
CS 6501: Deep Learning for
Computer Graphics

Deep Reinforcement
Learning

Connelly Barnes
Slides based on those by David Silver

Outline

• Introduction to Reinforcement Learning
• Value-based deep reinforcement learning

• Q-learning

Introduction	
 to	
 Reinforcement	
 Learning

• “How software agents ought to take actions in an environment so
as to maximize some notion of cumulative reward.” – Wikipedia

• Studied in various disciplines:
• Game theory
• Control theory
• Operations research
• Swarm intelligence
• Statistics
• Economics
• … Photo from Flickr

Introduction	
 to	
 Reinforcement	
 Learning

• Goal: determine the best action for every state.
• Optimize an objective function, such as average reward per time unit,

or discounted reward.
• Few states: dynamic programming.
• Many states: reinforcement learning,

deep reinforcement learning.

Terminology

• At each time step t the agent:
• Receives observation ot
• Receives scalar reward rt
• Executes action at

• The environment:
• Receives action at
• Determines observation ot+1

• Determines scalar reward rt+1

Slides based on those by David Silver, images [1], [2]

Reward rtObservation
ot

Agent

Environment

Action
at

Modeling	
 Agent	
 Behavior

• Agent can include these components:
• Policy: agent’s behavior function
• Value function: how good

is each state/action?
• Model: agent’s understanding

of the environment
• Which one did we work with on the

Tic Tac Toe assignment?

Slides based on those by David Silver, images [1], [2]

Reward rtObservation
ot

Agent

Environment

Action
at

Policy

• Determines agent’s behavior directly
• Maps from state to action

• Deterministic policy: 𝑎 = 𝜋 𝑠
• Stochastic policy: 𝜋 𝑎 𝑠 = P[𝑎|𝑠]

Slides based on those by David Silver

Value	
 Function

• Value function is discounted prediction of future reward
• Q-value function gives expected total reward

• From state s and action a
• Under policy 𝜋
• With discount factor 𝛾
• 𝑄+ 𝑠, 𝑎 = 𝐸[𝑟/01 + 𝛾𝑟/03 + 𝛾3𝑟/04 + ⋯|𝑠, 𝑎]

Slides based on those by David Silver

Bellman’s	
 Principle	
 of	
 Optimality

• “An optimal policy has the property that whatever the initial state and
initial decision are, the remaining decisions must constitute an
optimal policy with regard to the state resulting from the first
decision.” – Bellman 1957

• i.e. dynamic programming
• Q-value function:

𝑄+ 𝑠, 𝑎 = 𝐸[𝑟/01 + 𝛾𝑟/03 + 𝛾3𝑟/04 + ⋯ |𝑠, 𝑎]
• Bellman equation:

𝑄+ 𝑠, 𝑎 = 𝐸67,89	
 [𝑟/01 + 𝛾𝑄+ 𝑠′, 𝑎′ |𝑠, 𝑎]

Slides based on those by David Silver

Optimal	
 Value	
 Function

• The maximum achievable value:

𝑄∗ 𝑠, 𝑎 = max+(𝑄+ 𝑠, 𝑎)

• Once we have Q* we can act optimally:

𝜋∗ 𝑠 = argmax8(𝑄∗ 𝑠, 𝑎)

Slides based on those by David Silver

Reinforcement	
 Learning	
 Approaches

• Value-based
• Estimate optimal value function 𝑄∗ 𝑠, 𝑎

• Policy-based
• Estimate the optimal policy 𝜋∗ directly

• Model-based
• Build model of environment, plan future actions using model

Slides based on those by David Silver

Outline

• Introduction to Reinforcement Learning
• Value-based deep reinforcement learning

• Q-learning

Q-­‐Learning

• Optimal Q values should follow Bellman equation:
𝑄+ 𝑠, 𝑎 = 𝐸67,89	
 [𝑟/01 + 𝛾𝑄+ 𝑠′, 𝑎′ |𝑠, 𝑎]

• Given an initial Q, iteratively estimate a better one:

𝑄 𝑠/, 𝑎/ ← 1− 𝛼 𝑄 𝑠/, 𝑎/ + 𝛼	
 [𝑟/01 + 𝛾max8𝑄 𝑠/01, 𝑎	
 − 𝑄 𝑠/, 𝑎/]

Old
value

Learning
rate

Reward

Discount
factor

Estimate of
future optimal value

Slides based on those by David Silver

Q-­‐learning	
 Details

• Initial conditions
• Often high values to encourage exploration
• No matter what action is selected, update rule will cause it to have

lower value than alternatives, so alternatives will be explored also.
• Learning rate

• Often a constant such as 0.1

Q-­‐Learning	
 and	
 Neural	
 Networks

• If there is a large number of (state, action) pairs, cannot store
𝑄 𝑠, 𝑎 directly.

• Instead, approximate 𝑄 𝑠, 𝑎 using a neural network:
• Q-function.

Q-­‐Learning	
 and	
 Neural	
 Networks

• Supervised learning: can take the value from the right-hand side of
the Q-learning rule as the target for a neural network with weights w.

• Minimize:

• Diverges using neural networks due to:
• Correlations between samples
• Non-stationary learning target

𝐸 = 𝑟/01 + 𝛾max89𝑄 𝑠9, 𝑎9,𝐰 − 𝑄 𝑠, 𝑎, 𝐰 2

Slides based on those by David Silver

Deep	
 Q-­‐Networks	
 (DQN):	
 Experience	
 Replay

• To remove correlations, build a history data-set from the agent’s own
experiences: 𝑠I, 𝑎I, 𝑟I01, 𝑠I01

• Sample experiences from this data-set and apply the stochastic
gradient descent update for the squared loss:

• To prevent problems with non-stationary learning targets, fix the
weights 𝐰J while performing SGD.

• Discussion question: concretely, how might we use DQN to play Tic
Tac Toe? What are the states, actions, rewards? What network
architecture?

𝐸 = 𝑟/01 + 𝛾max89𝑄 𝑠9, 𝑎9,𝐰J − 𝑄 𝑠, 𝑎,𝐰 2

Slides based on those by David Silver

Deep	
 Q-­‐Networks	
 (DQN)

• For more details, see the tutorial by David Silver

Software	
 Packages

• https://github.com/VinF/deer
• https://github.com/rlpy/rlpy

