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Image Processing
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‣ What about the case when the modification that we would like to 
make to a pixel depends on the pixels around it?
‣ Blurring
‣ Edge Detection
‣ Etc.



Multi-Pixel Operations
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‣ In the simplest case, we define a mask of weights which tells us 
how the values at adjacent pixels should be combined to 
generate the new value.



Blurring
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‣ To blur across pixels, define a mask:
‣ Whose value is largest at the center pixel
‣ Whose entries sum to one

Original Blur

Filter =



Blurring
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Pixel(x,y): red  = 36 
    green  = 36 
    blue = 0

Filter =



Blurring
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Pixel(x,y): red  = 36 
    green  = 36 
    blue = 0

Pixel(x,y).red and its  
red neighbors

X - 1 X X + 1

Y - 1 36 109 146

Y  32 36 109

Y + 1 32 36 73

Filter =



Blurring
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X - 1 X X + 1

Y - 1 36 109 146

Y  32 36 109

Y + 1 32 36 73

New value for Pixel(x,y).red = 
(36  * 1/16)   +   (109 * 2/16)   +   (146 * 1/16) 
(32  * 2/16)   +   (36   * 4/16)   +   (109 * 2/16) 
(32  * 1/16)   +   (36   * 2/16)   +   (73   * 1/16)

Pixel(x,y).red and its  
red neighbors

Filter =



Blurring

9

X - 1 X X + 1

Y - 1 36 109 146

Y  32 36 109

Y + 1 32 36 73

New value for Pixel(x,y).red = 62.69

Pixel(x,y).red and its  
red neighbors

Filter =



Blurring
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Original

New value for Pixel(x,y).red = 63

Blur



Blurring
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‣ Repeat for each pixel and each color channel
‣ Note 1: Keep source and destination separate to avoid “drift”
‣ Note 2: For boundary pixels, not all neighbors are used, and you 

need to normalize the mask so that the sum of the values is 
correct



Blurring
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‣ In general, the mask can have arbitrary size:
‣ We can express a smaller mask as a bigger one by padding 

with zeros.

Original Blur



Blurring
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‣ More non-zero entries to give rise to a wider blur

Original Narrow Blur Wide Blur



Blurring
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‣ A general way for defining the entries of an nxn blurring mask is 
to use the values of a Gaussian:

‣ σ equals the mask radius (“n/2 for an n x n mask”)
‣ x is i’s horizontal distance from center pixel
‣ y is j’s vertical distance from center pixel
‣ Don’t forget to normalize!

Gaussian[i, j] = e�
x

2+y

2

2�2



Bivariate Gaussian Function
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Gaussian[i, j] = e�
x

2+y

2

2�2

aka “Normal Distribution”



Edge Detection
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‣ To find the edges in an image, define a mask:
‣ Whose value is largest at the center pixel
‣ Whose entries sum to zero.

‣ Edge pixels are those whose value is larger (or smaller) than 
those of its neighbors.

Original Highlighted Edges

Filter =



Edge Detection
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Pixel(x,y): red  = 36 
    green  = 36 
    blue = 0

Filter =



Edge Detection
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Pixel(x,y): red  = 36 
    green  = 36 
    blue = 0

X - 1 X X + 1

Y - 1 36 109 146

Y  32 36 109

Y + 1 32 36 73

Filter =

Pixel(x,y).red and its  
red neighbors



Edge Detection
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X - 1 X X + 1

Y - 1 36 109 146

Y  32 36 109

Y + 1 32 36 73

New value for Pixel(x,y).red = 
(36  * -1)   +   (109 * -1)   +   (146 * -1) 
(32  * -1)   +   (36   *  8)   +   (109 * -1) 
(32  * -1)   +   (36   * -1)   +   (73   * -1)

Filter =

Pixel(x,y).red and its  
red neighbors



Edge Detection
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X - 1 X X + 1

Y - 1 36 109 146

Y  32 36 109

Y + 1 32 36 73

New value for Pixel(x,y).red = -285

Filter =

Pixel(x,y).red and its  
red neighbors



Edge Detection
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X - 1 X X + 1

Y - 1 36 109 146

Y  32 36 109

Y + 1 32 36 73

New value for Pixel(x,y).red = 0

Filter =

Pixel(x,y).red and its  
red neighbors



Edge Detection
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New value for Pixel(x,y).red = 0



Edge Mask is a Derivative Filter
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Outline
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‣ Image Processing
‣ Image Warping
‣ Image Sampling



Image Warping
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‣ Move pixels of image
‣ Mapping
‣ Resampling

Source image Destination image

Warp



Overview
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‣ Mapping
‣ Forward
‣ Reverse

‣ Resampling
‣ Point sampling
‣ Triangle filter
‣ Gaussian filter



Mapping
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‣ Transformation: describe the destination location (x,y) for every 
source location (u,v)

v

u

y

x



Example Mappings
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‣ Scale by factor:
‣ x = factor * u
‣ y = factor * v

Scale
0.8

y

x

v

u



Example Mappings
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‣ Rotate by θ degrees:
‣ x = ucosθ - vsinθ 
‣ y = usinθ + vcosθ 

Rotate
30 deg

v

u

y

x



Example Mappings
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‣ Shear in X by factor:
‣ x = u + factor * v
‣ y = v

‣ Shear in Y by factor:
‣ x = u
‣ y = v + factor * u

Shear X
1.3

Shear Y
1.3

v

u

v

u

y

x

y

x



Other Mappings
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‣ Any function of u and v:
‣ x = fx(u,v)
‣ y = fy(u,v)

Fish-eye

“Swirl”

“Rain”



Image Warping Attempt 1 (Forward Mapping)

32

for (int u = 0; u < umax; u++) 
  for (int v = 0; v < vmax; v++) 
    float x = fx(u,v); 
    float y = fy(u,v); 
    dst(x,y) = src(u,v); 
  

Source image Destination image

(u,v)
(x,y)

f



Forward Mapping
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Rotate
-30

v

u

y

x



Forward Mapping
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Rotate
-30

v

u

y

x

Many source pixels 
can map to same 
destination pixel



Forward Mapping
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Rotate
-30

v

u

y

x

Some destination pixels 
may not be covered



Image Warping Attempt 2 (Reverse Mapping)
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for (int x = 0; x < xmax; x++)  
  for (int y = 0; y < ymax; y++)  
    float u = fx-1(x,y); 
    float v = fy-1(x,y); 
    dst(x,y) = src(u,v); 
  

Source image Destination image

(u,v)
(x,y)

f



Reverse Mapping – GOOD!

37

‣ Iterate over destination image
‣ Must resample source
‣ May oversample, but much simpler!

Rotate
-30

v

u

y

x



Resampling
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Source image Destination image

(u,v)
(x,y)

Issue: (u,v) does not usually
have integer coordinates



Overview
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‣ Mapping
‣ Forward
‣ Reverse

‣ Resampling
‣ Nearest Point Sampling
‣ Bilinear Sampling
‣ Gaussian Sampling



Nearest Point Sampling
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int iu = floor(u+0.5); 

int iv = floor(v+0.5); 

dst[x,y] = src[iu,iv];

Rotate
-30

Scale
0.5

v

u

y

x



Bilinear Sampling
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‣ Bilinearly interpolate four closest pixels
a = linear interpolation of src(x1,y1) and src(x2,y1)
b = linear interpolation of src(x1,y2) and src(x2,y2) 
dst(x,y) = linear interpolation of “a” and “b”

x1 = floor( x ); 
x2 = x1 + 1; 
y1 = floor( y ); 
y2 = y1 + 1; 
dx = x – x1; 
dy = y – y1; 
a = src(x1,y1)*(1-dx) + src(x2,y1)*dx; 
b = src(x1,y2)*(1-dx) + src(x2,y2)*dx; 
dst(x,y) = a*(1-dy) + b*dy;

(x1,y1)

(x2,y2)

(x2,y1)

(x1,y2)

(x,y)

b

a



Bilinear Sampling
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‣ Bilinearly interpolate four closest pixels
a = linear interpolation of src(x1,y1) and src(x2,y1)
b = linear interpolation of src(x1,y2) and src(x2,y2) 
dst(x,y) = linear interpolation of “a” and “b”

x1 = floor( x ); 
x2 = x1 + 1; 
y1 = floor( y ); 
y2 = y1 + 1; 
dx = x – x1; 
dy = y – y1; 
a = src(x1,y1)*(1-dx) + src(x2,y1)*dx; 
b = src(x1,y2)*(1-dx) + src(x2,y2)*dx; 
dst(x,y) = a*(1-dy) + b*dy;

(x1,y1)

(x2,y2)

(x2,y1)

(x1,y2)

(x,y)

b

a

Make sure to test that the pixels 
(x1,y1), (x2,y2), (x1,y2), and 
(x2,y1) are within the image.



Gaussian Sampling
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‣ Compute weighted sum of pixel neighborhood:
‣ The blending weights are  

the normalized values of 
a Gaussian function.

(x,y)



44

Nearest
Neighbor



Filtering Methods Comparison

45Bilinear



Filtering Methods Comparison

46Gaussian



Filtering Methods Comparison

47Gaussian

Trade-offs: 

1. Jagged edges versus blurring 

2. Computational speed



Image Warping Implementation
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for (int x = 0; x < xmax; x++)  
  for (int y = 0; y < ymax; y++)  
    float u = fx-1(x,y); 
    float v = fy-1(x,y); 
    dst(x,y) = resample_src(u,v,w); 
  

Source image Destination image

(u,v)

(x,y)

f



Image Warping Implementation
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for (int x = 0; x < xmax; x++)  
  for (int y = 0; y < ymax; y++)  
    float u = fx-1(x,y); 
    float v = fy-1(x,y); 
    dst(x,y) = resample_src(u,v,w); 
  

Source image Destination image

(u,v)

(x,y)

f

w



Example: Scale (src, dst, s)
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float w = ??; 
for (int x = 0; x < xmax; x++)  
  for (int y = 0; y < ymax; y++)  
    float u = x / s; 
    float v = y / s; 
    dst(x,y) = resample_src(u,v,w); 
  

Scale
0.5

y

x

v

u

(u,v)

(x,y)



Example: Scale (src, dst, s)
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Scale
0.5

y

x

v

u

(u,v)

(x,y)w=1.0/s

float w = ??; 
for (int x = 0; x < xmax; x++)  
  for (int y = 0; y < ymax; y++)  
    float u = x / s; 
    float v = y / s; 
    dst(x,y) = resample_src(u,v,w); 
  



Example: Rotate (src, dst, theta)
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float w = ??; 
for (int x = 0; x < xmax; x++)  
  for (int y = 0; y < ymax; y++)  
    float u = x*cos(-θ) - y*sin(-θ); 
    float v = x*sin(-θ) + y*cos(-θ); 
    dst(x,y) = resample_src(u,v,w); 
  

Rotate
30

v

u

(u,v)

x = ucosθ - vsinθ  
y = usinθ + vcosθ

y

x

(x,y)



Example: Rotate (src, dst, theta)
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Rotate
30

v

u

(u,v)

x = ucosθ - vsinθ  
y = usinθ + vcosθ

y

x

(x,y)w=1.0

float w = ??; 
for (int x = 0; x < xmax; x++)  
  for (int y = 0; y < ymax; y++)  
    float u = x*cos(-θ) - y*sin(-θ); 
    float v = x*sin(-θ) + y*cos(-θ); 
    dst(x,y) = resample_src(u,v,w); 
  



Example: Swirl (src, dst, theta) ???
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float w = ??; 
for (int x = 0; x < xmax; x++)  
  for (int y = 0; y < ymax; y++)  
    float u = rot(dist(x,xcenter)*theta); 
    float v = rot(dist(y,ycenter)*theta); 
    dst(x,y) = resample_src(u,v,w); 
  

Swirl
45

y

x

v

u

(u,v) f
(x,y)



Outline

55

‣ Image Processing
‣ Image Warping
‣ Image Sampling



Sampling Questions
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‣ How should we sample an image:
‣ Nearest Point Sampling?
‣ Bilinear Sampling?
‣ Gaussian Sampling?
‣ Something Else?



Image Representation
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What is an image?
An image is a discrete collection of pixels, each representing a 

sample of a continuous function.

Continuous image Digital image



Sampling
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Let’s look at a 1D example:

Continuous Function Discrete Samples



Sampling
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At in-between positions, values are undefined. 
How do we determine the value of a sample at these locations?

Discrete Samples

?



Sampling

60
Discrete Samples

We need to reconstruct a continuous 
function, turning a collection of discrete 
samples into a 1D function that we can 
sample at arbitrary locations.

?

At in-between positions, values are undefined. 
How do we determine the value of a sample at these locations?



Sampling
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Discrete Samples

?

In other words: “How do 
we define the in-between 
values?”

At in-between positions, values are undefined. 
How do we determine the value of a sample at these locations?

We need to reconstruct a continuous 
function, turning a collection of discrete 
samples into a 1D function that we can 
sample at arbitrary locations.



Nearest Point Sampling
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The value at a point is the value of the closest discrete sample.

Discrete SamplesReconstructed Function

?



Nearest Point Sampling
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The value at a point is the value of the closest discrete sample.

Discrete SamplesReconstructed Function

?

The reconstruction: 

ü Interpolates the samples 

û Is not continuous



Bilinear Sampling

64

The value at a point is the (bi)linear interpolation of the two
surrounding samples.

Discrete SamplesReconstructed Function

?



Bilinear Sampling
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The value at a point is the (bi)linear interpolation of the two
surrounding samples.

Discrete SamplesReconstructed Function

?

The reconstruction: 

ü Interpolates the samples 

û Is not smooth



Gaussian Sampling
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The value at a point is the Gaussian average of the surrounding
samples.

Discrete SamplesReconstructed Function

?



Gaussian Sampling
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The value at a point is the Gaussian average of the surrounding
samples.

Discrete SamplesReconstructed Function

?

The reconstruction: 

û Does not interpolate 

ü Is smooth



Image Sampling

68

‣ How do we reconstruct a function from a collection of samples?

?
Samples Reconstruction



Image Sampling
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‣ How do we reconstruct a function from a collection of samples?
‣ To answer this question, we need to understand what kind of 

information the samples contain.

?
Samples ReconstructionOriginal Function



Image Sampling
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‣ How do we reconstruct a function from a collection of samples?
‣ To answer this question, we need to understand what kind of 

information the samples contain.
‣ Signal processing helps us understand this better.

?
Samples ReconstructionOriginal Function



Fourier Analysis
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‣ Fourier analysis provides a way for expressing (or approximating) 
any signal as a sum of scaled and shifted cosine functions.

The Building Blocks for the Fourier Decomposition

cos(0θ) cos(1θ) cos(2θ) cos(3θ)

cos(4θ) cos(5θ) cos(6θ)
…

π π π π

π π π

-π -π -π -π

-π -π -π



Fourier Analysis
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‣ As higher frequency components are added to the 
approximation, finer details are captured.

Initial Function 0th Order Approximation

0th Order Component

f(θ)

f0(θ)=a0(cos0(θ+φ0)



Fourier Analysis
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‣ As higher frequency components are added to the 
approximation, finer details are captured.

Initial Function 1st Order Approximation

+

1st Order Component

0th Order Approximation

f(θ)

f1(θ)=a1(cos1(θ+φ1)



Fourier Analysis
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‣ As higher frequency components are added to the 
approximation, finer details are captured.

Initial Function 2nd Order Approximation

+

2nd Order Component

1st Order Approximation

f(θ)

f2(θ)=a2(cos2(θ+φ2)



Fourier Analysis

75

‣ As higher frequency components are added to the 
approximation, finer details are captured.

Initial Function 3rd Order Approximation

+

3rd Order Component

2nd Order Approximation

f(θ)

f3(θ)=a3(cos3(θ+φ3)



Fourier Analysis
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‣ As higher frequency components are added to the 
approximation, finer details are captured.

Initial Function 4th Order Approximation

+

4th Order Component

3rd Order Approximation

f(θ)

f4(θ)=a4(cos4(θ+φ4)



Fourier Analysis

77

‣ As higher frequency components are added to the 
approximation, finer details are captured.

Initial Function 5th Order Approximation

+

5th Order Component

4th Order Approximation

f(θ)

f5(θ)=a5(cos5(θ+φ5)



Fourier Analysis
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‣ As higher frequency components are added to the 
approximation, finer details are captured.

Initial Function 6th Order Approximation

+

6th Order Component

5th Order Approximation

f(θ)

f6(θ)=a6(cos6(θ+φ6)



Fourier Analysis
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‣ As higher frequency components are added to the 
approximation, finer details are captured.

Initial Function 7th Order Approximation

+

7th Order Component

6th Order Approximation

f(θ)

f7(θ)=a7(cos7(θ+φ7)



Fourier Analysis

80

‣ As higher frequency components are added to the 
approximation, finer details are captured.

Initial Function 8th Order Approximation

+

8th Order Component

7th Order Approximation

f(θ)

f8(θ)=a8(cos8(θ+φ8)



Fourier Analysis
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‣ As higher frequency components are added to the 
approximation, finer details are captured.

Initial Function 9th Order Approximation

+

9th Order Component

8th Order Approximation

f(θ)

f9(θ)=a9(cos9(θ+φ9)



Fourier Analysis
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‣ As higher frequency components are added to the 
approximation, finer details are captured.

Initial Function 10th Order Approximation

+

10th Order Component

9th Order Approximation

f(θ)

f10(θ)=a10(cos10(θ
+φ10)



Fourier Analysis
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‣ As higher frequency components are added to the 
approximation, finer details are captured.

Initial Function 11th Order Approximation

+

11th Order Component

10th Order 
Approximation

f(θ)

f11(θ)=a11(cos11(θ
+φ11)



Fourier Analysis
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‣ As higher frequency components are added to the 
approximation, finer details are captured.

Initial Function 12th Order Approximation

+

12th Order Component

11th Order Approximation

f(θ)

f12(θ)=a12(cos12(θ
+φ12)



Fourier Analysis
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‣ As higher frequency components are added to the 
approximation, finer details are captured.

Initial Function 13th Order Approximation

+

13th Order Component

12th Order 
Approximation

f(θ)

f13(θ)=a13(cos13(θ
+φ13)



Fourier Analysis
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‣ As higher frequency components are added to the 
approximation, finer details are captured.

Initial Function 14th Order Approximation

+

14th Order Component

13th Order 
Approximation

f(θ)

f14(θ)=a14(cos14(θ
+φ14)



Fourier Analysis
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‣ As higher frequency components are added to the 
approximation, finer details are captured.

Initial Function 15th Order Approximation

+

15th Order Component

14th Order 
Approximation

f(θ)

f15(θ)=a15(cos15(θ
+φ15)



Fourier Analysis
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‣ As higher frequency components are added to the 
approximation, finer details are captured.

Initial Function 16th Order Approximation

+

16th Order Component

15th Order 
Approximation

f(θ)

f16(θ)=a16(cos16(θ
+φ16)



Fourier Analysis
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‣ Combining all of the frequency components together, we get the 
initial function.

Initial Function

…

+ + + +

+ + + +

=

f(θ)

f0(θ) f1(θ) f2(θ) f3(θ) f4(θ)

f5(θ) f6(θ) f7(θ) f8(θ)

ak: amplitude of the kth frequency component 
φk: shift of the kth frequency component



Question
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‣ As higher frequency components are added to the 
approximation, finer details are captured. 

‣ If we have n samples, what is the highest frequency that can be 
represented?

Initial Function

…

+ + + +

+ + + +

=

f(θ)

f0(θ) f1(θ) f2(θ) f3(θ) f4(θ)

f5(θ) f6(θ) f7(θ) f8(θ)



Question
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‣ As higher frequency components are added to the 
approximation, finer details are captured. 

‣ If we have n samples, what is the highest frequency that can be 
represented?

Initial Function

…

+ + + +

+ + + +

=

f(θ)

f0(θ) f1(θ) f2(θ) f3(θ) f4(θ)

f5(θ) f6(θ) f7(θ) f8(θ)

Each frequency component has two degrees of freedom:
• Amplitude
• Shift

With n samples we can represent the first n/2 frequency 
components



Sampling Theorem
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‣ A signal can be reconstructed from its samples, if the original 
signal has no frequencies above 1/2 the sampling frequency – 
Shannon’s Theorem

‣ The minimum sampling rate for band-limited function is called the 
“Nyquist rate”

A signal is band-limited if its highest
non-zero frequency is bounded.
The frequency is called the bandwidth.



Question

93

‣ What if we have only n samples and we try to reconstruct a 
function with frequencies larger than the Nyquist frequency (n/2)?



Aliasing
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‣ When a high-frequency signal is sampled with insufficiently many 
samples, it will be perceived as a lower-frequency signal. This 
masking of higher frequencies as lower ones is referred to as 
aliasing.

π-π



Aliasing
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‣ When a high-frequency signal is sampled with insufficiently many 
samples, it will be perceived as a lower-frequency signal. This 
masking of higher frequencies as lower ones is referred to as 
aliasing.

π-π



Aliasing
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‣ When a high-frequency signal is sampled with insufficiently many 
samples, it will be perceived as a lower-frequency signal. This 
masking of higher frequencies as lower ones is referred to as 
aliasing.

π-π



Aliasing
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‣ When a high-frequency signal is sampled with insufficiently many 
samples, it will be perceived as a lower-frequency signal. This 
masking of higher frequencies as lower ones is referred to as 
aliasing.

π-π



Temporal Aliasing
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‣ Artifacts due to limited temporal resolution



99

Nearest
Neighbor



Sampling
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‣ There are two problems:
‣ You don’t have enough samples to correctly reconstruct your 

high-frequency information
‣ You corrupt the low-frequency information because the high-

frequencies mask themselves as lower ones.



Anti-Aliasing

101

Two possible ways to address aliasing:
‣ Sample at higher rate
• Pre-filter to form band-limited signal



Anti-Aliasing
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Two possible ways to address aliasing:
‣ Sample at higher rate
‣ Not always possible
‣ Still rendering to fixed resolution

• Pre-filter to form band-limited signal



Anti-Aliasing
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Two possible ways to address aliasing:
• Sample at higher rate
‣ Pre-filter to form a band-limited signal
‣ You still don’t get your high frequencies, but at least the low 

frequencies are uncorrupted.



Fourier Analysis
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‣ If we just look at how much information each frequency 
contributes, we obtain the power spectrum of the signal:

Initial Function

…

+ + + +

+ + + +

=



Fourier Analysis
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‣ If we just look at how much information each frequency 
contributes, we obtain the power spectrum of the signal:

Initial Function

…

+ + + +

+ + + +

=

Power Spectrum



Pre-Filtering
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‣ Band-limit by discarding the high-frequency components of the 
Frequency decomposition.

Initial Power Spectrum Band-Limited Power Spectrum



Pre-Filtering
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‣ Band-limit by discarding the high-frequency components of the 
Fourier decomposition.

‣ We can do this by multiplying the frequency components by a 0/1 
function:

1

X =

Initial Power Spectrum Band-Limited SpectrumFrequency Filter



Pre-Filtering

108

‣ Band-limit by discarding the high-frequency components of the 
Fourier decomposition.

‣ We can do this by multiplying the frequency components by a 0/1 
function:

1

X =

Initial Power Spectrum Band-Limited SpectrumFrequency Filter



Fourier Theory
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‣ A fundamental fact from Fourier theory is that multiplication in the 
frequency domain is equivalent to convolution in the spatial 
domain.



Convolution
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‣ To convolve two functions f and g, we resample the function f 
using the weights given by g.

f(θ)

g(θ)1



Convolution
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‣ To convolve two functions f and g, we resample the function f 
using the weights given by g.

f(θ)

g(θ)

(f∗g)(θ)

1

1 0



Convolution
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‣ To convolve two functions f and g, we resample the function f 
using the weights given by g.

f(θ)

g(θ)
.6

(f∗g)(θ)

.4

.6 .4 0
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‣ To convolve two functions f and g, we resample the function f 
using the weights given by g.

f(θ)

(f∗g)(θ)

g(θ)
.6
.4

.4 .6 0
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‣ To convolve two functions f and g, we resample the function f 
using the weights given by g.

f(θ)

g(θ)

(f∗g)(θ)

1

1 00
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‣ To convolve two functions f and g, we resample the function f 
using the weights given by g.

f(θ)

g(θ)
.6

(f∗g)(θ)

.4

.6 .40
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‣ To convolve two functions f and g, we resample the function f 
using the weights given by g.

f(θ)

(f∗g)(θ)

g(θ)
.6
.4

.4 .60
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‣ To convolve two functions f and g, we resample the function f 
using the weights given by g.

f(θ)

g(θ)

(f∗g)(θ)

1

10 0
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‣ To convolve two functions f and g, we resample the function f 
using the weights given by g.

f(θ)

g(θ)

0.5

(f∗g)(θ)
.5 .50
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‣ To convolve two functions f and g, we resample the function f 
using the weights given by g.

f(θ)

g(θ)

(f∗g)(θ)

1

10 0
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‣ To convolve two functions f and g, we resample the function f 
using the weights given by g.

f(θ)

g(θ)

(f∗g)(θ)

1

10
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‣ To convolve two functions f and g, we resample the function f 
using the weights given by g.

‣ Nearest point, bilinear, and Gaussian interpolation are just 
convolutions with different filters.

*

*

*

=

=

=
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‣ Recall that convolution in the spatial domain is the equal to 
multiplication in the frequency domain.

‣ In order to avoid aliasing, we need to convolve with a filter whose 
power spectrum has value:
‣ 1 at low frequencies
‣ 0 at high frequencies 

1

X =

Initial Power Spectrum Band-Limited SpectrumFrequency Filter
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* =

Filter Spectrum

Discrete Samples Reconstruction Filter Reconstructed Function



Bilinear Convolution

124

* =
Discrete Samples Reconstruction Filter Reconstructed Function

Filter Spectrum



Gaussian Convolution
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* =
Discrete Samples Reconstruction Filter Reconstructed Function

Filter Spectrum
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‣ The ideal filter for avoiding aliasing has a power spectrum with 
values:
‣ 1 at low frequencies
‣ 0 at high frequencies 

‣ The sinc function has such a power spectrum and is referred to 
as the ideal reconstruction filter:
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‣ The ideal filter for avoiding aliasing has a power spectrum with 
values:
‣ 1 at low frequencies
‣ 0 at high frequencies 

‣ The sinc function has such a power spectrum and is referred to 
as the ideal reconstruction filter:

Reconstruction Filter

Filter Spectrum
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‣ Limitations:
‣ Has negative values, giving rise to negative weights in the 

interpolation.
‣ The discontinuity in the frequency domain (power spectrum) 

results in ringing artifacts known as the Gibbs Phenomenon.

Reconstruction Filter

* =

Initial Function Reconstructed Function
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‣ Limitations:
‣ Has negative values, giving rise to negative weights in the 

interpolation.
‣ The discontinuity in the frequency domain (power spectrum) 

results in ringing artifacts near spatial discontinuities, known 
as the Gibbs Phenomenon.

Reconstruction Filter

* =

Initial Function Reconstructed Function
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There are different ways to sample an image:
‣ Nearest Point Sampling
‣ Linear Sampling
‣ Gaussian Sampling
‣ Sinc Sampling

These methods have advantages and disadvantages.
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üCan be implemented efficiently because the filter is non-zero in a 
very small region.

? Interpolates the samples.
û Is discontinuous.
ûDoes not address the aliasing problem, giving bad results when a 

signal is under-sampled.

* =

Discrete Samples Reconstruction Filter Reconstructed Function
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üCan be implemented efficiently because the filter is non-zero in a 
very small region.

? Interpolates the samples.
û Is not smooth.
ûPartially addresses the aliasing problem, but can still give bad 

results when a signal is under-sampled.

* =

Discrete Samples Reconstruction Filter Reconstructed Function
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û Is slow to implement because the filter is non-zero in a large 
region.

? Does not interpolate the samples.
üIs smooth.
üAddresses the aliasing problem by killing off the high frequencies.

* =

Discrete Samples Reconstruction Filter Reconstructed Function
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û Is slow to implement because the filter is non-zero in a large 
region.

? Does not interpolate the samples.
ûAssigns negative weights.
ûRinging at discontinuities.
üAddresses the aliasing problem by killing off the high frequencies.

* =

Discrete Samples Reconstruction Filter Reconstructed Function
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Question:
‣ Is it good if a reconstruction method is interpolating? (Consider 

the case when you are down-scaling an image?)
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It appears that we have been mixing the sampling problem with 
the reconstruction problem. 

However, our motivation for the choice of filter is the same in 
both cases. We want a filter whose spectrum goes to zero so 
that:

‣ Sampling: High frequency samples are killed off, the 
signal becomes band-limited, and we can sample 
discretely.

‣ Reconstruction: We do not end up reconstructing a 
function with high frequency components.
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Given a signal sampled at m positions, if we would like to re-
sample at n positions we need to:

1. Reconstruct a function with maximum non-zero frequency 
no larger than min(m/2,n/2).

2. Sample the reconstructed function at the n positions.
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Example:



Image Sampling

139

Example:
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Example:
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Recall:
To avoid aliasing, we kill off high-frequency components, by 

convolving with a function whose power spectrum is zero 
at high frequencies.

We use a Gaussian for function reconstruction and sampling 
because it smoothly kills of the high frequency 
components.
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Q: What variance Gaussian should we use?
A: The variance of the Gaussian should be between 0.5 and 1.0 

times the distance between samples.



Gaussian Sampling
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Q: What variance Gaussian should we use?
A: The variance of the Gaussian should be between 0.5 and 1.0 

times the distance between samples.

Power spectra of the Gaussians used for reconstructing and 
sampling a function with 20 samples
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Scaling Example:
Q: Suppose we have data represented by 20 samples that we would 

like to down-sample to 5 samples. What variance should we use?
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Scaling Example:
Q: Suppose we have data represented by 20 samples that we would 

like to down-sample to 5 samples. What variance should we use?
A: The distance between two adjacent samples in the final array 

corresponds to a distance of 4 units in the initial array. 
The variance of the Gaussian should be between 2.0 and 4.0.
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Scaling Example:
Q: Suppose we have data represented by 20 samples that we would 

like to up-sample to 40 samples. What variance should we use?
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Scaling Example:
Q: Suppose we have data represented by 20 samples that we would 

like to up-sample to 40 samples. What variance should we use?
A: Because the initial samples can’t represent frequencies higher 

than 10, we shouldn’t use a Gaussian with smaller variance since 
this would introduce high-frequency components into the 
reconstruction. The variance of the Gaussian should remain 
between 0.5 and 1.0.


