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« Softmax



Preprocessing

« Common: zero-center, can normalize variance.

original data zero-centered data normalized data
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np.mean(X, axis = 0). X /= np.std(X, axis = 0)

(Assume X [NxD] is data matrix,
each example in a row) Slide from Stanford CS231n




Preprocessing

« Can also decorrelate the data by using PCA, or whiten data

original data decorrelated data whitened data
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(data has diagonal (covariance matrix is the
covariance matrix) identity matrix)
Slide from Stanford CS231n




Preprocessing for Images

« Center the data only
 Compute a mean image (examples of mean faces)
« Either grayscale or compute separate mean for channels (RGB)

« Subtract the mean from your dataset
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Initialization

* Need to start gradient descent at an initial guess
« What happens if we initialize all weights to zero?

output layer
iInput layer
hidden layer Slide from Stanford CS231n




Initialization

 |dea: random numbers (e.g. normal distribution)

w;i = N (u, o)

u=0, 0 = const

* OK for shallow networks, but what about deep networks?



Initialization, 0 = 0.01

« Simulation: multilayer perceptron, 10 fully-connected hidden layers
« Tanh() activation function

Hidden layer activation function statistics:

- ey

Are there any problems with this?
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Initialization, o =1

« Simulation: multilayer perceptron, 10 fully-connected hidden layers
« Tanh() activation function

Hidden layer activation function statistics:
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| Are there any problems with this?

Hidden Layer 1 Hidden Layer 10
Slide from Stanford CS231n




Xavier Initialization

1

Nin: Number of neurons feeding into given neuron
Nin (actually, Xavier used a uniform distribution)

O =

Hidden layer activation function statistics:
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Reasonable initialization for tanh() activation function.

But What happens with ReLU?
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Hidden Layer 1 Hidden Layer 10
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Xavier Initialization, ReLU

1
0 = ——  MNjn: Number of neurons feeding into given neuron

Nin
Hidden layer activation function statistics:
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He et al. 2015 Initialization, ReLU

g = V2 Nin: Number of neurons feeding into given neuron
V1in

Hidden layer activation function statistics:
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Other Ways to Initialize?

« Start with an existing pre-trained neural network’s weights, fine tune
its weights by re-running gradient descent

 This is really transfer learning, since it also transfers knowledge
from the previously trained network

* Previously, people used unsupervised pre-fraining with autoencoders
* But we have better initializations now
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Vanishing/exploding gradient problem

* Recall from the backpropagation algorithm (last class slides):
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BWU Jot
5 dE 00 , (0j—t;) if j is an output neuron
- doj dnet; = ¢(0) 0,w;; ifjisan interior neuron

 Take ||8]| over all neurons in a layer.
* We can call this a “learning speed.”



Vanishing/exploding gradient problem

* Vanishing gradients problem: neurons in earlier layers learn more

slowly than in latter layers.
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Speed of learning: 4 hidden layers
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Image from Nielson 2015




Vanishing/exploding gradient problem

* Vanishing gradients problem: neurons in earlier layers learn more
slowly than in latter layers.

« Exploding gradients problem: gradients are significantly larger in
earlier layers than latter layers.

 How to avoid?
* Use a good initialization
* Do not use sigmoid for deep networks
« Use momentum with carefully tfuned schedules, e.g.:

. —1—lo t/250|+1
[L4 mln(] — 9 go(Lt/ ] ),“ )
Image from Nielson 2015
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Batch normalization

* It would be great if we could just whiten the inputs to all neuronsin a
layer: i.e. zero mean, variance of 1.

» Avoid vanishing gradients problem, improve learning rates!
* For each input k to the next layer:

~F) _ (k) _ E[:c(’“)]
v/ Var[z(¥)]

« Slight problem: this reduces representation ability of network
 Why?




Batch normalization
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Get stuck 1n this part of the activation function



Batch normalization

 First whiten each input k independently, using statistics from the
mini-batch:

~F) _ r(k) _ E[a;(’“)]
v/ Var[z(¥)]

* Then introduce parameters to scale and shift each input:

FONNOPONY D

 These parameters are learned by the optimization.



Batch normalization

Input: Values of  over a mini-batch: B = {z1..  };
Parameters to be learned: v,
Output: {y; = BN, g(z;)}

1 «— "
UB — — sz // mini-batch mean
i=1
1 m
05 — 2:(:::z — ug)? // mini-batch variance
i=1
T; i // normalize
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y; < vZ; + B = BN, g(z;) // scale and shift




Dropout: regularization

 Randomly zero outputs of p fraction of the neurons during training
« Can we learn representations that are robust to loss of neurons?

FON Sl

Intuition: learn and remember useful information
even 1f there are some errors 1n the computation

(a) Standard Neural Net (b) After applying dropout. [Srivastava et al., 2014]

Slide from Stanford CS231n




Dropout

* Anotherinterpretation: we are learning a large ensemble of models
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that share weights.

(b) After applying dropout.

(a) Standard Neural Net

[Srivastava et al., 2014]

Slide from Stanford CS231n




Dropout

* Anotherinterpretation: we are learning a large ensemble of models
that share weights.

« What can we do during testing to correct for the dropout process?
* Multiply all neurons outputs by p.

* Or equivalently (inverse dropout) simply divide all neurons
outputs by p durin

(b) After applying dropout. [Srivastava et al., 2014] Sllde fI‘OIIl StaHfOI’d C823 1ﬂ
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Softmax

« Often used in final output layer to convert neuron outputs into a class
probability scores that sumto 1.

« For example, might want to convert the final network output to:
 P(dog)=0.2 (Probabilitiesin range [0, 1])
* P(cat) =0.8
* (Sum of all probabilitiesis 1).



Softmax

« Softmax takes a vector z and outputs a vector of the same length.




