
CS 6501: Deep Learning for
Computer Graphics

Basics of Machine Learning

Connelly Barnes

Overview

• Supervised, unsupervised, and reinforcement learning
• Simple learning models

• Clustering
• Linear regression
• Linear Support Vector Machines (SVM)
• k-Nearest Neighbors

• Overfitting and generalization
• Training, testing, validation
• Balanced datasets
• Measuring performance of a classifier

Supervised,	 Unsupervised,	 Reinforcement

• 3 broad categories:
• Supervised learning: computer presented with example inputs

and desired outputs by a “teacher”, goal is to learn general rule
that maps inputs to outputs.

• Unsupervised learning: No output labels are given to the
algorithm, leaving it on its own to find structure in the inputs.

• Reinforcement learning: An agent determines what actions to
best take in an environment to maximize some notion of
cumulative reward.

What	 Kind	 of	 Learning	 is	 This?
• Learn given input image, whether it is truck or car? Training data:

Images are Creative Commons, sources: [1], [2], [3], [4], [5], [6]

Label() = Truck

Label() = Truck

Label() = Truck

Label() = Car

Label() = Car

Label() = Car

What	 Kind	 of	 Learning	 is	 This?

• We have a dataset of customers, each with 2 associated attributes
(x1 and x2). We want to discover groups of similar customers.

x1

x2

What features could we use as inputs
for a machine learning algorithm?

What	 Kind	 of	 Learning	 is	 This?

[Peng et al., Terrain-Adaptive Locomotion…, SIGGRAPH 2016]

Overview

• Supervised, unsupervised, and reinforcement learning
• Simple learning models

• Clustering
• Linear regression
• Linear Support Vector Machines (SVM)
• k-Nearest Neighbors

• Overfitting and generalization
• Training, testing, validation
• Balanced datasets
• Measuring performance of a classifier

Clustering

• Unsupervised learning
• Requires input data, but no labels
• Detects patterns, e.g.

• Groups of similar emails, similar web-
pages in search results

• Similar customer shopping patterns
• Regions of images

Slides adapted from David Sontag, Luke Zettlemoyer, Vibhav, Gogate, Carlos Guestrin, Andrew Moore, Dan Klein

Clustering

• Idea: group together similar instances
• Example: 2D point patterns

Slides adapted from David Sontag, Luke Zettlemoyer, Vibhav, Gogate, Carlos Guestrin, Andrew Moore, Dan Klein

Clustering

• Idea: group together similar instances
• Example: 2D point patterns

Slides adapted from David Sontag, Luke Zettlemoyer, Vibhav, Gogate, Carlos Guestrin, Andrew Moore, Dan Klein

Clustering

• Idea: group together similar instances
• Example: 2D point patterns

Slides adapted from David Sontag, Luke Zettlemoyer, Vibhav, Gogate, Carlos Guestrin, Andrew Moore, Dan Klein

Clustering

• Idea: group together similar instances
• Problem: How to define “similar”?
• Problem: How many clusters?

Slides adapted from David Sontag, Luke Zettlemoyer, Vibhav, Gogate, Carlos Guestrin, Andrew Moore, Dan Klein

Clustering

• Similarity: in Euclidean space Rn, could be a distance function.
• For example: 𝐷 𝐱,𝐲 = 𝐱− 𝐲 '

'

• Clustering results will depend on measure of similarity / dissimilarity

Slides adapted from David Sontag, Luke Zettlemoyer, Vibhav, Gogate, Carlos Guestrin, Andrew Moore, Dan Klein

Clustering	 Algorithms

• Partitioning algorithms (flat)
• K-means

• Hierarchical algorithms
• Bottom-up: agglomerative
• Top-down: divisive

Slides adapted from David Sontag, Luke Zettlemoyer, Vibhav, Gogate, Carlos Guestrin, Andrew Moore, Dan Klein

Clustering	 Examples:	 Image	 Segmentation

• Divide an image into regions that are perceptually similar to humans.

Slides adapted from James Hays, David Sontag, Luke Zettlemoyer, Vibhav, Gogate, Carlos Guestrin, Andrew Moore, Dan Klein

Clustering	 Examples:	 Biology

• Cluster species based on e.g. genetic or phenotype similarity.

Slides adapted from David Sontag, Luke Zettlemoyer, Vibhav, Gogate, Carlos Guestrin, Andrew Moore, Dan Klein. Image: [1]

Clustering:	 k-‐Means

• Iterative clustering algorithm based on
partitioning (flat).

• Initialize: Pick k random points as cluster
centers.

• Iterate until convergence:
• Assign each point based on the closest

cluster center.
• Update each cluster center based on the

mean of the points assigned to it.

Clustering:	 k-‐Means

• Iterative clustering algorithm based on
partitioning (flat).

• Initialize: Pick k random points as cluster
centers.

• Iterate until convergence:
• Assign each point based on the closest

cluster center.
• Update each cluster center based on the

mean of the points assigned to it.

Cluster centers

Clustering:	 k-‐Means

• Iterative clustering algorithm based on
partitioning (flat).

• Initialize: Pick k random points as cluster
centers.

• Iterate until convergence:
• Assign each point based on the closest

cluster center.
• Update each cluster center based on the

mean of the points assigned to it.

What color
should this
point be?

Clustering:	 k-‐Means

• Iterative clustering algorithm based on
partitioning (flat).

• Initialize: Pick k random points as cluster
centers.

• Iterate until convergence:
• Assign each point based on the closest

cluster center.
• Update each cluster center based on the

mean of the points assigned to it.

What color
should this
point be?

Clustering:	 k-‐Means

• Iterative clustering algorithm based on
partitioning (flat).

• Initialize: Pick k random points as cluster
centers.

• Iterate until convergence:
• Assign each point based on the closest

cluster center.
• Update each cluster center based on the

mean of the points assigned to it.

What color
should this
point be?

Clustering:	 k-‐Means

• Iterative clustering algorithm based on
partitioning (flat).

• Initialize: Pick k random points as cluster
centers.

• Iterate until convergence:
• Assign each point based on the closest

cluster center.
• Update each cluster center based on the

mean of the points assigned to it.

What color
should this
point be?

Clustering:	 k-‐Means

• Iterative clustering algorithm based on
partitioning (flat).

• Initialize: Pick k random points as cluster
centers.

• Iterate until convergence:
• Assign each point based on the closest

cluster center.
• Update each cluster center based on the

mean of the points assigned to it.

Clustering:	 k-‐Means

• Iterative clustering algorithm based on
partitioning (flat).

• Initialize: Pick k random points as cluster
centers.

• Iterate until convergence:
• Assign each point based on the closest

cluster center.
• Update each cluster center based on the

mean of the points assigned to it.

Clustering:	 k-‐Means

• Iterative clustering algorithm based on
partitioning (flat).

• Initialize: Pick k random points as cluster
centers.

• Iterate until convergence:
• Assign each point based on the closest

cluster center.
• Update each cluster center based on the

mean of the points assigned to it.

Any changes?

Cluster centers

Clustering:	 k-‐Means

• Iterative clustering algorithm based on
partitioning (flat).

• Initialize: Pick k random points as cluster
centers.

• Iterate until convergence:
• Assign each point based on the closest

cluster center.
• Update each cluster center based on the

mean of the points assigned to it.

Clustering:	 k-‐Means

• Iterative clustering algorithm based on
partitioning (flat).

• Initialize: Pick k random points as cluster
centers.

• Iterate until convergence:
• Assign each point based on the closest

cluster center.
• Update each cluster center based on the

mean of the points assigned to it.

Result of k-Means:

Clustering:	 k-‐Means

• Minimizes within-cluster sum of squares
distance:

• Here 𝝁) is the mean of the points belonging
to cluster 𝑆).

• No guarantee algorithm will converge to
global minimum.

• Can run several times and take best result
according to (1).

Result of k-Means:

(1)

Overview

• Supervised, unsupervised, and reinforcement learning
• Simple learning models

• Clustering
• Linear regression
• Linear Support Vector Machines (SVM)
• k-Nearest Neighbors

• Overfitting and generalization
• Training, testing, validation
• Balanced datasets

Linear	 Regression

• Uses a linear model to model relationship between dependent
variable 𝑦 ∈ ℝ, and input (independent) variables x1, …, xn ∈ ℝ.

• Is this supervised or unsupervised learning?

x1

y

x1

y

Linear	 Regression

• Uses a linear model to model relationship between dependent
variable 𝑦 ∈ ℝ, and input (independent) variables x1, …, xn ∈ ℝ.

For	 each	 observation	 (data	 point) i =	 1, …, m:
	 	 	 	 	 	 	 	 	 	 	 𝑦𝑖 = 𝐰 G 𝐱𝑖 + 𝑏
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 = w1𝑥),L + ⋯+wn𝑥),. + ⋯+ 𝑏

Here 𝑥),N is observation i of input variable j.
Parameters of model: w, b.

x1

y

Linear	 Regression

• Can simply the model by adding additional input that is always one:
xi,n+1 = 1 i = 1, …, m

• The corresponding parameter in w is called the intercept.

For	 each	 observation	 (data	 point) i =	 1, …, m:
	 	 	 	 	 	 	 	 	 	 	 𝑦𝑖 = 𝐰 G 𝐱𝑖
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 = w1𝑥),L + ⋯+𝑤.PL𝑥),.PL
Parameters of model: w.

Linear	 Least	 Squares	 Regression

• Define an objective function or loss function to optimize the model
• One loss function: least squares (“least squared error”).

x1

y

𝐸 = 	 R 𝐰 G 𝐱𝑖 − 𝑦𝑖 '
S

)TL

Parameters of model: w.

• What is E for the 2D line
fitting case at right? (blackboard)

• How to minimize E?

Linear	 Least	 Squares	 Regression

𝜕𝐸
𝜕𝑤N

=
𝜕
𝜕𝑤N

R 𝐰 G 𝐱𝑖 − 𝑦𝑖 '
S

)TL

= 0

2R 𝐰 G 𝐱𝑖 − 𝑦𝑖 𝑥𝑖𝑗

S

)TL

= 0

R R𝑥𝑖𝑘𝑤𝑘

.

ZTL

− 𝑦𝑖 𝑥𝑖𝑗

S

)TL

= 0

Normal equations:

Set derivatives of objective function with respect to parameters equal to zero.

RR𝑥𝑖𝑘𝑥𝑖𝑗𝑤𝑘

.

ZTL

S

)TL

=R𝑥𝑖𝑗𝑦𝑖

S

)TL

Linear	 Least	 Squares	 Regression

• Normal equations in matrix form:

𝐗\𝐗 𝐰 = 𝐗\y

𝐰 = 𝐗\𝐗
]L
𝐗\𝒚

X is the matrix with xij
being observation i of input variable j.

y is the vector of dependent variable
(output) observations.

Linear	 Least	 Squares	 Example

• Suppose we have three observations (m=3) of one input variable x1:

0

0.5

1

0 0.5 1

y

x1

x1 y
0 0
0.5 0.6
1 0.9

Linear	 Least	 Squares	 Example

• Suppose we have three observations (m=3) of one input variable x1.
• Add additional constant variable x2:

• X =
0 1
0.5 1
1 1

, y =
0
0.6
0.9

, so 𝐰 = 𝐗\𝐗
]L
𝐗\𝒚 =	 0.9

0.05

x1 x2 y
0 1 0
0.5 1 0.6
1 1 0.9

Linear	 Least	 Squares	 Example

y = 0.9x + 0.05

0

0.5

1

0 0.5 1

y

x1

Overview

• Supervised, unsupervised, and reinforcement learning
• Simple learning models

• Clustering
• Linear regression
• Linear Support Vector Machines (SVM)
• k-Nearest Neighbors

• Overfitting and generalization
• Training, testing, validation
• Balanced datasets
• Measuring performance of a classifier

Linear	 Support	 Vector	 Machines	 (SVM)

• In linear regression, we had input variables x1, …, xn and we
regressed them against a dependent variable 𝑦 ∈ ℝ

• But what if we want to make a classifier?
• For example, a binary classifier could predict either y = -1, y = 1
• One simple option: use linear regression to find a linear model that

best fits the data
• But this will not necessarily generalize well to new inputs.

Linear	 Support	 Vector	 Machines	 (SVM)

• Idea: if data are separable by a linear hyperplane, then maximize
separation distance (margin) between points.

From Wikipedia

Linear	 Support	 Vector	 Machines	 (SVM)

• Two hyperplanes:

• Distance between hyperplanes is:

• So to maximize distance, minimize
From Wikipedia

Linear	 Support	 Vector	 Machines	 (SVM)

• For each point i, either:

• This can be rewritten as, for each i:

From Wikipedia

Linear	 Support	 Vector	 Machines	 (SVM)

• So our minimization problem becomes:

• Minimize subject to the constraint:

• Can be solved with quadratic programming

• Maximizes distance (margin) between two
classes of data

From Wikipedia

i = 1,…, m

Support Vectors

Linear	 Support	 Vector	 Machines	 (SVM)

• If data are not linearly separable, can use a soft margin classifier,
which has an objective function that sums for all data points i, a
penalty of zero if the data point is correctly classified, otherwise, the
distance to the margin.

Penalty

Penalty

How	 to	 Use	 Linear	 SVMs	 in	 Deep	 Learning?

• Linear SVMs tend to perform well with small amounts of training data
• Deep learning tends to perform well with large amounts of data

• What to do if we have a new problem with only a small dataset?
• One solution: use linear SVM
• Another solution: transfer learning.

• Use a deep learning model trained on different problem
• Train a linear SVM using features extracted from neural network.

Overview

• Supervised, unsupervised, and reinforcement learning
• Simple learning models

• Clustering
• Linear regression
• Linear Support Vector Machines (SVM)
• k-Nearest Neighbors

• Overfitting and generalization
• Training, testing, validation
• Balanced datasets
• Measuring performance of a classifier

k-‐Nearest	 Neighbors

• Suppose we can measure distance between input features.
• For example, Euclidean distance: 𝐷 𝐱,𝐲 = 𝐱− 𝐲 '

'

• k-Nearest Neighbors simply uses the distance to the nearest k points
to determine the classification or regression.
• Classifier: take most common class within the k nearest points
• Regression: take mean of k nearest points

• No parameters, so no need to “train” the algorithm

k-‐Nearest	 Neighbors	 Example,	 k=3

?

k-‐Nearest	 Neighbors	 Example,	 k=5

?

Overview

• Supervised, unsupervised, and reinforcement learning
• Simple learning models

• Clustering
• Linear regression
• Linear Support Vector Machines (SVM)
• k-Nearest Neighbors

• Overfitting and generalization
• Training, testing, validation
• Balanced datasets
• Measuring performance of a classifier

Overfitting and	 generalization

• Will this model have decent prediction for new inputs?
(i.e. inputs similar to the training exemplars in blue)

Overfitting and	 generalization

• How about the model here, shown as the blue curve?

y

From Wikipediax1

Overfitting and	 generalization

• Overfitting: the model describes random noise or errors instead of
the underlying relationship.

x1

y

From Wikipedia

Overfitting and	 generalization

• Overfitting: the model describes random noise or errors instead of
the underlying relationship.

• Frequently occurs when model is overly complex (e.g. has too many
parameters) relative to the number of observations.

• Has poor predictive performance.

From Wikipedia
x1

y

Overfitting and	 generalization

• Overfitting: the model describes random noise or errors instead of
the underlying relationship.

• Frequently occurs when model is overly complex (e.g. has too many
parameters) relative to the number of observations.

• Has poor predictive performance.

From Wikipedia
x1

y

Overfitting and	 generalization

• A rule of thumb for linear regression: one in ten rule
• One predictive variable can be studied for every ten events.

• In general, want number of data points >> number of parameters.
• But models with more parameters often perform better!
• One solution: gradually increase number of parameters in model until

it starts to overfit, and then stop.

From Wikipedia

Overfitting Example	 with	 2D	 Classifier

• From ConvnetJS Demo: 2D Classification with Neural Networks

23 data points, 17 parameters (5 neurons)

Overfitting Example	 with	 2D	 Classifier

• From ConvnetJS Demo: 2D Classification with Neural Networks

23 data points, 32 parameters (10 neurons)

Overfitting Example	 with	 2D	 Classifier

• From ConvnetJS Demo: 2D Classification with Neural Networks

23 data points, 102 parameters (22 neurons total)

Generalization

• Generalization error is a measure of how accurately an algorithm is
able to predict outcome values for previously unseen data.

• A model that is overfit will have poor generalization.

Overview

• Supervised, unsupervised, and reinforcement learning
• Simple learning models

• Clustering
• Linear regression
• Linear Support Vector Machines (SVM)
• k-Nearest Neighbors

• Overfitting and generalization
• Training, testing, validation
• Balanced datasets
• Measuring performance of a classifier

Training,	 testing,	 validation

• Break dataset into three parts by random sampling:
• Training dataset: model is fit directly to this data
• Testing dataset: model sees this data only once;

used to measure the final performance of the classifier.
• Validation dataset: model is repeatedly “tested” on this data

during the training process to gain insight into overfitting
• Common percentages:

• Training (80%), testing (15%), validation (5%).

Training,	 testing,	 validation

Image from Wikipedia [1]

Training Error
(Uses training dataset)

Validation Error
(Uses validation dataset)

Error
(Objective
Function)

Iterations

• For neural networks, typically keep running training until validation
error increases, then stop.

Final model

Cross-‐validation

• Repeatedly partition data into subsets: training and test.
• Take mean performance of classifier over all such partitions.
• Leave one out: train on n-1 samples, test on 1 sample.

• Requires training n times.
• k-fold cross-validation: randomly partition data into k subsets

(folds), at each iteration, train on k-1 folds, test on the other fold.
• Requires training k times.
• Common: 10-fold cross-validation

• Less common for deep learning (why?)

Overview

• Supervised, unsupervised, and reinforcement learning
• Simple learning models

• Clustering
• Linear regression
• Linear Support Vector Machines (SVM)
• k-Nearest Neighbors

• Overfitting and generalization
• Training, testing, validation
• Balanced datasets
• Measuring performance of a classifier

Balanced	 datasets

• Unbalanced dataset:
• Suppose we have a binary classification problem (labels: 0, 1)
• Suppose 99% of our observations are class 0.
• We might learn the model “everything is zero.”
• This model would be 99% accurate, but not model class 1 at all.

• Balanced dataset:
• Equal numbers of observations of each class

Overview

• Supervised, unsupervised, and reinforcement learning
• Simple learning models

• Clustering
• Linear regression
• Linear Support Vector Machines (SVM)
• k-Nearest Neighbors

• Overfitting and generalization
• Training, testing, validation
• Balanced datasets
• Measuring performance of a classifier

Confusion	 Matrix

• If n classes, n x n matrix comparing actual versus predicted classes.

Class	 Predicted
by	 Model

Cat Dog
Ac

tu
al
	 C
la
ss

Cat 9 1

Dog 4 6

Example:	 Handwritten	 Digit	 Recognition

Slide from Nelson Morgan at ICSI / Berkeley

Example:	 Handwritten	 Digit	 Recognition

• Visualization from MathWorks

Confusion	 Matrix

• For binary classifier, can call one class positive, the other negative.
• Should we call cats positive or negative?

Class	 Predicted
by	 Model

Cat Dog
Ac

tu
al
	 C
la
ss

Cat 9 1

Dog 4 6

Photo from [1]

Confusion	 Matrix

• For binary classifier, can call one class positive, the other negative.
• Cats are cuter, so cats = positive.

Class	 Predicted
by	 Model

Positive Negative
Ac

tu
al
	 C
la
ss

Positive 9 1

Negative 4 6

Confusion	 Matrix

• For binary classifier, can call one class positive, the other negative.

Class	 Predicted
by	 Model

Positive Negative
Ac

tu
al
	 C
la
ss

Positive
True	

positive 1

Negative 4
True	

negative

Confusion	 Matrix

• For binary classifier, can call one class positive, the other negative.

Class	 Predicted
by	 Model

Positive Negative
Ac

tu
al
	 C
la
ss

Positive
True	

positive ?

Negative ?
True	

negative

Confusion	 Matrix

• For binary classifier, can call one class positive, the other negative.

Class	 Predicted
by	 Model

Positive Negative
Ac

tu
al
	 C
la
ss

Positive
True	

positive
False	

negative

Negative
False	

positive
True	

negative

Classifier	 Performance

• Accuracy: (TP + TN) / (Population Size)
• Precision: TP / (Predicted Positives) = (TP + FP)
• Recall: TP / (Actual Positives) = TP / (TP + FN)

(also known as sensitivity, true positive rate)
• Specificity: TN / (Actual Negatives) = TN / (TN + FP)

(also known as true negative rate)
Class	 Predicted

by	 Model
Positive Negative

Ac
tu
al
	 C
la
ss

Positive
True	

positive
False	

negative

Negative
False	

positive
True	

negative

Classifier	 Performance:	 Unbalanced	 Dataset

• Accuracy: (TP + TN) / (Population Size)
• Precision: TP / (Predicted Positives) = (TP + FP)
• Recall: TP / (Actual Positives) = TP / (TP + FN)

(also known as sensitivity, true positive rate)
• Specificity: TN / (Actual Negatives) = TN / (TN + FP)

(also known as true negative rate)
Class	 Predicted

by	 Model
Positive Negative

Ac
tu
al
	 C
la
ss

Positive TP:	 99 FN:	 0

Negative FP:	 1 TN:	 0

Classifier	 Performance:	 Unbalanced	 Dataset

• Accuracy: (TP + TN) / (Population Size) = ?
• Precision: TP / (Predicted Positives) = (TP + FP)
• Recall: TP / (Actual Positives) = TP / (TP + FN)

(also known as sensitivity, true positive rate)
• Specificity: TN / (Actual Negatives) = TN / (TN + FP)

(also known as true negative rate)
Class	 Predicted

by	 Model
Positive Negative

Ac
tu
al
	 C
la
ss

Positive TP:	 99 FN:	 0

Negative FP:	 1 TN:	 0

Classifier	 Performance:	 Unbalanced	 Dataset

• Accuracy: (TP + TN) / (Population Size) = 99%
• Precision: TP / (Predicted Positives) = (TP + FP) = ?
• Recall: TP / (Actual Positives) = TP / (TP + FN)

(also known as sensitivity, true positive rate)
• Specificity: TN / (Actual Negatives) = TN / (TN + FP)

(also known as true negative rate)
Class	 Predicted

by	 Model
Positive Negative

Ac
tu
al
	 C
la
ss

Positive TP:	 99 FN:	 0

Negative FP:	 1 TN:	 0

Classifier	 Performance:	 Unbalanced	 Dataset

• Accuracy: (TP + TN) / (Population Size) = 99%
• Precision: TP / (Predicted Positives) = (TP + FP) = 99%
• Recall: TP / (Actual Positives) = TP / (TP + FN)

(also known as sensitivity, true positive rate)
• Specificity: TN / (Actual Negatives) = TN / (TN + FP)

(also known as true negative rate)
Class	 Predicted

by	 Model
Positive Negative

Ac
tu
al
	 C
la
ss

Positive TP:	 99 FN:	 0

Negative FP:	 1 TN:	 0

Classifier	 Performance:	 Unbalanced	 Dataset

• Accuracy: (TP + TN) / (Population Size) = 99%
• Precision: TP / (Predicted Positives) = (TP + FP) = 99%
• Recall: TP / (Actual Positives) = TP / (TP + FN) = ?

(also known as sensitivity, true positive rate)
• Specificity: TN / (Actual Negatives) = TN / (TN + FP)

(also known as true negative rate)
Class	 Predicted

by	 Model
Positive Negative

Ac
tu
al
	 C
la
ss

Positive TP:	 99 FN:	 0

Negative FP:	 1 TN:	 0

Classifier	 Performance:	 Unbalanced	 Dataset

• Accuracy: (TP + TN) / (Population Size) = 99%
• Precision: TP / (Predicted Positives) = (TP + FP) = 99%
• Recall: TP / (Actual Positives) = TP / (TP + FN) = 100%

(also known as sensitivity, true positive rate)
• Specificity: TN / (Actual Negatives) = TN / (TN + FP)

(also known as true negative rate)
Class	 Predicted

by	 Model
Positive Negative

Ac
tu
al
	 C
la
ss

Positive TP:	 99 FN:	 0

Negative FP:	 1 TN:	 0

Classifier	 Performance:	 Unbalanced	 Dataset

• Accuracy: (TP + TN) / (Population Size) = 99%
• Precision: TP / (Predicted Positives) = (TP + FP) = 99%
• Recall: TP / (Actual Positives) = TP / (TP + FN) = 100%

(also known as sensitivity, true positive rate)
• Specificity: TN / (Actual Negatives) = 0%

(also known as true negative rate)
Class	 Predicted

by	 Model
Positive Negative

Ac
tu
al
	 C
la
ss

Positive TP:	 99 FN:	 0

Negative FP:	 1 TN:	 0

Summary

• Supervised, unsupervised, and reinforcement learning
• Simple learning models

• Clustering
• Linear regression
• Linear Support Vector Machines (SVM)
• k-Nearest Neighbors

• Overfitting and generalization
• Training, testing, validation
• Balanced datasets
• Measuring performance of a classifier

