
CS 6501: Deep Learning for
Computer Graphics

Training Neural Networks II

Connelly Barnes

Overview

• Preprocessing
• Initialization
• Vanishing/exploding gradients problem
• Batch normalization
• Dropout

• Additional neuron types:
• Softmax

Preprocessing

• Common: zero-center, can normalize variance.

Slide from Stanford CS231n

Preprocessing

• Can also decorrelate the data by using PCA, or whiten data

Slide from Stanford CS231n

Preprocessing	
 for	
 Images

• Center the data only
• Compute a mean image (examples of mean faces)

• Either grayscale or compute separate mean for channels (RGB)
• Subtract the mean from your dataset

Overview

• Preprocessing
• Initialization
• Vanishing/exploding gradients problem
• Batch normalization
• Dropout

• Additional neuron types:
• Softmax

Initialization

• Need to start gradient descent at an initial guess
• What happens if we initialize all weights to zero?

Slide from Stanford CS231n

Initialization

• Idea: random numbers (e.g. normal distribution)

• OK for shallow networks, but what about deep networks?

𝑤"# = 𝒩(𝜇, 𝜎)

𝜇=0, 𝜎 = const

Initialization,	
 𝜎	
 =	
 0.01

• Simulation: multilayer perceptron, 10 fully-connected hidden layers
• Tanh() activation function

Slide from Stanford CS231n

Hidden layer activation function statistics:

Hidden Layer 1 Hidden Layer 10

Are there any problems with this?

Initialization,	
 𝜎	
 =	
 1

Slide from Stanford CS231n

Hidden layer activation function statistics:

Hidden Layer 1 Hidden Layer 10

Are there any problems with this?

• Simulation: multilayer perceptron, 10 fully-connected hidden layers
• Tanh() activation function

Xavier Initialization

Slide from Stanford CS231n

Hidden layer activation function statistics:

Hidden Layer 1 Hidden Layer 10

𝜎 = 	
 ,
-./

𝑛12: Number of neurons feeding into given neuron
(actually, Xavier used a uniform distribution)

Reasonable initialization for tanh() activation function.
But what happens with ReLU?

Xavier Initialization,	
 ReLU

Slide from Stanford CS231n

Hidden layer activation function statistics:

Hidden Layer 1 Hidden Layer 10

𝜎 = 	
 ,
-./

𝑛12: Number of neurons feeding into given neuron

He	
 et	
 al.	
 2015 Initialization,	
 ReLU

Slide from Stanford CS231n

Hidden layer activation function statistics:

Hidden Layer 1 Hidden Layer 10

𝜎 = 	
 3
-./

𝑛12: Number of neurons feeding into given neuron

Other	
 Ways	
 to	
 Initialize?

• Start with an existing pre-trained neural network’s weights, fine tune
its weights by re-running gradient descent
• This is really transfer learning, since it also transfers knowledge

from the previously trained network

• Previously, people used unsupervised pre-training with autoencoders
• But we have better initializations now

Overview

• Preprocessing
• Initialization
• Vanishing/exploding gradients problem
• Batch normalization
• Dropout

• Additional neuron types:
• Softmax

• Recall from the backpropagation algorithm (last class slides):

• Take 𝛅 over all neurons in a layer.
• We can call this a “learning speed.”

Vanishing/exploding	
 gradient	
 problem

𝛿# =
𝜕𝐸
𝜕𝑜#

𝜕𝑜#
𝜕net#

= 𝜑′(𝑜#)>
(𝑜#−𝑡#) if	
 𝑗	
 is	
 an	
 output	
 neuron

J 𝛿K𝑤#K
K∈M

if	
 𝑗	
 is	
 an	
 interior	
 neuron

𝜕𝐸
𝜕𝑤"#

= 𝛿#𝑜"

Vanishing/exploding	
 gradient	
 problem

• Vanishing gradients problem: neurons in earlier layers learn more
slowly than in latter layers.

Image from Nielson 2015

Vanishing/exploding	
 gradient	
 problem

• Vanishing gradients problem: neurons in earlier layers learn more
slowly than in latter layers.

• Exploding gradients problem: gradients are significantly larger in
earlier layers than latter layers.

• How to avoid?
• Use a good initialization
• Do not use sigmoid for deep networks
• Use momentum with carefully tuned schedules, e.g.:

Image from Nielson 2015

Overview

• Preprocessing
• Initialization
• Vanishing/exploding gradients problem
• Batch normalization
• Dropout

• Additional neuron types:
• Softmax

Batch	
 normalization

• It would be great if we could just whiten the inputs to all neurons in a
layer: i.e. zero mean, variance of 1.
• Avoid vanishing gradients problem, improve learning rates!
• For each input k to the next layer:

• Slight problem: this reduces representation ability of network
• Why?

• It would be great if we could just whiten the inputs to all neurons in a
layer: i.e. zero mean, variance of 1.
• Avoid vanishing gradients problem, improve learning rates!
• For each input k to the next layer:

• Slight problem: this reduces representation ability of network
• Why?

Batch	
 normalization

Get stuck in this part of the activation function

Batch	
 normalization

• First whiten each input k independently, using statistics from the
mini-batch:

• Then introduce parameters to scale and shift each input:

• These parameters are learned by the optimization.

Batch	
 normalization

Dropout:	
 regularization

• Randomly zero outputs of p fraction of the neurons during training
• Can we learn representations that are robust to loss of neurons?

Slide from Stanford CS231n

Intuition: learn and remember useful information
even if there are some errors in the computation

(biological connection?)

Dropout

• Another interpretation: we are learning a large ensemble of models
that share weights.

Slide from Stanford CS231n

Dropout

• Another interpretation: we are learning a large ensemble of models
that share weights.

• What can we do during testing to correct for the dropout process?
• Multiply all neurons outputs by p.
• Or equivalently (inverse dropout) simply divide all neurons

outputs by p during training.

Slide from Stanford CS231n

Overview

• Preprocessing
• Initialization
• Vanishing/exploding gradients problem
• Batch normalization
• Dropout

• Additional neuron types:
• Softmax

Softmax

• Often used in final output layer to convert neuron outputs into a class
probability scores that sum to 1.

• For example, might want to convert the final network output to:
• P(dog) = 0.2 (Probabilities in range [0, 1])
• P(cat) = 0.8
• (Sum of all probabilities is 1).

Softmax

• Softmax takes a vector z and outputs a vector of the same length.

