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‣ Human Vision and Color
‣ Image Representation
‣ Reducing Color Quantization Artifacts
‣ Basic Image Processing



Human Vision
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Human eye

Objects in world

Sun



Human Vision
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Human eye

Objects in world

Sun

Vision Components: 

• Incoming Light 

• The Human Eye



Typical Human Eye
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Color
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‣ Two types of photo-sensitive cells (“photo receptors”)

Rods and cones Cones in fovea



Rods and Cones
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‣ Rods
‣ More sensitive in low light: “scotopic” vision
‣ More dense near periphery

‣ Cones
‣ Only function with higher light levels: “photopic” vision
‣ Densely packed at center of eye: fovea
‣ Different types of cones → color vision



Electromagnetic Spectrum
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‣ Visible light frequencies range between ...
‣ Red = 4.3 x 1014 hertz (700nm)
‣ Violet = 7.5 x 1014 hertz (400nm)

Figures 15.1 from H&B



Visible Light
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‣ The human eye can “see” light in the frequency range 400nm – 
700nm

“White” Light
Figure 15.3 from H&B

Frequency

Energy

Red  
(700 nm)

Violet  
(400 nm)



Visible Light
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‣ The human eye can “see” light in the frequency range 400nm – 
700nm

“White” Light
Figure 15.3 from H&B

Frequency

Energy

Red  
(700 nm)

Violet  
(400 nm)

This does not mean that we 
can see the difference 
between the different 
spectral distributions.



Visible Light
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• Color may be characterized by …
• Hue = dominant frequency (highest peak)
• Saturation = excitation purity (ratio of highest to rest)
• Lightness = luminance (area under curve)

White Light Orange Light



Tristimulus Theory of Color

12Figure 13.18 from FvDFH 

Spectral-response functions of 
each of the three types of cones.

This motivates encoding  
color as a combination of  
red, green, and blue (RGB).



Tristimulus Color
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‣ Any distribution of light can be summarized by its effect on 3 
types of cones

‣ Therefore, human perception of color is a 3-dimensional space
‣ Metamerism: different spectra, same response
‣ Color blindness: fewer than 3 types of cones
‣ Most commonly L cone = M cone



Color Models
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‣ RGB
‣ XYZ
‣ CMYK
‣ HSV
‣ etc...

Different ways of parameterizing 
3D space. 

RGB most common and used in this class: 
R=645.16nm, G=526.32nm, B=444.44nm



RGB Color Model
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Plate II.3 from FvDFH 

 R         G         B         Color     
0.0 0.0 0.0 Black 
1.0 0.0 0.0 Red 
0.0 1.0 0.0 Green 
0.0 0.0 1.0 Blue 
1.0 1.0 0.0 Yellow 
1.0 0.0 1.0 Magenta 
0.0 1.0 1.0 Cyan 
1.0 1.0 1.0 White 
0.5 0.0 0.0 ? 
1.0 0.5 0.5 ? 
1.0 0.5 0.0 ? 
0.5 0.3 0.1 ?

Colors are additive



RGB Color Cube
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Figures 15.11&15.12 from H&B 



CMY(K) Color Model
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Plate II.7 from FvDFH 

 C         M         Y         Color     
0.0 0.0 0.0 White 
1.0 0.0 0.0 Cyan 
0.0 1.0 0.0 Magenta 
0.0 0.0 1.0 Yellow 
1.0 1.0 0.0 Blue 
1.0 0.0 1.0 Green 
0.0 1.0 1.0 Red 
1.0 1.0 1.0 Black 
0.5 0.0 0.0 ? 
1.0 0.5 0.5 ? 
1.0 0.5 0.0 ?

Colors are subtractive



Discussion question
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‣ CMY(K) is frequently used for printer ink 
cartridge colors

‣ RGB is frequently used for displays 

‣ Why would CMY(K) be used for printers and 
RGB for screens?



HSV Color Model
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 H         S         V      Color     
    0 1.0 1.0 Red 
120 1.0 1.0 Green 
240 1.0 1.0 Blue 
 * 0.0 1.0 White 
 * 0.0 0.5 Gray 
 *  * 0.0 Black 
  60 1.0 1.0 ? 
270 0.5 1.0 ? 
270 0.0 0.7 ?

Figure 15.16&15.17 from H&B 



Outline
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‣ Human Vision and Color
‣ Image Representation
‣ Reducing Color Quantization Artifacts
‣ Basic Image Processing



Image Representation
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‣ What is an image?



Image Representation
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‣ An image is a 2D rectilinear array of pixels:
‣ A width x height array where each entry of the array stores a 

single pixel.

Continuous image Digital image

w

h



Image Representation
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‣ What is a pixel?

Continuous image Digital image



Image Representation
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‣ A pixel is something that captures the notion of “intensity” and 
possibly “color”

‣ Luminance pixels
‣ Grey-scale images (aka “Intensity images”)
‣ 0 – 1.0 or 0 – 255

‣ Red, Green, Blue pixels (RGB)
‣ Color images
‣ 0 – 1.0 or 0 – 255



Image Resolution
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‣ Spatial resolution: width x height pixels
‣ Intensity/Color resolution: n bits per pixel
‣ Temporal resolution: n Hz (fps)

Width x Height Bit Depth Hz

NTSC 640 x 480 8 30

iPhone5 640 x 1136 24 60

Monitor 1920 x 1200 24 75

CCDs 3000 x 2000 36 -

Laser Printer 6600 x 5100 1 -



Image Quantization Artifacts
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‣ With only a small number of bits associated to each color 
channel of a pixel there is a limit to intensity resolutions of an 
image
‣ A black and white image allocates a single bit to the luminance 

channel of a pixel. 
‣ The number of different colors that can be represented by a 

pixel is 2.
‣ A 24 bit bitmap image allocates 8 bits to the red, green, and 

blue channels of a pixel.
‣ The number of different colors that can be represented by a 

pixel is 224 = 16.8 million.



Outline

27

‣ Human Vision
‣ Image Representation
‣ Reducing Color Quantization Artifacts
‣ Halftoning and Dithering

‣ Basic Image Processing



Quantization
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‣ Image with decreasing bits per pixel 
‣ Note contouring!

8 bits 4 bits 2 bits 1 bit



Quantization
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‣ When you have a small number of bits per pixel, you can 
coarsely represent an image by quantizing the color values:

I(x, y) Q(x, y) 
2 bits per pixel

b is the number of bits per pixel

0

85

255

170

0 1 2 3

P (x, y) = Q(I(x, y)) = floor

✓
I(x, y)

256

2

b

◆



Reducing Effects of Quantization
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‣ Trade spatial resolution for intensity resolution
‣ Halftoning
‣ Dithering
‣ Random dither
‣ Ordered dither
‣ Error diffusion dither



Classical Halftoning
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‣ Varying-size dots represent intensities
‣ Area of dots inversely proportional to intensity

I(x, y) P(x, y)



Classical Halftoning

32

Newspaper Image

From New York Times, 9/21/99



Digital Halftoning

33

‣ Use cluster of pixels to represent intensity
‣ Trades spatial resolution for intensity resolution
‣ Note that halftoning pattern matters
‣ Want to avoid vertical, horizontal lines

0 ≤ I ≤ 0.2 0.2 < I ≤ 0.4 0.4 < I ≤ 0.6 0.6 < I ≤ 0.8 0.8 < I ≤ 1.0



Digital Halftoning
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‣ Use cluster of pixels to represent intensity
‣ Trades spatial resolution for intensity resolution
‣ Note that halftoning pattern matters

Halftoned 
(1 bit)

Original 
(8 bits)

Quantized 
(1 bit)



Dithering
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‣ Distribute errors among pixels
‣ Exploit spatial integration in our eye
‣ Display greater range of perceptible intensities



Random Dither
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‣ Randomize quantization errors
‣ Errors appear as noise

P(
x,

y)

I(x,y)

P (x, y) = Q(I(x, y) + noise(x, y))



Random Dither
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‣ Randomize quantization errors
‣ Errors appear as noise

P(
x,

y)

I(x,y)

P (x, y) = Q(I(x, y) + noise(x, y))

If a pixel is black, then adding 
random noise to it, you are less 
likely to turn it into a white pixel 
then if the pixel were dark gray.



Random Dither
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‣ Randomize quantization errors
‣ Errors appear as noise

P(
x,

y)

I(x,y)

P (x, y) = Q(I(x, y) + noise(x, y))

If a pixel is black, then adding 
random noise to it, you are less 
likely to turn it into a white pixel 
then if the pixel were dark gray.

How much noise should we add?



Random Dither
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‣ Randomize quantization errors
‣ Errors appear as noise

P(
x,

y)

I(x,y)

P (x, y) = Q(I(x, y) + noise(x, y))

If a pixel is black, then adding 
random noise to it, you are less 
likely to turn it into a white pixel 
then if the pixel were dark gray.

How much noise should we add?
Enough so that we can effect rounding 

but not so much that we overshoot: 
[-0.5/s,0.5/s], 

where s is the intensity of a single dither 
level in the output: s = 2^(b-1). 

(Note also the assignment uses a color 
range from 0 to 255).



Random Dither
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Uniform 
Quantization 

(1 bit)

Random  
Dither 
(1 bit)

Original 
(8 bits)



Ordered Dither
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‣ Pseudo-random quantization errors
‣ Matrix stores pattern of thresholds

i = x mod n 
j = y mod n 
if (I(x,y)/255 > D(i,j) / (n^2+1)) 
 P(x,y) = 1 
else  
 P(x,y) = 0

For Binary Displays



Ordered Dither
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‣ Pseudo-random quantization errors
‣ Matrix stores pattern of thresholds

For b-Bit Displays
i = x mod n 
j = y mod n 
c = (I(x,y)/255)*(2^b-1) 
e = c - floor(c) 
if (e > D(i,j) / (n^2+1) ) 
 P(x,y) = ceil(c) 
else  
 P(x,y) = floor(c)



Ordered Dither
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Random 
Dither 
(1 bit)

Original 
(8 bits)

Ordered 
Dither  
(1 bit)



Error Diffusion Dither
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‣ Spread quantization error over neighbor pixels
‣ Error dispersed to pixels right and below

‣ Floyd-Steinberg Dither Method:

Figure 14.42 from H&B

α

β γ δ

α + β + γ + δ = 1.0



Floyd-Steinberg Dither
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for (i = 0; i < width; i++) 

   for (j = 0; j < height; j++) 

   Dest[i,j] = quantize(Source[i,j]) 

   error = Source[i,j] − Dest[i,j] 

   Source[i,j+1] = Source[i,j+1] + α * error 

   Source[i+1,j-1] = Source[i+1,j-1] + β * error 

   Source[i+1,j] = Source[i+1,j] + γ * error 

   Source[i+1,j+1] = Source[i+1,j+1] + δ * error

α = 7/16
β = 3/16
γ = 5/16
δ = 1/16



Floyd-Steinberg Dither
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Random 
Dither 
(1 bit)

Original 
(8 bits)

Ordered 
Dither  
(1 bit)

Floyd-Steinberg 
Dither  
(1 bit)



Discussion Q.
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‣ How might one get a  
result even better than  
Floyd-Steinberg?

Close up view:



Outline
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‣ Human Vision
‣ Image Representation
‣ Reducing Color Quantization Artifacts
‣ Basic Image Processing
‣ Single Pixel Operations
‣ Multi-Pixel Operations



Computing Grayscale
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‣ The human retina perceives red, green, and blue as having 
different levels  of brightness. 

‣ To compute the luminance (perceived brightness) of a pixel, we 
need to take the weighted average of 
the RGBs: L = 0.30*r + 0.59*g + 0.11*b

Original Grayscale Figure 13.18 from FvDFH 



Adjusting Brightness
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‣ Simply scale pixel components
‣ Must clamp to range (e.g., 0 to 255) 

Original Brighter



Adjusting Contrast
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‣ Compute mean luminance L for all pixels
‣ L = 0.30*r + 0.59*g + 0.11*b

‣ Scale deviation from L for each pixel color component (RGB)
‣ Must clamp to range (e.g., 0 to 255) 

Original More Contrast

L



Adjusting Saturation
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‣ Compute luminance L(p) for each pixel p
‣ L(p) = 0.30*r(p) + 0.59*g(p) + 0.11*b(p)

‣ Scale deviation from L(p) for each pixel component (RGB)
‣ Must clamp to range (e.g., 0 to 255) 

Original More Saturation



Image Processing by Interpolation
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‣ Nice discussion of these operations:  
http://www.graficaobscura.com/interp/index.html

http://www.graficaobscura.com/interp/index.html


Image Processing by Interpolation
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‣ Nice discussion of these operations:  
http://www.graficaobscura.com/interp/index.html

out = (1-alpha)*in0 + alpha*in1

http://www.graficaobscura.com/interp/index.html


Image Processing by Interpolation
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‣ Nice discussion of these operations:  
http://www.graficaobscura.com/interp/index.html

out = (1-alpha)*in0 + alpha*in1

http://www.graficaobscura.com/interp/index.html


Image Processing by Interpolation
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‣ Nice discussion of these operations:  
http://www.graficaobscura.com/interp/index.html

out = (1-alpha)*in0 + alpha*in1

http://www.graficaobscura.com/interp/index.html

