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Outline

« Convolutional Neural Networks (“CNNs”, “ConvNets™)
« Useful for images

* Recurrent Neural Networks ("RNNs”)
» Useful for processing sequential data (e.g. text)



Outline

« Convolutional Neural Networks
» History
« Convolutional layers
 Downsampling: stride and pooling layers
* Fully connected layers
» Residual networks
« Data augmentation
* Recurrent Neural Networks
* Deep learning libraries



History
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History

Topographical mapping in the cortex:
nearby cells in cortex represented
nearby regions in the visual field
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History

Hierarchical organization
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“sandwich” architecture (SCSCSC...)

H IStO ry simple cells: modifiable parameters

complex cells: perform pooling

Neurocognitron
[Fukushima 1980]
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Viterbi Penalty

History

Gradient-based learning
applied to document (ﬂ\/o iers

recognition -
[LeCun, Bottou, Bengio, Haffner #
1998] .. .
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History

ImageNet Classification with Deep =~ = = . . .
Convolutional Neural Networks 'Sf

[Krizhevsky, Sutskever, Hinton, 2012]

“AlexNet”
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Today: CNNs Widely Used

« Self-driving cars




Today: CNNs Widely Used

* Image Classification

'.
| . - -
. < o = /
, P G i
L) . - v X ”“

mite - container ship motor scooter leopard
mite | container ship motor scooter ledpard
black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat




Convolutional Neural Networks

« Similar to multilayer neural network, but
weight matrices now have a special
structure (Toeplitz or block Toeplitz) due to
convolutions.

* The convolutions typically sum over all
color channels.

Inpuc layer
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Convolutional Neural Network Neuron Layout

 |Inputlayer: RGB image
« Centered, i.e. subtract mean over training set
« Usually crop to fixed size (square) input image
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Convolutional Neural Network Neuron Layout

* Hidden layer
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Receptive Field
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Mathematically...
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Convolutional / Filtering

E.g.: 1000x1000 image
100 Filters

Filter size: 10x10
10K parameters
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Outline

« Convolutional Neural Networks
» History
« Convolutional layers
 Downsampling: stride and pooling layers
* Fully connected layers
» Residual networks
« Data augmentation
* Recurrent neural networks
* Deep learning libraries



Stride

« Stride m indicates that instead of computing every pixel in the
convolution, compute only every mth pixel.



Max/average pooling

* “Downsampling” using max() operator

« Downsampling factor f could differ from neighborhood size N that is
pooled over.
max pooling
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Max/average pooling

* For max pooling, backpropagation just propagates error back to to
whichever neuron had the maximum value.

* For average pooling, backpropagation splits error equally among all
the input neurons.



Fully connected layers

« Connect every neuron to every other neuron, as with multilayer
perceptron.

[LeCun et al., 1998]
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Outline

« Convolutional Neural Networks
» History
« Convolutional layers
 Downsampling: stride and pooling layers
* Fully connected layers
* Residual networks
« Data augmentation
* Recurrent Neural Networks
* Deep learning libraries



Residual networks

« Make it easy to learn the identity function:
* Network with all zero weights gives identity function.
* Helps with vanishing/exploding gradients.

X |
v
weight layer
F(x) l relu identity
weight layer X

H(x)=F(x)+x



Outline

« Convolutional Neural Networks
» History
« Convolutional layers
 Downsampling: stride and pooling layers
* Fully connected layers
» Residual networks
« Data augmentation
* Recurrent neural networks
* Deep learning libraries



Data Augmentation

 Many weights to train
« Often would be helpful to have more training data
* Fake having more training data -4
 Random rotations
« Random flips
« Random shifts

* Recolorings
* efc

A \
RGB all changed Vignette More vignette Blue casting + vignette

Figure from BaiduVision




Outline

« Convolutional Neural Networks
 Recurrent Neural Networks

« Simple RNNs

« LSTM, GRU

« Applications
* Deep learning libraries



Recurrent Neural Networks

* Feedforward neural networks have no memory. cannot remember
the state of the world between one instant of time and the next

« Cannot remember important events and recall them in the future
« Cannot perform loops
« Cannot implement arbitrary algorithms

* Recurrent networks help by adding memory to the computation



Recurrent Neural Networks

one to one one to many many to one many to many many to many
Dutputs
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\ Vanilla Neural Networks
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Recurrent Neural Networks

one to one one to many many to one many to many many to many
! Pt 1 ! I Pt 1
! f Pt 1 A [0 L

\ e.g. Image Captioning

Image -> sequence of words ,
Slide from Stanford CS231N



Recurrent Neural Networks

one to one one to many many to one many to many many to many
! Pt ! g [
! f tt o L i

\ e.g. Sentiment Classification

sequence of words -> sentiment
Slide from Stanford CS231N



Recurrent Neural Networks

one to one one to many many to one many to many many to many
! Pt 1 ! I Pt 1
! ! Pt 1 A i

\ e.g. Machine Translation

seq of words -> secg of words
Slide from Stanford CS231N



Recurrent Neural Networks

one to one one to many many to one many to many many to many
! Pt 1 ! fil KIC I Pt 1
! ! 1 L i

e.g. Video classification on frame level
Slide from Stanford CS231N



Simple Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step:
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Simple Recurrent Neural Network

y hy = fW(ht—laCEt)

T Hidden state:
m> ht = tanh(Whhht 1 T W. hmt)

T Output:
X Yt = Why ht

Slide from Stanford CS231N



How to Train?

« Backpropagation through time
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How to Train?

* More efficient: Truncated backpropagation through time

(1) Only run backpropagation
every k, time steps
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Application of Recurrent Neural Network

« Textsynthesis (student presentation)

PANDARUS:
Alas, I think he shall be come approached and the day

When little srain would be attain'd into being never fed,

And who i1s but a chain and subjects of his death,

I should not sleep.



Vanishing Gradients Revisited

« Suppose we want to ‘remember”’ an event at time 0 and use this in
our model of the world at some later time t.

« Error gradients vanish exponentially quickly in the size of the time lag
between these events.

* Fancier RNN models help with this problem:
* Long Short Term Memory (LSTM)
« Gated Recurrent Units (GRU)




Long Short Term Memory

 How to better remember hidden state for a long time?
 |dea: use gates to create cells that can remember for a long time.

Transistor diagram (from Wikipedia)

Rough analogy: ternary logic gates used in transistors, AND, OR, ...
* But use sigmoid activations so we have continuous values in [0, 1]




Simple Recurrent Neural Network
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Diagrams from Christopher Olah




Long Short Term Memory
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Gates: forget input, output
A A

Ll t
(x) &)

O —_ S -< Diagrams from

Neural Network Pointwise ~ Vector . Copy Christopher Olah
Laver Operation Transfer




Long Short Term Memory

« Easy to have hidden state C; just flow through time, unchanged.

Cr_s Ct

SRS o '

Diagrams from Christopher Olah




Long Short Term Memory

« Gate: pointwise multiplication.
* Multiply by zero: let nothing through.
* Multiply by one: let everything through.

—®—
!
I

Diagrams from Christopher Olah




Long Short Term Memory

* Forget gate: conditionally discard previously remembered information.

fe=0W;g-lhi—1,2] + by)

Diagrams from Christopher Olah




Long Short Term Memory

 Input gate: conditionally remember new information.

it =0 (Wi-lhi—1,2¢] + b;)
ét :tanh(W(;-[ht_l,a:t] -+ bc)

Diagrams from Christopher Olah




Long Short Term Memory

« Output gate: conditionally output a relevant part of our memory.

Ot — U(Wo [ht—laxt] + bo)
hy = o; * tanh (C})

Diagrams from Christopher Olah




Gated Recurrent Units (GRUs)

* Merge input / forget units into a single “update unit.”
* Merge hidden states.

Zt = 0 (Wz ' :ht—laajt:)
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Diagrams from Christopher Olah




Outline

 Convolutional Neural Networks
 Recurrent Neural Networks
* Deep learning libraries



Libraries

* Deep learning:
« Caffe (C++ with Python bindings),
« Torch (Lua)
e TensorFlow (C++ with Python bindings)
* Python: Keras, built on Theano
* Recurrent networks (search for your framework + LSTM):
» Caffe
* Torch
* TensorFlow

e Keras




