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Outline

• Convolutional Neural Networks (“CNNs”, “ConvNets”)
• Useful for images

• Recurrent Neural Networks (“RNNs”)
• Useful for processing sequential data (e.g. text)
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Today:	
  CNNs	
  Widely	
  Used

• Self-driving cars



Today:	
  CNNs	
  Widely	
  Used

• Image Classification



Convolutional	
  Neural	
  Networks
• Similar to multilayer neural network, but 

weight matrices now have a special 
structure (Toeplitz or block Toeplitz) due to 
convolutions.

• The convolutions typically sum over all 
color channels.



Convolutional	
  Neural	
  Network	
  Neuron	
  Layout

• Input layer: RGB image
• Centered, i.e. subtract mean over training set
• Usually crop to fixed size (square) input image

R G B Image from Wikipedia



Convolutional	
  Neural	
  Network	
  Neuron	
  Layout

Image from Wikipedia

• Hidden layer
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Receptive	
  Field

Image from Wikipedia
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Mathematically…

𝐋" = 𝜑(𝐋"&' ∗ [𝐖',𝐖,,…𝐖-] + [𝑏',…, 𝑏-])
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Stride

• Stride m indicates that instead of computing every pixel in the 
convolution, compute only every mth pixel.



Max/average	
  pooling

• “Downsampling” using max() operator
• Downsampling factor f could differ from neighborhood size N that is 

pooled over.



Max/average	
  pooling

• For max pooling, backpropagation just propagates error back to to 
whichever neuron had the maximum value.

• For average pooling, backpropagation splits error equally among all 
the input neurons.



Fully	
  connected	
  layers

• Connect every neuron to every other neuron, as with multilayer 
perceptron.

• Common at end of ConvNets.
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Residual	
  networks

• Make it easy to learn the identity function:
• Network with all zero weights gives identity function.

• Helps with vanishing/exploding gradients.



Outline
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Data	
  Augmentation

• Many weights to train
• Often would be helpful to have more training data

• Fake having more training data
• Random rotations
• Random flips
• Random shifts
• Recolorings
• etc

Figure from BaiduVision



Outline

• Convolutional Neural Networks
• Recurrent Neural Networks

• Simple RNNs
• LSTM, GRU
• Applications

• Deep learning libraries



Recurrent	
  Neural	
  Networks

• Feedforward neural networks have no memory: cannot remember 
the state of the world between one instant of time and the next
• Cannot remember important events and recall them in the future
• Cannot perform loops
• Cannot implement arbitrary algorithms

• Recurrent networks help by adding memory to the computation



Recurrent	
  Neural	
  Networks

Slide from Stanford CS231N
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Hidden State (Memory)
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Recurrent	
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Simple	
  Recurrent	
  Neural	
  Network

Slide from Stanford CS231N



Simple	
  Recurrent	
  Neural	
  Network

Slide from Stanford CS231N

Hidden state:

Output:



How	
  to	
  Train?

• Backpropagation through time

Image from Wikipedia



How	
  to	
  Train?

• More efficient: Truncated backpropagation through time

Image from Wikipedia(2) Limit number of times (k2) unfolded

(1) Only run backpropagation
every k1 time steps



Application	
  of	
  Recurrent	
  Neural	
  Network

• Text synthesis (student presentation)



Vanishing	
  Gradients	
  Revisited

• Suppose we want to “remember” an event at time 0 and use this in 
our model of the world at some later time t.

• Error gradients vanish exponentially quickly in the size of the time lag 
between these events.

• Fancier RNN models help with this problem:
• Long Short Term Memory (LSTM)
• Gated Recurrent Units (GRU)



Transistor diagram (from Wikipedia)

Long	
  Short	
  Term	
  Memory

• How to better remember hidden state for a long time?
• Idea: use gates to create cells that can remember for a long time.

• Rough analogy: ternary logic gates used in transistors, AND, OR, …
• But use sigmoid activations so we have continuous values in [0, 1]



Simple	
  Recurrent	
  Neural	
  Network

Diagrams from Christopher Olah
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Long	
  Short	
  Term	
  Memory

Gates: forget, input, output

Diagrams from 
Christopher Olah



Long	
  Short	
  Term	
  Memory

Diagrams from Christopher Olah

• Easy to have hidden state Ct just flow through time, unchanged.



Long	
  Short	
  Term	
  Memory

Diagrams from Christopher Olah

• Gate: pointwise multiplication.
• Multiply by zero: let nothing through.
• Multiply by one: let everything through.



Long	
  Short	
  Term	
  Memory

Diagrams from Christopher Olah

• Forget gate: conditionally discard previously remembered information.



Long	
  Short	
  Term	
  Memory

Diagrams from Christopher Olah

• Input gate: conditionally remember new information.



Long	
  Short	
  Term	
  Memory

Diagrams from Christopher Olah

• Output gate: conditionally output a relevant part of our memory.



Gated	
  Recurrent	
  Units	
  (GRUs)

• Merge input / forget units into a single “update unit.”
• Merge hidden states.

Diagrams from Christopher Olah
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• Deep learning libraries



Libraries
• Deep learning:

• Caffe (C++ with Python bindings), 
• Torch (Lua)
• TensorFlow (C++ with Python bindings)
• Python: Keras, built on Theano

• Recurrent networks (search for your framework + LSTM):
• Caffe
• Torch
• TensorFlow
• Keras


