CS 6501: Deep Learning for
Computer Graphics

Convolutional and Recurrent
Neural Networks

Connelly Barnes

Outline

« Convolutional Neural Networks (“CNNs”, “ConvNets™)
« Useful for images

* Recurrent Neural Networks ("RNNs”)
» Useful for processing sequential data (e.g. text)

Outline

« Convolutional Neural Networks
» History
« Convolutional layers
 Downsampling: stride and pooling layers
* Fully connected layers
» Residual networks
« Data augmentation
* Recurrent Neural Networks
* Deep learning libraries

History

Electrical signal

A bit of history: socorsg o |

Visual area

Hubel & Wiesel, @
1959 % Stimulus ‘ {ﬁ

RECEPTIVE FIELDS OF SINGLE

NEURONES IN v N
THE CAT'S STRIATE CORTEX [r— e,

@, < 2 S0
1 962 \ * % .\ .
RECEPTIVE FIELDS, BINOCULAR \ <1
INTERACTION NG - 2 ‘-
AND FUNCTIONAL ARCHITECTURE IN ” % //
THE CAT'S VISUAL CORTEX \ o \

' ; tc’ ”O

f"(YT Stlmulus onentatnon (deg)

Slide from Stanford CS231N

History

Topographical mapping in the cortex:
nearby cells in cortex represented
nearby regions in the visual field

Slide from Stanford CS231N

History

Hierarchical organization

Hubel & Weisel featural hierarchy

topographical mapping
hnyer-compIex .
cells ,

o s o>
complex cells A

high level

mid level

simple cells .

©
C

7 low level

Slide from Stanford CS231N

“sandwich” architecture (SCSCSC...)

H IStO ry simple cells: modifiable parameters

complex cells: perform pooling

Neurocognitron
[Fukushima 1980]

,\".33
QJ:)::‘QO
fw'-“ﬂr)
e .
("’O’CS:‘F.ODJ
~ vY o a0
CO\/ '\O:’:V . » .
0¥ a0 3 visual area - associat req —
09060000, 1€ 3 ion area
Qv ~ 00
0009 " 000 . : lower - higher-order a
9 0002 40 retina — LGB —simple — complex — order __ hig . p— ndn";other
00% 5000 14 & —~— hypercomplex hypercomplex cell “
¥ " O',,‘ ~ } ' .
~0Q0Y 450 : : - : -
0 RV« B ¢ Bty
0002 3000°
0009" ' T ——— .) [o L S S o 1 P s s 1
[| | } | |
Up—PUs— Uy T PUs; U, 7 PUsg > Ugs
________ il PN I SN S SIS R s i e i s Sl e i 0

Slide from Stanford CS231N

Viterbi Penalty

History

Gradient-based learning
applied to document (ﬂ\/o iers

recognition -
[LeCun, Bottou, Bengio, Haffner #
1998] .. .

Interpretation
Graph

Recognition
Transformer

Segmentation
Graph

Convolutions Subsamping Corvolutions Subsampling Full connection

LeNet-5

Slide from Stanford CS231N

History

ImageNet Classification with Deep =~ = = . . .
Convolutional Neural Networks 'Sf

[Krizhevsky, Sutskever, Hinton, 2012]

“AlexNet”

Slide from Stanford CS231N

Today: CNNs Widely Used

« Self-driving cars

Today: CNNs Widely Used

* Image Classification

'.
| . - -
. < o = /
, P G i
L) . - v X ”“

mite - container ship motor scooter leopard
mite | container ship motor scooter ledpard
black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat

Convolutional Neural Networks

« Similar to multilayer neural network, but
weight matrices now have a special
structure (Toeplitz or block Toeplitz) due to
convolutions.

* The convolutions typically sum over all
color channels.

Inpuc layer

(S1) 4 feature maps

1 (CI) 4 feature maps (S2) 6 feature maps (C2) 6 feature maps

“T-1-4-
4:1-4- 0

P)
—

sub-sampling layer l convolution layer l sub-sampling layer | fully connected MLP |

Convolutional Neural Network Neuron Layout

 |Inputlayer: RGB image
« Centered, i.e. subtract mean over training set
« Usually crop to fixed size (square) input image

/;‘idth

oot
R G B Image from Wikipedia

Convolutional Neural Network Neuron Layout

* Hidden layer

/.fi(lth

¢ ¢

Feature Feature
map1 mapn

Image from Wikipedia

Receptive Field

Receptive —
Field:
Input Region

4

Weights

%

Hidden
«<+— Layer

Neuron

Image from Wikipedia

Mathematically...

Weights Weights

Activation for Feature for Feature |
Function Map 1 Map n Blases

l . | |
L; = o(Li—q * [Wy, W,,... Wy | + [by,..., by])

hxwxd Y{kz xd
Current Previous — Convolution

Layer Layer (Shares
Feature Feature Weights

Maps Maps Spatially)

Convolutional / Filtering

E.g.: 1000x1000 image
100 Filters

Filter size: 10x10
10K parameters

[Feature maps }

i

[Pooling

17

| Nowinearty
i
1

e

[Input Image]

Outline

« Convolutional Neural Networks
» History
« Convolutional layers
 Downsampling: stride and pooling layers
* Fully connected layers
» Residual networks
« Data augmentation
* Recurrent neural networks
* Deep learning libraries

Stride

« Stride m indicates that instead of computing every pixel in the
convolution, compute only every mth pixel.

Max/average pooling

* “Downsampling” using max() operator

« Downsampling factor f could differ from neighborhood size N that is
pooled over.
max pooling

20|30

1237
12120| 30| O
8 (121 2| 0

34170| 37| 4 average pooling
112/100| 25| 12

Max/average pooling

* For max pooling, backpropagation just propagates error back to to
whichever neuron had the maximum value.

* For average pooling, backpropagation splits error equally among all
the input neurons.

Fully connected layers

« Connect every neuron to every other neuron, as with multilayer
perceptron.

[LeCun et al., 1998]

C3: 1. maps 16@10x10

C1: feature maps S4: 1. maps 16@5x5
INPUT 6@28:28 @

CS:layer rg jayer OUTPUT
120 T qg

gé:hr;‘&ps r
"%
I?F. e

B . F
|

| Ful cmAecﬁon ‘ Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

Outline

« Convolutional Neural Networks
» History
« Convolutional layers
 Downsampling: stride and pooling layers
* Fully connected layers
* Residual networks
« Data augmentation
* Recurrent Neural Networks
* Deep learning libraries

Residual networks

« Make it easy to learn the identity function:
* Network with all zero weights gives identity function.
* Helps with vanishing/exploding gradients.

X |
v
weight layer
F(x) l relu identity
weight layer X

H(x)=F(x)+x

Outline

« Convolutional Neural Networks
» History
« Convolutional layers
 Downsampling: stride and pooling layers
* Fully connected layers
» Residual networks
« Data augmentation
* Recurrent neural networks
* Deep learning libraries

Data Augmentation

 Many weights to train
« Often would be helpful to have more training data
* Fake having more training data -4
 Random rotations
« Random flips
« Random shifts

* Recolorings
* efc

A \
RGB all changed Vignette More vignette Blue casting + vignette

Figure from BaiduVision

Outline

« Convolutional Neural Networks
 Recurrent Neural Networks

« Simple RNNs

« LSTM, GRU

« Applications
* Deep learning libraries

Recurrent Neural Networks

* Feedforward neural networks have no memory. cannot remember
the state of the world between one instant of time and the next

« Cannot remember important events and recall them in the future
« Cannot perform loops
« Cannot implement arbitrary algorithms

* Recurrent networks help by adding memory to the computation

Recurrent Neural Networks

one to one one to many many to one many to many many to many
Dutputs
f —— 1 —— ——
ul I1i<l+eﬂFtate (Me¢meryp |+ = NN
; : o —— ———
Inputs

\ Vanilla Neural Networks
Slide from Stanford CS231N

Recurrent Neural Networks

one to one one to many many to one many to many many to many
! Pt 1 ! I Pt 1
! f Pt 1 A [0 L

\ e.g. Image Captioning

Image -> sequence of words ,
Slide from Stanford CS231N

Recurrent Neural Networks

one to one one to many many to one many to many many to many
! Pt ! g [
! f tt o L i

\ e.g. Sentiment Classification

sequence of words -> sentiment
Slide from Stanford CS231N

Recurrent Neural Networks

one to one one to many many to one many to many many to many
! Pt 1 ! I Pt 1
! ! Pt 1 A i

\ e.g. Machine Translation

seq of words -> secg of words
Slide from Stanford CS231N

Recurrent Neural Networks

one to one one to many many to one many to many many to many
! Pt 1 ! fil KIC I Pt 1
! ! 1 L i

e.g. Video classification on frame level
Slide from Stanford CS231N

Simple Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step:

I

new state

fw

(

O

Pi—1

)

L ¢

)

d state input vector at !

some fdnction
with parameters W

some time step

Slide from Stanford CS231N

Simple Recurrent Neural Network

y hy = fW(ht—laCEt)

T Hidden state:
m> ht = tanh(Whhht 1 T W. hmt)

T Output:
X Yt = Why ht

Slide from Stanford CS231N

How to Train?

« Backpropagation through time

a;—
Xt_)

A1 —
—> X1

a

f

>
Xt (

)Xt—l—l)

_/

JL unfold through time < |

J;

At2—

> X2

J;

— Xt 43>

g >Yi+1

g >Yi+3

Image from Wikipedia

How to Train?

* More efficient: Truncated backpropagation through time

(1) Only run backpropagation
every k, time steps

a;—
Xt—>

Ai4]—
> X1

J;

a

f

>
Xt (

— Xt p1—>

_/

At2—

> X2

J;

JL unfold through time < |

— X{4+3—>

g >Yi+1

g >Yi+3

J

(2) Limit number of times (4,) unfolded

Image from Wikipedia

Application of Recurrent Neural Network

« Textsynthesis (student presentation)

PANDARUS:
Alas, I think he shall be come approached and the day

When little srain would be attain'd into being never fed,

And who i1s but a chain and subjects of his death,

I should not sleep.

Vanishing Gradients Revisited

« Suppose we want to ‘remember”’ an event at time 0 and use this in
our model of the world at some later time t.

« Error gradients vanish exponentially quickly in the size of the time lag
between these events.

* Fancier RNN models help with this problem:
* Long Short Term Memory (LSTM)
« Gated Recurrent Units (GRU)

Long Short Term Memory

 How to better remember hidden state for a long time?
 |dea: use gates to create cells that can remember for a long time.

Transistor diagram (from Wikipedia)

Rough analogy: ternary logic gates used in transistors, AND, OR, ...
* But use sigmoid activations so we have continuous values in [0, 1]

Simple Recurrent Neural Network

@ Outputs @ @
T

E E g)

A Hidd No gates! pry) A

Diagrams from Christopher Olah

Long Short Term Memory

®

PR R

Gates: forget input, output
A A

Ll t
(x) &)

O —_ S -< Diagrams from

Neural Network Pointwise ~ Vector . Copy Christopher Olah
Laver Operation Transfer

Long Short Term Memory

« Easy to have hidden state C; just flow through time, unchanged.

Cr_s Ct

SRS o '

Diagrams from Christopher Olah

Long Short Term Memory

« Gate: pointwise multiplication.
* Multiply by zero: let nothing through.
* Multiply by one: let everything through.

—®—
!
I

Diagrams from Christopher Olah

Long Short Term Memory

* Forget gate: conditionally discard previously remembered information.

fe=0W;g-lhi—1,2] + by)

Diagrams from Christopher Olah

Long Short Term Memory

 Input gate: conditionally remember new information.

it =0 (Wi-lhi—1,2¢] + b;)
ét :tanh(W(;-[ht_l,a:t] -+ bc)

Diagrams from Christopher Olah

Long Short Term Memory

« Output gate: conditionally output a relevant part of our memory.

Ot — U(Wo [ht—laxt] + bo)
hy = o; * tanh (C})

Diagrams from Christopher Olah

Gated Recurrent Units (GRUs)

* Merge input / forget units into a single “update unit.”
* Merge hidden states.

Zt = 0 (Wz ' :ht—laajt:)

R
||
Q

=

' :ht—laivt:)

iLt = tanh (W - [ry x hy_1, 2¢])

ht:(l—zt)*ht_l—i—zt*ﬁt

Diagrams from Christopher Olah

Outline

 Convolutional Neural Networks
 Recurrent Neural Networks
* Deep learning libraries

Libraries

* Deep learning:
« Caffe (C++ with Python bindings),
« Torch (Lua)
e TensorFlow (C++ with Python bindings)
* Python: Keras, built on Theano
* Recurrent networks (search for your framework + LSTM):
» Caffe
* Torch
* TensorFlow

e Keras

