,
which has an objective function that sums for all data points /, a
penalty of zero if the data point is correctly classified, otherwise, the
distance to the margin.

A
X2




How to Use Linear SVMs in Deep Learning?

* Linear SVMs tend to perform well with small amounts of training data
* Deep learning tends to perform well with large amounts of data

« What to do if we have a new problem with only a small dataset?
* One solution: use linear SVM
Another solution: transfer learning.
« Use a deep learning model trained on different problem
* Train a linear SVM using features extracted from neural network.
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k-Nearest Neighbors

« Suppose we can measure distance between input features.

 For example, Euclidean distance: D(x,y) = ||x — y||5

* k-Nearest Neighbors simply uses the distance to the nearest k points
to determine the classification or regression.

 Classifier: take most common class within the k nearest points
* Regression: take mean of k nearest points
* No parameters, so no need to “train” the algorithm



k-Nearest Neighbors Example, k=3
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k-Nearest Neighbors Example, k=5
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Overview
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« Simple learning models
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 Linear regression

 Linear Support Vector Machines (SVM)

* k-Nearest Neighbors

« Overfitting and generalization
« Training, testing, validation

« Balanced datasets
« Measuring performance of a classifier



Overfitting and generalization

« Will this model have decent prediction for new inputs?
(i.e. inputs similar to the training exemplars in blue)

x1



Overfitting and generalization

« How aboutthe model here, shown as the blue curve?

15

From Wikipedia



Overfitting and generalization

« Overfitting: the model describes random noise or errors instead of
the underlying relationship.

15

From Wikipedia



Overfitting and generalization

« Overfitting: the model describes random noise or errors instead of
the underlying relationship.

* Frequently occurs when model is overly complex (e.g. has too many
parameters) relative to the number of observations.

« Has poor predictive performance.

From Wikipedia



Overfitting and generalization

« Overfitting: the model describes random noise or errors instead of
the underlying relationship.

* Frequently occurs when model is overly complex (e.g. has too many
parameters) relative to the number of observations.

« Has poor predictive performance.

From Wikipedia



Overfitting and generalization

A rule of thumb for linear regression: one in ten rule

* One predictive variable can be studied for every ten events.

* In general, want number of data points >> number of parameters.
* But models with more parameters often perform better!

* One solution: gradually increase number of parameters in model until
it starts to overfit, and then stop.

From Wikipedia



Overfitting Example with 2D Classifier

* From ConvnetJS Demo: 2D Classification with Neural Networks

23 data points, 17 parameters (5 neurons)



Overfitting Example with 2D Classifier

* From ConvnetJS Demo: 2D Classification with Neural Networks

23 data points, 32 parameters (10 neurons)



Overfitting Example with 2D Classifier

* From ConvnetJS Demo: 2D Classification with Neural Networks

23 data points, 102 parameters (22 neurons total)



Generalization

* Generalization error is a measure of how accurately an algorithm is
able to predict outcome values for previously unseen data.

A model thatis overfit will have poor generalization.




Overview

* Supervised, unsupervised, and reinforcement learning
« Simple learning models

 Clustering

 Linear regression

 Linear Support Vector Machines (SVM)

* k-Nearest Neighbors

 Qverfitting and generalization
» Training, testing, validation

« Balanced datasets
« Measuring performance of a classifier



Training, testing, validation

* Break dataset into three parts by random sampling:
* Training dataset: model is fit directly to this data

* Testing dataset: model sees this data only once;
used to measure the final performance of the classifier.

« Validation dataset: model is repeatedly “tested” on this data
during the training process to gain insight into overfitting

« Common percentages:
 Training (80%), testing (15%), validation (5%).



Training, testing, validation

* For neural networks, typically keep running training until validation
error increaseAs, then stop.

Final model
Ol]f'm)r' Validation Error
(F Jeﬁtlvf (Uses validation dataset)
unction

Training Error

> (Uses training dataset)
Iterations Image from Wikipedia [1]




Cross-validation

Repeatedly partition data into subsets: training and test.
Take mean performance of classifier over all such partitions.

 Leave one out: train on n-1 samples, test on 1 sample.
* Requires training n times.

k-fold cross-validation: randomly partition data into k subsets
(folds), at each iteration, train on k-1 folds, test on the other fold.

* Requires training k times.
« Common: 10-fold cross-validation
* Less common for deep learning (why?)
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Balanced datasets

 Unbalanced dataset:

« Suppose we have a binary classification problem (labels: 0, 1)

« Suppose 99% of our observations are class O.

* We might learn the model “everything is zero.”

* This model would be 99% accurate, but not model class 1 at all.
 Balanced dataset:

« Equal numbers of observations of each class



Overview

* Supervised, unsupervised, and reinforcement learning
« Simple learning models

 Clustering

 Linear regression

 Linear Support Vector Machines (SVM)

* k-Nearest Neighbors

 Qverfitting and generalization
* Training, testing, validation

« Balanced datasets
 Measuring performance of a classifier



Confusion Matrix

* If n classes, n x n matrix comparing actual versus predicted classes.

Class Predicted

by Model
Cat Dog
Cat 9 1

Actual Class

O
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Example: Handwritten Digit Recognition

Class | 1 | 2 3| 4 | 5|6 |7 |8 |9 |0 i:::
1 /191 | O 0 S5 1 0 1 0 2 0 4.5
2 0 188 | 2 0 0 1 3 0 0 6 6.0
3 0 3 |191| O 1 0 2 0 3 0 4.5
3 8 0 0O |187 | 4 0 1 0 0 0 6.5
5 0 0 0 0O |193| O 0 0 7 0 3.5
6 0 0 0 0 1 196 | O 2 0 1 2.0
7 2 2 0 2 0 1 190 | O 1 2 5.0
8 0 1 0 0 1 2 2 |196 | O 0 2.0
2 S 0 2 0 8 0 3 0 179 | 3 10.5
0 1 4 0 0 0 1 1 0 1 192 4.5

Overall error rate 4.85%

Slide from Nelson Morgan at ICSI / Berkeley

LWwWN~0O
LW —O
el e -
LW
Twu—o



Example: Handwritten Digit Recognition

 Visualization from MathWorks




Confusion Matrix

* For binary classifier, can call one class positive, the other negative.
« Should we call cats positive or negative?

Class Predicted

by Model — |
Cat DOg " Photo from [1]
Cat 9 1

Actual Class

O
O
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N
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Confusion Matrix

* For binary classifier, can call one class positive, the other negative.
« Cats are cuter, so cats = positive.

Class Predicted
by Model

Positive Negative

Positive 9 1

Actual Class

Negative, 4 6




Confusion Matrix

* For binary classifier, can call one class positive, the other negative.

Class Predicted

by Model

Positive Negative
7 True
(S o i
o Positive positive 1
©
% True
< Negative 4 negative




Confusion Matrix

* For binary classifier, can call one class positive, the other negative.

Class Predicted

by Model

Positive Negative
7 True
© o .
o Positive positive ?
©
% True
< Negative ? negative




Confusion Matrix

* For binary classifier, can call one class positive, the other negative.

Class Predicted
by Model

Positive Negative

True False
Positive positive| negative

False True
Negative positive| negative

Actual Class




Classifier Performance

Accuracy: (TP + TN) / (Population Size)
Precision: TP / (Predicted Positives) = (TP + FP)

Recall: TP/ (Actual Positives) = TP/ (TP + FN)
(also known as sensitivity, true positive rate)

Specificity: TN / (Actual Negatives) = TN /(TN + FP)  __ o dicted
(also known as true negative rate) by Model

Positive Negative

True False
Positive| positive| negative

False True
Negative|positive| negative

Actual Class




Classifier Performance: Unbalanced Dataset

Accuracy: (TP + TN) / (Population Size)
Precision: TP / (Predicted Positives) = (TP + FP)

Recall: TP/ (Actual Positives) = TP/ (TP + FN)
(also known as sensitivity, true positive rate)

Specificity: TN / (Actual Negatives) = TN /(TN + FP)  __ o dicted
(also known as true negative rate) by Model

Positive Negative

Positivel TP: 99 FN: O

Actual Class

Negative| FP:1 TN: O




Classifier Performance: Unbalanced Dataset

Accuracy: (TP + TN) / (Population Size) = ?
Precision: TP / (Predicted Positives) = (TP + FP)

Recall: TP/ (Actual Positives) = TP/ (TP + FN)
(also known as sensitivity, true positive rate)

Specificity: TN / (Actual Negatives) = TN /(TN + FP)  __ o dicted
(also known as true negative rate) by Model

Positive Negative

Positivel TP: 99 FN: O

Actual Class

Negative| FP:1 TN: O




Classifier Performance: Unbalanced Dataset

Accuracy: (TP + TN) / (Population Size) = 99%
Precision: TP / (Predicted Positives) = (TP + FP) = 7?
Recall: TP/ (Actual Positives) = TP/ (TP + FN)
(also known as sensitivity, true positive rate)

Specificity: TN / (Actual Negatives) = TN /(TN + FP)  __ o dicted
(also known as true negative rate) by Model

Positive Negative

Positivel TP: 99 FN: O

Actual Class

Negative| FP:1 TN: O
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Classifier Performance: Unbalanced Dataset

Accuracy: (TP + TN) / (Population Size) = 99%
Precision: TP / (Predicted Positives) = (TP + FP) = 99%

Recall: TP /(Actual Positives) = TP /(TP + FN) =7
(also known as sensitivity, true positive rate)

Specificity: TN / (Actual Negatives) = TN /(TN + FP)  __ o dicted
(also known as true negative rate) by Model

Positive Negative
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Actual Class

Negative| FP:1 TN: O




Classifier Performance: Unbalanced Dataset

Accuracy: (TP + TN) / (Population Size) = 99%
Precision: TP / (Predicted Positives) = (TP + FP) = 99%

Recall: TP/ (Actual Positives) = TP/ (TP + FN) = 100%
(also known as sensitivity, true positive rate)

Specificity: TN / (Actual Negatives) = TN /(TN + FP)  __ o dicted
(also known as true negative rate) by Model

Positive Negative

Positivel TP: 99 FN: O

Actual Class

Negative| FP:1 TN: O




Classifier Performance: Unbalanced Dataset

Accuracy: (TP + TN) / (Population Size) = 99%
Precision: TP / (Predicted Positives) = (TP + FP) = 99%

Recall: TP/ (Actual Positives) = TP/ (TP + FN) = 100%
(also known as sensitivity, true positive rate)

Specificity: TN / (Actual Negatives) = 0% Class Predicted
(also known as true negative rate) by Model

Positive Negative

Positivel TP: 99 FN: O

Actual Class

Negative| FP:1 TN: O




Summary

* Supervised, unsupervised, and reinforcement learning
« Simple learning models

 Clustering

 Linear regression

 Linear Support Vector Machines (SVM)

* k-Nearest Neighbors

 Qverfitting and generalization
* Training, testing, validation

« Balanced datasets
« Measuring performance of a classifier



