
CS 6501: Deep Learning for
Computer Graphics

Basics of Neural Networks

Connelly Barnes

Overview

• Simple neural networks
• Perceptron
• Feedforward neural networks
• Multilayer perceptron and properties
• Autoencoders

• How to train neural networks
• Gradient descent
• Stochastic gradient descent
• Automatic differentiation
• Backpropagation

Perceptron	 (1957,	 Cornell)

Inputs
Output (Class)

Bias b:
arbitrary,
learned

parameterWeights: arbitrary,
learned parameters

Perceptron	 (1957,	 Cornell)

• Binary classifier, can learn linearly separable patterns.

Diagram from Wikipedia

Feedforward neural	 networks

• We could connect units (neurons) in any arbitrary graph

Input Output

Feedforward neural	 networks

• We could connect units (neurons) in any arbitrary graph
• If no cycles in the graph we call it a feedforward neural network.

Input Output

Recurrent	 neural	 networks	 (later)

• If cycles in the graph we call it a recurrent neural network.

Input Output

Overview

• Simple neural networks
• Perceptron
• Feedforward neural networks
• Multilayer perceptron and properties
• Autoencoders

• How to train neural networks
• Gradient descent
• Stochastic gradient descent
• Automatic differentiation
• Backpropagation

Multilayer	 Perceptron	 (1960s)

Li = f (WiLi−1 +bi)
In matrix notation:

𝐋": Input layer (inputs) vector

𝐋$: Hidden layer vector

𝐋%: Output layer vector

,	 	 𝑖 ≥ 1

𝐖+: Weight matrix for connections
from layer i-1 to layer i

𝐛+: Biases for neurons in layer i
Activation function for layer ifi:

i

Activation	 Functions:	 Sigmoid	 /	 Logistic

Problems:
• Gradients at tails are almost zero
• Outputs are not zero-centered

𝑓 𝑥 =
1

1 + 𝑒23
𝑑𝑓
𝑑𝑥

= 𝑓(𝑥)(1 − 𝑓 𝑥)

Activation	 Functions:	 Tanh

Problems:
• Gradients at tails are almost zero

𝑓 𝑥 = tanh 𝑥 =
2

1+ 𝑒2$3
− 1

𝑑𝑓
𝑑𝑥

= 1− 𝑓 𝑥 $

Activation	 Functions:	 ReLU (Rectified	 Linear	 Unit)

𝑓 𝑥 = max	 (𝑥, 0) 𝑑𝑓
𝑑𝑥

= A1, if	 	 𝑥 > 0
0, if	 	 𝑥 < 0

Pros:
• Accelerates training stage by 6x over sigmoid/tanh [1]
• Simple to compute
• Sparser activation patterns
Cons:
• Neurons can “die” by getting stuck in zero gradient region
Summary:
• Currently preferred kind of neuron

Universal	 Approximation	 Theorem

• Multilayer perceptron with a single hidden layer and linear output
layer can approximate any continuous function on a compact subset
of ℝG to within any desired degree of accuracy.

• Assumes activation function is bounded, non-constant, monotonically
increasing.

• Also applies for ReLU activation function.

Universal	 Approximation	 Theorem

• In the worst case, exponential number of hidden units may be
required.

• Can informally show this for binary case:
• If we have n bits input to a binary function, how many possible

inputs are there?
• How many possible binary functions are there?
• So how many weights do we need to represent a given binary

function?

Why	 Use	 Deep	 Networks?

• Functions representable with a deep rectifier network can require an
exponential number of hidden units with a shallow (one hidden layer)
network (Goodfellow 6.4)

• Piecewise linear networks (e.g. using ReLU) can represent functions
that have a number of regions exponential in depth of network.
• Can capture repeating / mirroring / symmetric patterns in data.
• Empirically, greater depth often results in better generalization.

Neural	 Network	 Architecture

• Architecture: refers to which parameters (e.g. weights) are used in
the network and their topological connectivity.

• Fully connected: A common connectivity pattern for multilayer
perceptrons. All possible connections made between layers i-1 and i.

Is this network fully connected?

Neural	 Network	 Architecture

• Architecture: refers to which parameters (e.g. weights) are used in
the network and their topological connectivity.

• Fully connected: A common connectivity pattern for multilayer
perceptrons. All possible connections made between layers i-1 and i.

Is this network fully connected?

Input Output

How	 to	 Choose	 Network	 Architecture?

• Long discussion
• Summary:

• Rules of thumb do not work.
• “Need 10x [or 30x] more training data than weights.”
• Not true if very low noise
• Might need even more training data if high noise

• Try many networks with different numbers of units and layers
• Check generalization using validation dataset or cross-validation.

Overview

• Simple neural networks
• Perceptron
• Feedforward neural networks
• Multilayer perceptron and properties
• Autoencoders

• How to train neural networks
• Gradient descent
• Stochastic gradient descent
• Automatic differentiation
• Backpropagation

Autoencoders

• Learn the identity function
ℎI 𝐱 = 𝐱

• Is this supervised or
unsupervised learning?

Input OutputHidden

Encode Decode

Autoencoders

• Applications:
• Dimensionality reduction
• Learning manifolds
• Hashing for search problems

Input OutputHidden

Encode Decode

Overview

• Simple neural networks
• Perceptron
• Feedforward neural networks
• Multilayer perceptron and properties
• Autoencoders

• How to train neural networks
• Gradient descent
• Stochastic gradient descent
• Automatic differentiation
• Backpropagation

Gradient	 Descent

Step size
or
Learning rate

Discuss amongst students near you:

• What are some problems
that could be easily
optimized with gradient descent?

• Problems where this is difficult?
• Should the learning rate be

constant or change?

Gradient	 Descent	 with	 Energy	 Functions	
that	 have	 Narrow	 Valleys

Source: "Banana-SteepDesc" by P.A. Simionescu – Wikipedia English

“Zig-zagging problem”

Gradient	 Descent	 with	 Momentum

xn+1 = xn +Δn

Δn = γn∇F(xn)+mΔn−1

Momentum
Could use small value e.g. m=0.5 at first
Could use larger value e.g. m=0.9 near end
of training when there are more oscillations.

𝐱GK" = 𝐱G − ∆G

Gradient	 Descent	 with	 Momentum

Without Momentum With Momentum

Figure from Genevieve B. Orr, Willamette.edu

Stochastic	 gradient	 descent

• Stochastic gradient descent (Wikipedia)
• Gradient of sum of n terms where n is large
• Sample rather than computing the full sum

• Sample size s is “mini-batch size”
• Could be 1 (very noisy gradient estimate)
• Could be 100 (collect photos 100 at a time to find each noisy

“next” estimate for the gradient)
• Use same step as in gradient descent to the estimated gradient

Stochastic	 gradient	 descent

• Pseudocode:

From Wikipedia

Problem	 Statement

• Take the gradient of an arbitrary program or model (e.g. a neural
network) with respect to the parameters in the model (e.g. weights).

• If we can do this, we can use gradient descent!

Review:	 Chain	 Rule	 in	 One	 Dimension

• Suppose 𝑓:ℝ → ℝ and 𝑔:ℝ → ℝ
• Define

• Then what is ℎO 𝑥 = 𝑑ℎ/𝑑𝑥	 ?

ℎ 𝑥 = 𝑓(𝑔 𝑥)

ℎ′ 𝑥 = 𝑓O 𝑔 𝑥 𝑔′(𝑥)

Chain	 Rule	 in	 Multiple	 Dimensions

• Suppose 𝑓:ℝR → ℝ and 𝑔:ℝG → ℝR, and 𝐱 ∈ ℝG

• Define

• Then we can define partial derivatives using the multidimensional
chain rule:

ℎ 𝐱 = 𝑓(𝑔" 𝐱 ,… , 𝑔R 𝐱)

𝜕𝑓
𝜕𝑥+

= V
𝜕𝑓
𝜕𝑔W

𝜕𝑔W
𝜕𝑥+

R

XY"

The	 Problem	 with	 Symbolic	 Derivatives

• What if our program takes 5 exponential operations:

𝑦 = exp exp exp exp exp 𝑥

• What is dy/dx? (blackboard)

• How many exponential operations in the resulting expression?
• What if the program contained n exponential operations?

Solution:	 Automatic	 Differentiation	 (1960s,	 1970s)

• Write an arbitrary program as consisting of basic operations f1, ..., fn
(e.g. +, -, *, cos, sin, …) that we know how to differentiate.

• Label the inputs of the program as 𝑥",… , 𝑥G, and the output 𝑥].
• The computation:

For 𝑖 = 𝑛 + 1,… ,𝑁

• Reverse mode automatic differentiation: apply the chain rule from the
end of the program 𝑥] back towards the beginning.

Explanation from Justin Domke

𝑥+ = 𝑓+(xa(+)) 𝜋(𝑖): Sequence of “parent” values
(e.g. if 𝜋 3 = (1,2), and f3=+, then x3=x1+x2)

Solution	 for	 Simplified	 Chain	 of	 Dependencies
• Suppose 𝜋 𝑖 = 𝑖 − 1
• The computation:

For 𝑖 = 𝑛 + 1,… ,𝑁

• What is ?

𝑥+ = 𝑓+(x+2")

For example:
Input

𝑑𝑥]
𝑑𝑥]

x1
𝑥$ =
𝑓$(x")

𝑥% =
𝑓%(x$)

Output

Solution	 for	 Simplified	 Chain	 of	 Dependencies
• Suppose 𝜋 𝑖 = 𝑖 − 1
• The computation:

For 𝑖 = 𝑛 + 1,… ,𝑁

• What is =

𝑥+ = 𝑓+(x+2")

For example:
Input

𝑑𝑥]
𝑑𝑥]

x1
𝑥$ =
𝑓$(x")

𝑥% =
𝑓%(x$)

Output

1

Solution	 for	 Simplified	 Chain	 of	 Dependencies
• Suppose 𝜋 𝑖 = 𝑖 − 1
• The computation:

For 𝑖 = 𝑛 + 1,… ,𝑁

• What is in terms of ?

𝑥+ = 𝑓+(x+2")

For example:
Input

x1
𝑥$ =
𝑓$(x")

𝑥% =
𝑓%(x$)

Output

𝑑𝑥]
𝑑𝑥+

𝑑𝑥]
𝑑𝑥+K"

𝑑𝑥+K" = 𝑑𝑥+
𝜕𝑥+K"
𝜕𝑥+

𝑑𝑥+K"
𝑑𝑥]

=
𝑑𝑥+
𝑑𝑥]

𝜕𝑥+K"
𝜕𝑥+

𝑑𝑥]
𝑑𝑥+

=
𝑑𝑥]
𝑑𝑥+K"

𝜕𝑥+K"
𝜕𝑥+

What
is this?

Solution	 for	 Simplified	 Chain	 of	 Dependencies
• Suppose 𝜋 𝑖 = 𝑖 − 1
• The computation:

For 𝑖 = 𝑛 + 1,… ,𝑁

• What is in terms of ?

• Conclusion: run the computation forwards. Then initialize
and work backwards through the computation to find for each i
from . This gives us the gradient of the output (𝑥]) with respect
to every expression in our compute graph!

𝑥+ = 𝑓+(x+2")

For example:
Input

x1
𝑥$ =
𝑓$(x")

𝑥% =
𝑓%(x$)

Output

𝑑𝑥]
𝑑𝑥+

𝑑𝑥]
𝑑𝑥+K"

𝑑𝑥]
𝑑𝑥+

=
𝑑𝑥]
𝑑𝑥+K"

𝜕𝑥+K"
𝜕𝑥+
𝑑𝑥]
𝑑𝑥]

= 1
𝑑𝑥]
𝑑𝑥+𝑑𝑥]

𝑑𝑥+K"

• The computation:
For 𝑖 = 𝑛 + 1,… ,𝑁

• Solution: apply multi-dimensional chain rule.

What	 if	 the	 Dependency	 Graph	 is	 More	 Complex?

Input

x1
𝑥$ =
𝑓$(x")

𝑥d =
𝑓d(x%,xe)

Output𝑥% =
𝑓%(x$)

𝑥e =
𝑓e(x$)

𝑥+ = 𝑓+(xa(+)) 𝜋(𝑖): Sequence of “parent” values
(e.g. if 𝜋 3 = (1,2), and f3=+, then x3=x1+x2)

Solution:	 Automatic	 Differentiation	 (1960s,	 1970s)

• Computation:

• Multidimensional chain rule:

• Result:

Explanation from Justin Domke

𝑥+ = 𝑓+(xa(+))

𝑑𝑥]
𝑑𝑥+

= V
𝑑𝑥]
𝑑𝑥W

𝜕𝑥W
𝜕𝑥+W:+∈a(W)

𝜕𝑓
𝜕𝑥+

= V
𝜕𝑓
𝜕𝑔W

𝜕𝑔W
𝜕𝑥+

R

XY"

𝑓(𝑔" 𝐱 ,… , 𝑔R 𝐱)

Solution:	 Automatic	 Differentiation	 (1960s,	 1970s)

• Back-propagation algorithm: initialize:

• For i = N – 1, N – 2, …, 1, compute:

• Now we have differentiated the output of the program 𝑥] with respect
to the inputs 𝑥",… , 𝑥G, as well as every computed expression 𝑥+.

Explanation from Justin Domke

𝑑𝑥]
𝑑𝑥+

= V
𝑑𝑥]
𝑑𝑥W

𝜕𝑥W
𝜕𝑥+W:+∈a(W)

𝑑𝑥]
𝑑𝑥]

= 1 Example on blackboard
for a program with one
addition.

Backpropagation Algorithm	 (1960s-‐1980s)

• Apply reverse mode automatic differentiation to a neural
network’s loss function.

• A special case of what we just derived.
• If we have one output neuron, squared error is:

From Wikipedia

Backpropagation Algorithm	 (1960s-‐1980s)

From Wikipedia

• Apply the chain rule twice:

• Last term is easy:

Backpropagation Algorithm	 (1960s-‐1980s)

From Wikipedia

• Apply the chain rule twice:

• Second term is easy:

Backpropagation Algorithm	 (1960s-‐1980s)

From Wikipedia

𝜕𝑜W
𝜕𝑛𝑒𝑡W

= 𝜑′(netW)

• Apply the chain rule twice:

• If the neuron is in output layer, first term is easy:

Backpropagation Algorithm	 (1960s-‐1980s)

From Wikipedia

(Derivation on board)

• Apply the chain rule twice:

• If the neuron is interior neuron, we use the chain
rule from automatic differentiation.

• To do this, we need to know what expressions depend
on the current neuron’s output oj?

• Answer: other neurons input sums, i.e. netl for all neurons l receiving
inputs from the current neuron.

Backpropagation Algorithm	 (1960s-‐1980s)

From Wikipedia

• Apply the chain rule twice:

• If the neuron is an interior neuron, chain rule:

Backpropagation Algorithm	 (1960s-‐1980s)

From WikipediaAll neurons receiving input from the current neuron.

Backpropagation Algorithm	 (1960s-‐1980s)

• Partial derivative of error E with respect to weight wij:

𝛿W =
𝜕𝐸
𝜕𝑜W

𝜕𝑜W
𝜕netW

= 𝜑′(𝑜W)k
(𝑜W−𝑡W) if	 𝑗	 is	 an	 output	 neuron

V 𝛿X𝑤WX
X∈r

if	 𝑗	 is	 an	 interior	 neuron

𝜕𝐸
𝜕𝑤+W

= 𝛿W𝑜+

From Wikipedia

All neurons receiving input from the current neuron.

Backpropagation Algorithm	 (1960s-‐1980s)

• Calculate network and error.

Forward direction

Backpropagation Algorithm	 (1960s-‐1980s)

• Backpropagate: from output to input, recursively compute

Backward direction

𝜕𝐸
𝜕𝑤+W

= 𝛁I𝐸

Gradient	 Descent	 with	 Backpropagation

Step size
or
Learning rate

𝐰GK" = 𝐰G − 𝛾G𝛁I𝐸(𝐰G)

• Initialize weights at good
starting point w0

• Repeatedly apply gradient
descent step (1)

• Continue training until
validation error hits a
minimum.

(1)

Stochastic	 Gradient	 Descent	 with	 Backpropagation

Step size
or
Learning rate

𝐰GK" = 𝐰G − 𝛾G𝛁I𝐸+ 	 (𝐰G)

• Initialize weights at good
starting point w0

• Repeat until validation error
hits a minimum:
• Randomly shuffle dataset
• Loop through mini-batches

of data, batch index is i
• Calculate stochastic gradient

using backpropagation for
each, and apply update rule (1)

(1)

