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Overview

• Supervised, unsupervised, and reinforcement learning
• Simple learning models

• Clustering
• Linear regression
• Linear Support Vector Machines (SVM)
• k-Nearest Neighbors

• Overfitting and generalization
• Training, testing, validation
• Balanced datasets
• Measuring performance of a classifier



Supervised,	  Unsupervised,	  Reinforcement

• 3 broad categories:
• Supervised learning: computer presented with example inputs 

and desired outputs by a “teacher”, goal is to learn general rule 
that maps inputs to outputs.

• Unsupervised learning: No output labels are given to the 
algorithm, leaving it on its own to find structure in the inputs.

• Reinforcement learning: An agent determines what actions to 
best take in an environment to maximize some notion of 
cumulative reward.



What	  Kind	  of	  Learning	  is	  This?
• Learn given input image, whether it is truck or car? Training data:

Images are Creative Commons, sources: [1], [2], [3], [4], [5], [6]
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What	  Kind	  of	  Learning	  is	  This?

• We have a dataset of customers, each with 2 associated attributes 
(x1 and x2). We want to discover groups of similar customers.

x1

x2

What features could we use as inputs
for a machine learning algorithm?



What	  Kind	  of	  Learning	  is	  This?

[Peng et al., Terrain-Adaptive Locomotion…, SIGGRAPH 2016]
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Clustering

• Unsupervised learning
• Requires input data, but no labels
• Detects patterns, e.g.

• Groups of similar emails, similar web-
pages in search results

• Similar customer shopping patterns
• Regions of images

Slides adapted from David Sontag, Luke Zettlemoyer, Vibhav, Gogate, Carlos Guestrin, Andrew Moore, Dan Klein
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Clustering

• Idea: group together similar instances
• Problem: How to define “similar”?
• Problem: How many clusters?

Slides adapted from David Sontag, Luke Zettlemoyer, Vibhav, Gogate, Carlos Guestrin, Andrew Moore, Dan Klein



Clustering

• Similarity: in Euclidean space Rn, could be a distance function.
• For example: 𝐷 𝐱,𝐲 = 𝐱− 𝐲 '

'

• Clustering results will depend on measure of similarity / dissimilarity

Slides adapted from David Sontag, Luke Zettlemoyer, Vibhav, Gogate, Carlos Guestrin, Andrew Moore, Dan Klein



Clustering	  Algorithms

• Partitioning algorithms (flat)
• K-means

• Hierarchical algorithms
• Bottom-up: agglomerative
• Top-down: divisive

Slides adapted from David Sontag, Luke Zettlemoyer, Vibhav, Gogate, Carlos Guestrin, Andrew Moore, Dan Klein



Clustering	  Examples:	  Image	  Segmentation

• Divide an image into regions that are perceptually similar to humans.

Slides adapted from James Hays, David Sontag, Luke Zettlemoyer, Vibhav, Gogate, Carlos Guestrin, Andrew Moore, Dan Klein



Clustering	  Examples:	  Biology

• Cluster species based on e.g. genetic or phenotype similarity.

Slides adapted from David Sontag, Luke Zettlemoyer, Vibhav, Gogate, Carlos Guestrin, Andrew Moore, Dan Klein. Image: [1]



Clustering:	  k-‐Means

• Iterative clustering algorithm based on 
partitioning (flat).

• Initialize: Pick k random points as cluster 
centers.

• Iterate until convergence:
• Assign each point based on the closest 

cluster center.
• Update each cluster center based on the 

mean of the points assigned to it.
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• Initialize: Pick k random points as cluster 
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• Iterate until convergence:
• Assign each point based on the closest 
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• Update each cluster center based on the 

mean of the points assigned to it.
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Clustering:	  k-‐Means

• Iterative clustering algorithm based on 
partitioning (flat).

• Initialize: Pick k random points as cluster 
centers.

• Iterate until convergence:
• Assign each point based on the closest 

cluster center.
• Update each cluster center based on the 

mean of the points assigned to it.

Result of k-Means:



Clustering:	  k-‐Means

• Minimizes within-cluster sum of squares 
distance:

• Here 𝝁) is the mean of the points belonging 
to cluster 𝑆).

• No guarantee algorithm will converge to
global minimum.

• Can run several times and take best result
according to (1).

Result of k-Means:

(1)
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Linear	  Regression

• Uses a linear model to model relationship between dependent 
variable 𝑦 ∈ ℝ, and input (independent) variables x1, …, xn ∈ ℝ.

• Is this supervised or unsupervised learning?

x1

y



x1

y

Linear	  Regression

• Uses a linear model to model relationship between dependent 
variable 𝑦 ∈ ℝ, and input (independent) variables x1, …, xn ∈ ℝ.

For	  each	  observation	  (data	  point) i =	  1, …, m:
	  	  	  	  	  	  	  	  	  	  	  𝑦𝑖 = 𝐰 G 𝐱𝑖 + 𝑏
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  = w1𝑥),L + ⋯+wn𝑥),. + ⋯+ 𝑏

Here 𝑥),N is observation i of input variable j.
Parameters of model: w, b.



x1

y

Linear	  Regression

• Can simply the model by adding additional input that is always one: 
xi,n+1 = 1            i = 1, …, m

• The corresponding parameter in w is called the intercept.

For	  each	  observation	  (data	  point) i =	  1, …, m:
	  	  	  	  	  	  	  	  	  	  	  𝑦𝑖 = 𝐰 G 𝐱𝑖
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  = w1𝑥),L + ⋯+𝑤.PL𝑥),.PL
Parameters of model: w.



Linear	  Least	  Squares	  Regression

• Define an objective function or loss function to optimize the model
• One loss function: least squares (“least squared error”).

x1

y

𝐸 = 	  R 𝐰 G 𝐱𝑖 − 𝑦𝑖 '
S

)TL

Parameters of model: w.

• What is E for the 2D line
fitting case at right? (blackboard)

• How to minimize E?



Linear	  Least	  Squares	  Regression

𝜕𝐸
𝜕𝑤N

=
𝜕
𝜕𝑤N

R 𝐰 G 𝐱𝑖 − 𝑦𝑖 '
S

)TL

= 0

2R 𝐰 G 𝐱𝑖 − 𝑦𝑖 𝑥𝑖𝑗

S

)TL

= 0

R R𝑥𝑖𝑘𝑤𝑘

.

ZTL

− 𝑦𝑖 𝑥𝑖𝑗

S

)TL

= 0

Normal equations:

Set derivatives of objective function with respect to parameters equal to zero.

RR𝑥𝑖𝑘𝑥𝑖𝑗𝑤𝑘

.

ZTL

S

)TL

=R𝑥𝑖𝑗𝑦𝑖

S

)TL



Linear	  Least	  Squares	  Regression

• Normal equations in matrix form:

𝐗\𝐗 𝐰 = 𝐗\y

𝐰 = 𝐗\𝐗
]L
𝐗\𝒚

X is the matrix with xij
being observation i of input variable j.

y is the vector of dependent variable
(output) observations.



Linear	  Least	  Squares	  Example

• Suppose we have three observations (m=3) of one input variable x1:

0

0.5

1

0 0.5 1

y

x1

x1 y
0 0
0.5 0.6
1 0.9



Linear	  Least	  Squares	  Example

• Suppose we have three observations (m=3) of one input variable x1.
• Add additional constant variable x2:

• X = 
0 1
0.5 1
1 1

, y =
0
0.6
0.9

, so 𝐰 = 𝐗\𝐗
]L
𝐗\𝒚 =	   0.9

0.05

x1 x2 y
0 1 0
0.5 1 0.6
1 1 0.9



Linear	  Least	  Squares	  Example

y = 0.9x + 0.05

0

0.5

1

0 0.5 1

y

x1
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Linear	  Support	  Vector	  Machines	  (SVM)

• In linear regression, we had input variables x1, …, xn and we 
regressed them against a dependent variable 𝑦 ∈ ℝ

• But what if we want to make a classifier?
• For example, a binary classifier could predict either y = -1, y = 1
• One simple option: use linear regression to find a linear model that 

best fits the data
• But this will not necessarily generalize well to new inputs.



Linear	  Support	  Vector	  Machines	  (SVM)

• Idea: if data are separable by a linear hyperplane, then maximize 
separation distance (margin) between points.

From Wikipedia



Linear	  Support	  Vector	  Machines	  (SVM)

• Two hyperplanes:

• Distance between hyperplanes is:

• So to maximize distance, minimize  
From Wikipedia



Linear	  Support	  Vector	  Machines	  (SVM)

• For each point i, either:

• This can be rewritten as, for each i:

From Wikipedia



Linear	  Support	  Vector	  Machines	  (SVM)

• So our minimization problem becomes:

• Minimize         subject to the constraint:

• Can be solved with quadratic programming

• Maximizes distance (margin) between two 
classes of data

From Wikipedia

i = 1,…, m

Support Vectors



Linear	  Support	  Vector	  Machines	  (SVM)

• If data are not linearly separable, can use a soft margin classifier, 
which has an objective function that sums for all data points i, a 
penalty of zero if the data point is correctly classified, otherwise, the 
distance to the margin. 

Penalty

Penalty



How	  to	  Use	  Linear	  SVMs	  in	  Deep	  Learning?

• Linear SVMs tend to perform well with small amounts of training data
• Deep learning tends to perform well with large amounts of data

• What to do if we have a new problem with only a small dataset?
• One solution: use linear SVM
• Another solution: transfer learning.

• Use a deep learning model trained on different problem
• Train a linear SVM using features extracted from neural network.
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k-‐Nearest	  Neighbors

• Suppose we can measure distance between input features.
• For example, Euclidean distance: 𝐷 𝐱,𝐲 = 𝐱− 𝐲 '

'

• k-Nearest Neighbors simply uses the distance to the nearest k points 
to determine the classification or regression.
• Classifier: take most common class within the k nearest points
• Regression: take mean of k nearest points

• No parameters, so no need to “train” the algorithm



k-‐Nearest	  Neighbors	  Example,	  k=3

?



k-‐Nearest	  Neighbors	  Example,	  k=5

?
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Overfitting and	  generalization

• Will this model have decent prediction for new inputs?
(i.e. inputs similar to the training exemplars in blue)



Overfitting and	  generalization

• How about the model here, shown as the blue curve?

y

From Wikipediax1



Overfitting and	  generalization

• Overfitting: the model describes random noise or errors instead of 
the underlying relationship.

x1

y

From Wikipedia



Overfitting and	  generalization

• Overfitting: the model describes random noise or errors instead of 
the underlying relationship.

• Frequently occurs when model is overly complex (e.g. has too many 
parameters) relative to the number of observations.

• Has poor predictive performance.

From Wikipedia
x1

y



Overfitting and	  generalization

• Overfitting: the model describes random noise or errors instead of 
the underlying relationship.

• Frequently occurs when model is overly complex (e.g. has too many 
parameters) relative to the number of observations.

• Has poor predictive performance.

From Wikipedia
x1

y



Overfitting and	  generalization

• A rule of thumb for linear regression: one in ten rule
• One predictive variable can be studied for every ten events.

• In general, want number of data points >> number of parameters.
• But models with more parameters often perform better!
• One solution: gradually increase number of parameters in model until 

it starts to overfit, and then stop.

From Wikipedia



Overfitting Example	  with	  2D	  Classifier

• From ConvnetJS Demo: 2D Classification with Neural Networks

23 data points, 17 parameters (5 neurons)



Overfitting Example	  with	  2D	  Classifier

• From ConvnetJS Demo: 2D Classification with Neural Networks

23 data points, 32 parameters (10 neurons)



Overfitting Example	  with	  2D	  Classifier

• From ConvnetJS Demo: 2D Classification with Neural Networks

23 data points, 102 parameters (22 neurons total)



Generalization

• Generalization error is a measure of how accurately an algorithm is 
able to predict outcome values for previously unseen data.

• A model that is overfit will have poor generalization.



Overview

• Supervised, unsupervised, and reinforcement learning
• Simple learning models

• Clustering
• Linear regression
• Linear Support Vector Machines (SVM)
• k-Nearest Neighbors

• Overfitting and generalization
• Training, testing, validation
• Balanced datasets
• Measuring performance of a classifier



Training,	  testing,	  validation

• Break dataset into three parts by random sampling:
• Training dataset: model is fit directly to this data
• Testing dataset: model sees this data only once;

used to measure the final performance of the classifier.
• Validation dataset: model is repeatedly “tested” on this data

during the training process to gain insight into overfitting
• Common percentages:

• Training (80%), testing (15%), validation (5%).



Training,	  testing,	  validation

Image from Wikipedia [1]

Training Error
(Uses training dataset)

Validation Error
(Uses validation dataset)

Error
(Objective
Function)

Iterations

• For neural networks, typically keep running training until validation 
error increases, then stop.

Final model



Cross-‐validation

• Repeatedly partition data into subsets: training and test.
• Take mean performance of classifier over all such partitions.
• Leave one out: train on n-1 samples, test on 1 sample.

• Requires training n times.
• k-fold cross-validation: randomly partition data into k subsets 

(folds), at each iteration, train on k-1 folds, test on the other fold.
• Requires training k times.
• Common: 10-fold cross-validation

• Less common for deep learning (why?)
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Balanced	  datasets

• Unbalanced dataset:
• Suppose we have a binary classification problem (labels: 0, 1)
• Suppose 99% of our observations are class 0.
• We might learn the model “everything is zero.”
• This model would be 99% accurate, but not model class 1 at all.

• Balanced dataset:
• Equal numbers of observations of each class
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Confusion	  Matrix

• If n classes, n x n matrix comparing actual versus predicted classes.

Class	  Predicted
by	  Model

Cat Dog
Ac

tu
al
	  C
la
ss

Cat 9 1

Dog 4 6



Example:	  Handwritten	  Digit	  Recognition

Slide from Nelson Morgan at ICSI / Berkeley



Example:	  Handwritten	  Digit	  Recognition

• Visualization from MathWorks



Confusion	  Matrix

• For binary classifier, can call one class positive, the other negative.
• Should we call cats positive or negative?

Class	  Predicted
by	  Model

Cat Dog
Ac

tu
al
	  C
la
ss

Cat 9 1

Dog 4 6

Photo from [1]



Confusion	  Matrix

• For binary classifier, can call one class positive, the other negative.
• Cats are cuter, so cats = positive.

Class	  Predicted
by	  Model

Positive Negative
Ac

tu
al
	  C
la
ss

Positive 9 1

Negative 4 6



Confusion	  Matrix

• For binary classifier, can call one class positive, the other negative.

Class	  Predicted
by	  Model

Positive Negative
Ac

tu
al
	  C
la
ss

Positive
True	  

positive 1

Negative 4
True	  

negative



Confusion	  Matrix

• For binary classifier, can call one class positive, the other negative.

Class	  Predicted
by	  Model

Positive Negative
Ac

tu
al
	  C
la
ss

Positive
True	  

positive ?

Negative ?
True	  

negative



Confusion	  Matrix

• For binary classifier, can call one class positive, the other negative.

Class	  Predicted
by	  Model

Positive Negative
Ac

tu
al
	  C
la
ss

Positive
True	  

positive
False	  

negative

Negative
False	  

positive
True	  

negative



Classifier	  Performance

• Accuracy: (TP + TN) / (Population Size)
• Precision: TP / (Predicted Positives) = (TP + FP)
• Recall: TP / (Actual Positives) = TP / (TP + FN) 

(also known as sensitivity, true positive rate)
• Specificity: TN / (Actual Negatives) = TN / (TN + FP)

(also known as true negative rate)
Class	  Predicted

by	  Model
Positive Negative

Ac
tu
al
	  C
la
ss

Positive
True	  

positive
False	  

negative

Negative
False	  

positive
True	  

negative



Classifier	  Performance:	  Unbalanced	  Dataset

• Accuracy: (TP + TN) / (Population Size)
• Precision: TP / (Predicted Positives) = (TP + FP)
• Recall: TP / (Actual Positives) = TP / (TP + FN) 

(also known as sensitivity, true positive rate)
• Specificity: TN / (Actual Negatives) = TN / (TN + FP)

(also known as true negative rate)
Class	  Predicted

by	  Model
Positive Negative

Ac
tu
al
	  C
la
ss

Positive TP:	  99 FN:	  0

Negative FP:	  1 TN:	  0



Classifier	  Performance:	  Unbalanced	  Dataset

• Accuracy: (TP + TN) / (Population Size) = ?
• Precision: TP / (Predicted Positives) = (TP + FP)
• Recall: TP / (Actual Positives) = TP / (TP + FN) 

(also known as sensitivity, true positive rate)
• Specificity: TN / (Actual Negatives) = TN / (TN + FP)

(also known as true negative rate)
Class	  Predicted

by	  Model
Positive Negative

Ac
tu
al
	  C
la
ss

Positive TP:	  99 FN:	  0

Negative FP:	  1 TN:	  0



Classifier	  Performance:	  Unbalanced	  Dataset

• Accuracy: (TP + TN) / (Population Size) = 99%
• Precision: TP / (Predicted Positives) = (TP + FP) = ?
• Recall: TP / (Actual Positives) = TP / (TP + FN) 

(also known as sensitivity, true positive rate)
• Specificity: TN / (Actual Negatives) = TN / (TN + FP)

(also known as true negative rate)
Class	  Predicted

by	  Model
Positive Negative

Ac
tu
al
	  C
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ss

Positive TP:	  99 FN:	  0

Negative FP:	  1 TN:	  0



Classifier	  Performance:	  Unbalanced	  Dataset

• Accuracy: (TP + TN) / (Population Size) = 99%
• Precision: TP / (Predicted Positives) = (TP + FP) = 99%
• Recall: TP / (Actual Positives) = TP / (TP + FN) 

(also known as sensitivity, true positive rate)
• Specificity: TN / (Actual Negatives) = TN / (TN + FP)

(also known as true negative rate)
Class	  Predicted

by	  Model
Positive Negative
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Positive TP:	  99 FN:	  0

Negative FP:	  1 TN:	  0



Classifier	  Performance:	  Unbalanced	  Dataset

• Accuracy: (TP + TN) / (Population Size) = 99%
• Precision: TP / (Predicted Positives) = (TP + FP) = 99%
• Recall: TP / (Actual Positives) = TP / (TP + FN) = ?

(also known as sensitivity, true positive rate)
• Specificity: TN / (Actual Negatives) = TN / (TN + FP)

(also known as true negative rate)
Class	  Predicted

by	  Model
Positive Negative

Ac
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Positive TP:	  99 FN:	  0

Negative FP:	  1 TN:	  0



Classifier	  Performance:	  Unbalanced	  Dataset

• Accuracy: (TP + TN) / (Population Size) = 99%
• Precision: TP / (Predicted Positives) = (TP + FP) = 99%
• Recall: TP / (Actual Positives) = TP / (TP + FN) = 100%

(also known as sensitivity, true positive rate)
• Specificity: TN / (Actual Negatives) = TN / (TN + FP)

(also known as true negative rate)
Class	  Predicted

by	  Model
Positive Negative

Ac
tu
al
	  C
la
ss

Positive TP:	  99 FN:	  0

Negative FP:	  1 TN:	  0



Classifier	  Performance:	  Unbalanced	  Dataset

• Accuracy: (TP + TN) / (Population Size) = 99%
• Precision: TP / (Predicted Positives) = (TP + FP) = 99%
• Recall: TP / (Actual Positives) = TP / (TP + FN) = 100%

(also known as sensitivity, true positive rate)
• Specificity: TN / (Actual Negatives) = 0%

(also known as true negative rate)
Class	  Predicted

by	  Model
Positive Negative

Ac
tu
al
	  C
la
ss

Positive TP:	  99 FN:	  0

Negative FP:	  1 TN:	  0



Summary

• Supervised, unsupervised, and reinforcement learning
• Simple learning models

• Clustering
• Linear regression
• Linear Support Vector Machines (SVM)
• k-Nearest Neighbors

• Overfitting and generalization
• Training, testing, validation
• Balanced datasets
• Measuring performance of a classifier


