CS 6501: Deep Learning for
Computer Graphics

Basics of Neural Networks

Connelly Barnes

Overview

« Simple neural networks
* Perceptron
» Feedforward neural networks
« Multilayer perceptron and properties
* Autoencoders
* How to train neural networks
» Gradient descent
« Stochastic gradient descent
« Automatic differentiation
* Backpropagation

Perceptron (1957, Cornell)

[(2

!

° 2 Output (Class)
Inputs< @ W3 2 :[

W.

; Bias b:

\ ° \ arbitrary,
learned

Weights: arbitrary, parameter

learned parameters

Perceptron (1957, Cornell)

* Binary classifier, can learn linearly separable patterns.

Diagram from Wikipedia

Feedforward neural networks

* We could connect units (neurons) in any arbitrary graph

»0

O 9
@

Input Output

Feedforward neural networks

* We could connect units (neurons) in any arbitrary graph
 If no cycles in the graph we call it a feedforward neural network.

»0

O 9
@

Input Output

Recurrent neural networks (later)

* If cycles in the graph we call it a recurrent neural network.

Input

@/ O

O 9
@

Overview

« Simple neural networks
* Perceptron
» Feedforward neural networks
* Multilayer perceptron and properties
* Autoencoders
* How to train neural networks
» Gradient descent
« Stochastic gradient descent
« Automatic differentiation
* Backpropagation

Multilayer Perceptron (1960s)

Input Layer Hidden Layer Output Layer

In matrix notation:

L, =f(WL_+b,) i>1

— 5 L, : Input layer (inputs) vector

Input1 /
nput /

Input2 /
)"

\ L,: Hidden layer vector

/ Sl Output

— { L3: Output layer vector

P Wl- * Weight matrix for connections
npuea /7 oo from layer i-1 to layer i

bi: Biases for neurons 1n layer i

fi: Activation function for layer i

Activation Functions: Sigmoid / Logistic

1 af
F) = — =1 - f())

Problems:
o/ Gradients at tails are almost zero
* Outputs are not zero-centered

0.4

0.2

0.0

Activation Functions: Tanh

f(x) = tanh(x)

0

1+e 2%

af
=1
dx

~

Problems:

 (Qradients at tails are almost zero

0.0

-1.0

f(x)?

Activation Functions: ReLU (Rectified Linear Unit)

_ df (1, ifx>0
x) = max(x,0 R a—
f () (x,0) dx {0, if x <0

Pros:

* Accelerates training stage by 6x over sigmoid/tanh [1]
* Simple to compute

* Sparser activation patterns

Cons:

* Neurons can “die” by getting stuck 1n zero gradient region
Summary:

* Currently preferred kind of neuron

_-

-8 -4 -2 0 2 4 6

Universal Approximation Theorem

* Multilayer perceptron with a single hidden layer and linear output
layer can approximate any continuous function on a compact subset
of R™ to within any desired degree of accuracy.

« Assumes activation function is bounded, non-constant, monotonically
Increasing.
* Also applies for ReLLU activation function.

Universal Approximation Theorem

* In the worst case, exponential number of hidden units may be
required.
« Can informally show this for binary case:

* |f we have n bits input to a binary function, how many possible
inputs are there?

 How many possible binary functions are there?

« So how many weights do we need to represent a given binary
function?

Why Use Deep Networks?

* Functions representable with a deep rectifier network can require an
exponential number of hidden units with a shallow (one hidden layer)

network (Goodfellow 6.4)

* Piecewise linear networks (e.g. using RelLU) can represent functions
that have a number of regions exponential in depth of network.

« Can capture repeating / mirroring / symmetric patterns in data.
« Empirically, greater depth often results in better generalization.

Neural Network Architecture

« Architecture: refers to which parameters (e.g. weights) are used in
the network and their topological connectivity.

* Fully connected: A common connectivity pattern for multilayer
perceptrons. All possible connections made between layers -1 and 1.

Is this network fully connected?

Neural Network Architecture

« Architecture: refers to which parameters (e.g. weights) are used in
the network and their topological connectivity.

Fully connected: A common connectivity pattern for multilayer
perceptrons. All possible connections made between layers -1 and 1.

I&%t/v Output

Is this network fully connected?

How to Choose Network Architecture?

* Long discussion

¢ Summary:

 Rules of thumb do not work.

* “Need 10x [or 30x] more training data than weights.”
* Not true if very low noise
* Might need even more training data if high noise

* Try many networks with different numbers of units and layers
« Check generalization using validation dataset or cross-validation.

Overview

« Simple neural networks
* Perceptron
» Feedforward neural networks
« Multilayer perceptron and properties
 Autoencoders
* How to train neural networks
» Gradient descent
« Stochastic gradient descent
« Automatic differentiation
* Backpropagation

Autoencoders

* Learn the identity function Input Hidden Output
h,(X)=Xx

* |s this supervised or
unsupervised learning?

SN

Encode Decode

Autoencoders

* Applications: Input Hidden Output
* Dimensionality reduction
« Learning manifolds
« Hashing for search problems

AADDYY T T AL MDY O LAt O
AAMD Tl d ALYV RO L L A
A A h P ? v v . < < & 4 A A‘ b P v 0... 0:..0.:.:.:':::::':.:::.5::::.:o:'...:.:'.o.:. .o
AADNDd»YTT< 4‘4 A‘ A b b "' | 4 .o.o .:0......O.:::::::::...:.::.:.:..:::::..::::.:.:.::.:.::.o
AADMD Yy iviwae2las by :::-'.‘:.:'-‘."::-".-'}f;-‘" ""\?;.! XY
AlsseIvvls/<I[<[s2llslaloly) St Encode Decode
EIRAR AR AR AR IR IR IR N Sl 4l ""'.:12:333.1'33.
AMDMDM v v v|e|e|e/2l2aalplpry ppr::-..g:aé\
: s Bl ee®theett AN
e

AlAMNDM P P s |2t b by iy
AR AR IR AR AR AR AR AR A P A N AN Al 3 A 4

Alaln|nlvle|le|le|e|a|a|lale|ls|lr|lvivy 0 0.0 g7 "
oooooo

a0
.

Overview

« Simple neural networks
* Perceptron
» Feedforward neural networks
« Multilayer perceptron and properties
* Autoencoders
 How to train neural networks
» Gradient descent
« Stochastic gradient descent
« Automatic differentiation
* Backpropagation

Gradient Descent

Discuss amongst students near you:

* What are some problems

that could be easily

optimized with gradient descent? Step size
* Problems where this is difficult?

or
* Should the learning rate be

’ Learning rate
constant or change?

Xni1 = Xp — Yo VF(Xp)

Gradient Descent with Energy Functions
that have Narrow Valleys

i

“1"Zig zagglng problem”

0.4

_ogf\\\ //////

-0.2 0.0 : 08x 1.0

1.1
X211

091

081

0.7

[/

061

(c) 2006 P.A.S cu
Source: Banana SteepDesc" by P.A. Simionescu — Wikipedia English

Gradient Descent with Momentum

Xn+1 = Xp — Ay
A =y VF(X)+mA

Y,

Momentum
Could use small value e.g. m=0.5 at first
Could use larger value e.g. m=0.9 near end
of training when there are more oscillations.

Gradient Descent with Momentum

= &

Without Momentum With Momentum

Figure from Genevieve B. Orr, Willamette.edu

Stochastic gradient descent

Stochastic gradient descent (Wikipedia)

Gradient of sum of n terms where n is large

Sample rather than computing the full sum
« Sample size sis “mini-batch size”
« Could be 1 (very noisy gradient estimate)

* Could be 100 (collect photos 100 at a time to find each noisy
“‘next” estimate for the gradient)

* Use same step as in gradient descent to the estimated gradient

Stochastic gradient descent

 Pseudocode:

e Repeat until an approximate minimum is obtained:

e Randomly shuffle examples in the training set.
eForr=1,2,...,n,do:

ow :=w —nVQ;(w).

From Wikipedia

Problem Statement

« Take the gradient of an arbitrary program or model (e.g. a neural
network) with respect to the parameters in the model (e.g. weights).

 |If we can do this, we can use gradient descent!

Review: Chain Rule in One Dimension

« Suppose f:R—-Randg:R—- R
* Define

h(x) = f(g(x))
. Then what is h'(x) = dh/dx ?

h'(x) = f'(g(x))g’'(x)

Chain Rule in Multiple Dimensions

« Suppose f:R™ >R andg:R™ - R™ andx € R"
* Define

h(x) = f(g1(X), e, G (X))

« Then we can define partial derivatives using the multidimensional
chain rule:

m
of N 9f 99;

(9_xl-_ = ag] (3xl-

The Problem with Symbolic Derivatives

« What if our program takes 5 exponential operations:

" eemletoto)

 Whatis dy/dx? (blackboard)

 How many exponential operations in the resulting expression?
« What if the program contained n exponential operations?

Solution: Automatic Differentiation (1960s, 1970s)

« Write an arbitrary program as consisting of basic operationsf,, ..., f,
(e.g. +, -, ¥, cos, sin, ...) that we know how to differentiate.

« Label the inputs of the program as x4, ..., x,,, and the output x,.
* The computation:
Fori=n+1,..,N

xXi = fi Xr@y) m(i): Sequence of “parent” values

(e.g. if m(3) = (1,2), and f;=+, then x;=X,+X,)

« Reverse mode automatic differentiation: apply the chain rule from the
end of the program x, back towards the beginning.

Explanation from Justin Domke

Solution for Simplified Chain of Dependencies

For example:

e Supposen(i)=i—1 Input Output

* The computation:
Fori=n+1,..,N
x; = fi(Xi—1)

dxy

. i« —— 9
What is dxy

Solution for Simplified Chain of Dependencies

For example:

e Supposen(i)=i—1 Input Output

* The computation:
Fori=n+1,..,N
x; = fi(Xi—1)

dxy

dxy

Solution for Simplified Chain of Dependencies

For example:
o Supposen(i)=i—1

Input Output
 The computation:
Fori=n+1,.. N What
xX; = fi(Xi—l) 1s this?
d d d d d !
. dxy | XN AN AN (FXida
o ? —
What is dx, in terms of dx; . dx; dxl-+1(0x;)

0X;41 Xit+1 0%Xi41
dxi+1 — dxl(axi) J‘> d de(axi)

Solution for Simplified Chain of Dependencies

For example:
o Supposen(i)=i—1

* The computation:
Fori=n+1,..,
Xi=fi(Xi—1)
de d.X'N dx]v de axl+1
[. . ?
What is dx, " terms of dxn, dx, dxl+1 ox,
dxp

 Conclusion: run the computation forwards. Then |n|t|aI|ze diy |
and work backwards through the computation to find xN for each |
from ddxfivl This gives us the gradient of the output (x,) with respect
to every expression in our compute graph!

What if the Dependency Graph is More Complex?

 The computation:
Fori=n+1,..,N

xX; = fi(X,) m(i): Sequence of “parent” values

(eg 1fﬂ(3) — (1,2), and f3:+, then X3:X1+X2)
« Solution: apply multi-dimensional chain rule.

Solution: Automatic Differentiation (1960s, 1970s)

« Computation:
xXi = fi(Xr@y)
 Multidimensional chain rule:

m
of N 9f 99;

a_xi_ = ag] axi

f(91(%), .., G (X))

 Result:

dxi jifemnth dx] 6xl-

Explanation from Justin Domke

Solution: Automatic Differentiation (1960s, 1970s)

« Back-propagation algorithm: initialize:

dxy
Fle 1 Example on blackboard
AN for a program with one
e Fori=N-1,N-2, ..., 1, compute: addition.
dxl' jifemnth) dxj axi

 Now we have differentiated the output of the program x, with respect
to the inputs x4, ..., x,,, as well as every computed expression x;.

Explanation from Justin Domke

Backpropagation Algorithm (1960s-1980s)

* Apply reverse mode automatic differentiation to a neural
network’s loss function.

* A special case of what we just derived.
* If we have one output neuron, squared error is:

1 2
E=3(t—y) |
t is the target output for a training sample, and

y is the actual output of the output neuron.

From Wikipedia

Backpropagation Algorithm (1960s-1980s)

For each neuron 3, its output o, is defined as

n
0; = p(net;) = ¢ Zwkjok
k=1

The input net; to a neuron is the weighted
sum of outputs oy, of previous neurons. If

The variable w;; denotes the weight

between neurons ¢ and j.

From Wikipedia

Backpropagation Algorithm (1960s-1980s)

* Apply the chain rule twice:
OF OE O0o; Onet;

Bwij B 80j Onetj 8’(1)7;]'

« Lastterm is easy:

0; = p(net;) = ¢ Zwkjok
k=1

From Wikipedia

Backpropagation Algorithm (1960s-1980s)

* Apply the chain rule twice:
OF OFE 0Oo; Onet;

Bwij B 80j Bnetj 8’(1)7;]'

« Secondterm is easy:

0j = p(net;)
00]' ,
dOnet; ¢ (ne;)

From Wikipedia

Backpropagation Algorithm (1960s-1980s)

* Apply the chain rule twice:

OF OF 80j Bnetj

Bwij B 80j Bnetj 8’(1)7;]'

 If the neuronis in output layer, first term is easy:
Oj =Y
OF

do;

— (Derivation on board)

From Wikipedia

Backpropagation Algorithm (1960s-1980s)

« Apply the chain rule twice: E = %(t - y)2
OF OF 50]' Bnetj

8wij B BO]' 8netj 8’(1]2']'

 |f the neuron is interior neuron, we use the chain |
rule from automatic differentiation. e (LS

* To do this, we need to know what expressions depend
on the current neuron’s output o;?

* Answer: other neurons input sums, i.e. net; for all neurons / receiving
inputs from the current neuron. From Wikipedia

Backpropagation Algorithm (1960s-1980s)

* Apply the chain rule twice:

OF OF O0Oo; Onet;

Bwij B 80j Bnetj 8w7;j

* |fthe neuron is an interior neuron, chain rule:

OF OE 0

OE _ Z (OF Bnetl> _ Z (0 wﬂ>

do; 4= \Onet; 0o, = \ 0oy Onet,
?

All neurons receiving input from the current neuron.

From Wikipedia

Backpropagation Algorithm (1960s-1980s)

» Partial derivative of error E with respect to weight w;;

OF 5
BWU Jot
5 dE 00 , (0j—t;) if j is an output neuron
- doj dnet; = ¢(0) 0,w;; ifjisan interior neuron

All neurons receiving input from the current neuron.

From Wikipedia

Backpropagation Algorithm (1960s-1980s)

Forward direction

 Calculate network and error.

Backpropagation Algorithm (1960s-1980s)

Backward direction

Gradient Descent with Backpropagation

* |nitialize weights at good
starting point wy

 Repeatedly apply gradient
descent step (1)

« Continue training until
validation error hits a

minimum.

Step size
or

/ Learning rate

Wit1 = Wy _VnVWE(Wn) (1)

Stochastic Gradient Descent with Backpropagation

* |nitialize weights at good
starting point wy

» Repeat until validation error
hits a minimum:

« Randomly shuffle dataset

* Loop through mini-batches
of data, batch index s i

Step size
or

» Calculate stochastic gradiento |
_ _ Learning rate
using backpropagation for /
each, and apply update rule (1)

Wpi1 = Wy — Va VW E; (Wn) (1)

