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Introduction	
  to	
  Reinforcement	
  Learning

• “How software agents ought to take actions in an environment so 
as to maximize some notion of cumulative reward.” – Wikipedia

• Studied in various disciplines:
• Game theory
• Control theory
• Operations research
• Swarm intelligence
• Statistics
• Economics
• … Photo from Flickr



Introduction	
  to	
  Reinforcement	
  Learning

• Goal: determine the best action for every state.
• Optimize an objective function, such as average reward per time unit, 

or discounted reward.
• Few states: dynamic programming.
• Many states: reinforcement learning,

deep reinforcement learning.



Terminology

• At each time step t the agent:
• Receives observation ot
• Receives scalar reward rt
• Executes action at

• The environment:
• Receives action at
• Determines observation ot+1

• Determines scalar reward rt+1

Slides based on those by David Silver, images [1], [2]

Reward     rtObservation
ot

Agent

Environment

Action
at



Modeling	
  Agent	
  Behavior

• Agent can include these components:
• Policy: agent’s behavior function
• Value function: how good

is each state/action?
• Model: agent’s understanding

of the environment
• Which one did we work with on the

Tic Tac Toe assignment?
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Policy

• Determines agent’s behavior directly
• Maps from state to action

• Deterministic policy: 𝑎 = 𝜋 𝑠
• Stochastic policy: 𝜋 𝑎 𝑠 = P[𝑎|𝑠]

Slides based on those by David Silver



Value	
  Function

• Value function is discounted prediction of future reward
• Q-value function gives expected total reward

• From state s and action a
• Under policy 𝜋
• With discount factor 𝛾
• 𝑄+ 𝑠, 𝑎 = 𝐸[𝑟/01 + 𝛾𝑟/03 + 𝛾3𝑟/04 + ⋯|𝑠, 𝑎]
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Bellman’s	
  Principle	
  of	
  Optimality

• “An optimal policy has the property that whatever the initial state and 
initial decision are, the remaining decisions must constitute an 
optimal policy with regard to the state resulting from the first 
decision.” – Bellman 1957

• i.e. dynamic programming
• Q-value function:

𝑄+ 𝑠, 𝑎 = 𝐸[𝑟/01 + 𝛾𝑟/03 + 𝛾3𝑟/04 + ⋯ |𝑠, 𝑎]
• Bellman equation:

𝑄+ 𝑠, 𝑎 = 𝐸67,89	
  [𝑟/01 + 𝛾𝑄+ 𝑠′, 𝑎′ |𝑠, 𝑎]
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Optimal	
  Value	
  Function

• The maximum achievable value:

𝑄∗ 𝑠, 𝑎 = max+(𝑄+ 𝑠, 𝑎 )

• Once we have Q* we can act optimally:

𝜋∗ 𝑠 = argmax8(𝑄∗ 𝑠, 𝑎 )
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Reinforcement	
  Learning	
  Approaches

• Value-based
• Estimate optimal value function 𝑄∗ 𝑠, 𝑎

• Policy-based
• Estimate the optimal policy 𝜋∗ directly

• Model-based
• Build model of environment, plan future actions using model
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Outline

• Introduction to Reinforcement Learning
• Value-based deep reinforcement learning

• Q-learning



Q-­‐Learning

• Optimal Q values should follow Bellman equation:
𝑄+ 𝑠, 𝑎 = 𝐸67,89	
  [𝑟/01 + 𝛾𝑄+ 𝑠′, 𝑎′ |𝑠, 𝑎]

• Given an initial Q, iteratively estimate a better one:

𝑄 𝑠/, 𝑎/ ← 1− 𝛼 𝑄 𝑠/, 𝑎/ + 𝛼	
  [𝑟/01 + 𝛾max8𝑄 𝑠/01, 𝑎	
   − 𝑄 𝑠/, 𝑎/ ]

Old
value

Learning
rate

Reward

Discount
factor

Estimate of
future optimal value
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Q-­‐learning	
  Details

• Initial conditions
• Often high values to encourage exploration
• No matter what action is selected, update rule will cause it to have 

lower value than alternatives, so alternatives will be explored also.
• Learning rate

• Often a constant such as 0.1



Q-­‐Learning	
  and	
  Neural	
  Networks

• If there is a large number of (state, action) pairs, cannot store
𝑄 𝑠, 𝑎 directly.

• Instead, approximate 𝑄 𝑠, 𝑎 using a neural network:
• Q-function.



Q-­‐Learning	
  and	
  Neural	
  Networks

• Supervised learning: can take the value from the right-hand side of 
the Q-learning rule as the target for a neural network with weights w.

• Minimize:

• Diverges using neural networks due to:
• Correlations between samples
• Non-stationary learning target

𝐸 = 𝑟/01 + 𝛾max89𝑄 𝑠9, 𝑎9,𝐰 − 𝑄 𝑠, 𝑎, 𝐰 2
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Deep	
  Q-­‐Networks	
  (DQN):	
  Experience	
  Replay

• To remove correlations, build a history data-set from the agent’s own 
experiences: 𝑠I, 𝑎I, 𝑟I01, 𝑠I01

• Sample experiences from this data-set and apply the stochastic 
gradient descent update for the squared loss:

• To prevent problems with non-stationary learning targets, fix the 
weights 𝐰J while performing SGD.

• Discussion question: concretely, how might we use DQN to play Tic 
Tac Toe? What are the states, actions, rewards? What network 
architecture?

𝐸 = 𝑟/01 + 𝛾max89𝑄 𝑠9, 𝑎9,𝐰J − 𝑄 𝑠, 𝑎,𝐰 2
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Deep	
  Q-­‐Networks	
  (DQN)

• For more details, see the tutorial by David Silver



Software	
  Packages

• https://github.com/VinF/deer
• https://github.com/rlpy/rlpy


