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Overview

• Preprocessing
• Initialization
• Vanishing/exploding gradients problem
• Batch normalization
• Dropout

• Additional neuron types:
• Softmax



Preprocessing

• Common: zero-center, can normalize variance.
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Preprocessing

• Can also decorrelate the data by using PCA, or whiten data
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Preprocessing	
  for	
  Images

• Center the data only
• Compute a mean image (examples of mean faces)

• Either grayscale or compute separate mean for channels (RGB)
• Subtract the mean from your dataset



Overview

• Preprocessing
• Initialization
• Vanishing/exploding gradients problem
• Batch normalization
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• Additional neuron types:
• Softmax



Initialization

• Need to start gradient descent at an initial guess
• What happens if we initialize all weights to zero?
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Initialization

• Idea: random numbers (e.g. normal distribution)

• OK for shallow networks, but what about deep networks?

𝑤"# = 𝒩(𝜇, 𝜎)

𝜇=0, 𝜎 = const



Initialization,	
  𝜎	
  =	
  0.01

• Simulation: multilayer perceptron, 10 fully-connected hidden layers
• Tanh() activation function
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Hidden layer activation function statistics:

Hidden Layer 1 Hidden Layer 10

Are there any problems with this?



Initialization,	
  𝜎	
  =	
  1
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Hidden layer activation function statistics:

Hidden Layer 1 Hidden Layer 10

Are there any problems with this?

• Simulation: multilayer perceptron, 10 fully-connected hidden layers
• Tanh() activation function



Xavier Initialization
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Hidden layer activation function statistics:

Hidden Layer 1 Hidden Layer 10

𝜎 = 	
   ,
-./

𝑛12: Number of neurons feeding into given neuron
(actually, Xavier used a uniform distribution)

Reasonable initialization for tanh() activation function.
But what happens with ReLU?



Xavier Initialization,	
  ReLU
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Hidden layer activation function statistics:

Hidden Layer 1 Hidden Layer 10

𝜎 = 	
   ,
-./

𝑛12: Number of neurons feeding into given neuron



He	
  et	
  al.	
  2015 Initialization,	
  ReLU
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Hidden layer activation function statistics:

Hidden Layer 1 Hidden Layer 10

𝜎 = 	
   3
-./

𝑛12: Number of neurons feeding into given neuron



Other	
  Ways	
  to	
  Initialize?

• Start with an existing pre-trained neural network’s weights, fine tune
its weights by re-running gradient descent
• This is really transfer learning, since it also transfers knowledge 

from the previously trained network

• Previously, people used unsupervised pre-training with autoencoders
• But we have better initializations now
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• Recall from the backpropagation algorithm (last class slides):

• Take 𝛅 over all neurons in a layer.
• We can call this a “learning speed.”

Vanishing/exploding	
  gradient	
  problem

𝛿# =
𝜕𝐸
𝜕𝑜#

𝜕𝑜#
𝜕net#

= 𝜑′(𝑜#)>
(𝑜#−𝑡#) if	
  𝑗	
  is	
  an	
  output	
  neuron

J 𝛿K𝑤#K
K∈M

if	
  𝑗	
  is	
  an	
  interior	
  neuron

𝜕𝐸
𝜕𝑤"#

= 𝛿#𝑜"



Vanishing/exploding	
  gradient	
  problem

• Vanishing gradients problem: neurons in earlier layers learn more 
slowly than in latter layers.

Image from Nielson 2015



Vanishing/exploding	
  gradient	
  problem

• Vanishing gradients problem: neurons in earlier layers learn more 
slowly than in latter layers.

• Exploding gradients problem: gradients are significantly larger in 
earlier layers than latter layers.

• How to avoid?
• Use a good initialization
• Do not use sigmoid for deep networks
• Use momentum with carefully tuned schedules, e.g.:
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Batch	
  normalization

• It would be great if we could just whiten the inputs to all neurons in a 
layer: i.e. zero mean, variance of 1.
• Avoid vanishing gradients problem, improve learning rates!
• For each input k to the next layer:

• Slight problem: this reduces representation ability of network
• Why?



• It would be great if we could just whiten the inputs to all neurons in a 
layer: i.e. zero mean, variance of 1.
• Avoid vanishing gradients problem, improve learning rates!
• For each input k to the next layer:

• Slight problem: this reduces representation ability of network
• Why?

Batch	
  normalization

Get stuck in this part of the activation function



Batch	
  normalization

• First whiten each input k independently, using statistics from the 
mini-batch:

• Then introduce parameters to scale and shift each input:

• These parameters are learned by the optimization.



Batch	
  normalization



Dropout:	
  regularization

• Randomly zero outputs of p fraction of the neurons during training
• Can we learn representations that are robust to loss of neurons?
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Intuition: learn and remember useful information
even if there are some errors in the computation

(biological connection?)



Dropout

• Another interpretation: we are learning a large ensemble of models 
that share weights.
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Dropout

• Another interpretation: we are learning a large ensemble of models 
that share weights.

• What can we do during testing to correct for the dropout process?
• Multiply all neurons outputs by p.
• Or equivalently (inverse dropout) simply divide all neurons 

outputs by p during training.
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Softmax

• Often used in final output layer to convert neuron outputs into a class 
probability scores that sum to 1.

• For example, might want to convert the final network output to:
• P(dog) = 0.2    (Probabilities in range [0, 1])
• P(cat) = 0.8
• (Sum of all probabilities is 1).



Softmax

• Softmax takes a vector z and outputs a vector of the same length.


