3D Rendering

Connelly Barnes CS 4810: Graphics

Acknowledgment: slides by Jason Lawrence, Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin

Rendering

Generate an image from geometric primitives

Rendering

Generate an image from geometric primitives

3D Rendering Example

What issues must be addressed by a 3D rendering system?

Overview

- 3D scene representation
- 3D viewer representation
- Visible surface determination
- Lighting simulation

Overview

- 3D scene representation
- 3D viewer representation
- Visible surface determination
- Lighting simulation

How is the 3D scene described in a computer?

3D Scene Representation

Scene is usually approximated by 3D primitives

 oPoint
 oLine segment
 oPolygon
 oPolyhedron
 oCurved surface
 oSolid object
 oetc.

3D Point

Specifies a location

3D Point

Specifies a location
 oRepresented by three coordinates
 oInfinitely small

typedef struct {
 Coordinate x;
 Coordinate y;
 Coordinate z;
} Point;

Specifies a direction and a magnitude

Specifies a direction and a magnitude

 oRepresented by three coordinates
 oMagnitude IIVII = sqrt(dx dx + dy dy + dz dz)
 oHas no location

(dx,dy,dz)

typedef struct {
 Coordinate dx;
 Coordinate dy;
 Coordinate dz;
} Vector;

Specifies a direction and a magnitude

 oRepresented by three coordinates
 oMagnitude IIVII = sqrt(dx dx + dy dy + dz dz)
 oHas no location

typedef struct { Coordinate dx; Coordinate dy; Coordinate dz; Vector;

• Dot product of two 3D vectors $\mathbf{o}V_1 \cdot V_2 = dx_1 dx_2 + dy_1 dy_2 + dz_1 dz_2$ $\mathbf{o}V_1 \cdot V_2 = IIV_1 II II V_2 II \cos(\Theta)$

 (dx_1, dy_1, dz_1) (dx_2, dy_2, dz_2) **(H)**

- What is...?
- $V_1 \cdot V_1 = ?$

- What is...?
- $V_1 \cdot V_1 = dx dx + dy dy + dz dz$

- What is ...?
- $V_1 \cdot V_1 = (Magnitude)^2$

- $V_1 \cdot V_1 = (Magnitude)^2$
- Now, let V_1 and V_2 both be unit-length vectors.
- What is ...?
- $V_1 \cdot V_1 =$

- $V_1 \cdot V_1 = (Magnitude)^2$
- Now, let V_1 and V_2 both be unit-length vectors.
- What is ...?
- $V_1 \cdot V_1 = ||V_1|| ||V_1|| \cos(\Theta)$

- $V_1 \cdot V_1 = (Magnitude)^2$
- Now, let V_1 and V_2 both be unit-length vectors.
- What is ...?
- $V_1 \cdot V_1 = ||V_1|| ||V_1|| \cos(\Theta) = \cos(\Theta)$

- $V_1 \cdot V_1 = (Magnitude)^2$
- Now, let V_1 and V_2 both be unit-length vectors.
- What is ...?
- $V_1 \cdot V_1 = ||V_1|| ||V_1|| \cos(\Theta) = \cos(\Theta) = \cos(0)$

- $V_1 \cdot V_1 = (Magnitude)^2$
- Now, let V_1 and V_2 both be unit-length vectors.
- What is ...?
- $V_1 \cdot V_1 = 1$

- $V_1 \cdot V_1 = (Magnitude)^2$
- Now, let V_1 and V_2 both be unit-length vectors.
- What is ...?
- $V_1 \cdot V_1 = 1$
- $V_1 \cdot V_2 =$

- $V_1 \cdot V_1 = (Magnitude)^2$
- Now, let V_1 and V_2 both be unit-length vectors.
- What is ...?
- $V_1 \cdot V_1 = 1$
- $V_1 \cdot V_2 = IIV_1 II II V_2 II \cos(\Theta)$

- $V_1 \cdot V_1 = (Magnitude)^2$
- Now, let V_1 and V_2 both be unit-length vectors.
- What is ...?
- $V_1 \cdot V_1 = 1$
- $V_1 \cdot V_2 = ||V_1|| ||V_2|| \cos(\Theta) = \cos(\Theta)$

- $V_1 \cdot V_1 = (Magnitude)^2$
- Now, let V_1 and V_2 both be unit-length vectors.
- What is ...?
- $V_1 \cdot V_1 = 1$
- $V_1 \cdot V_2 = \cos(\Theta) = (adjacent / hyp)$

 (dx_1, dy_1, dz_1) (dx_2, dy_2, dz_2) Θ

- $V_1 \cdot V_1 = (Magnitude)^2$
- Now, let V_1 and V_2 both be unit-length vectors.
- What is ...?
- $V_1 \cdot V_1 = 1$
- $V_1 \cdot V_2 = (adjacent / 1)$

 (dx_1, dy_1, dz_1) (dx_2, dy_2, dz_2) Θ

- $V_1 \cdot V_1 = (Magnitude)^2$
- Now, let V_1 and V_2 both be unit-length vectors.
- What is ...?
- $V_1 \cdot V_1 = 1$
- $V_1 \cdot V_2$ = length of V_1 projected onto V_2 (or vice-versa)

Specifies a direction and a magnitude

 oRepresented by three coordinates
 oMagnitude IIVII = sqrt(dx dx + dy dy + dz dz)
 oHas no location

typedef struct {
 Coordinate dx;
 Coordinate dy;
 Coordinate dz;
} Vector;

• Cross product of two 3D vectors $\mathbf{o}V_1 \times V_2 = Vector normal to plane V_1, V_2$ $\mathbf{o}II V_1 \times V_2II = IIV_1II II V_2II sin(\Theta)$

 (dx_1, dy_1, dz_1) (dx_2, dy_2, dz_2) **(H)**

Linear Algebra: More Review

- Let $C = A \times B$: oCx = AyBz - AzBy oCy = AzBx - AxBzoCz = AxBy - AyBx
- A × B = B × A (remember "right-hand" rule)
- We can do similar derivations to show:
 oV₁×V₂= ||V₁ || || V₂ || sin(Θ) n, where n is unit vector normal to V₁ and V₂
 o|| V₁ × V₁ || = 0
 o|| V₁ × (-V₁) || = 0
- http://physics.syr.edu/courses/java-suite/crosspro.html

3D Line Segment

• Linear path between two points

3D Line Segment

Use a linear combination of two points oParametric representation:

 P_{γ}

 $P = P_1 + t (P_2 - P_1), \quad (0 \le t \le 1)$

typedef struct {
 Point P1;
 Point P2;
} Segment;

3D Ray

 Line segment with one endpoint at infinity oParametric representation:

 $P = P_1 + t V$, $(0 \le t \le \infty)$

3D Line

 Line segment with both endpoints at infinity oParametric representation:

 P_1

 $P = P_1 + t V, \quad (-\infty < t < \infty)$

3D Plane

• A linear combination of three points

3D Plane

A linear combination of three points
 OImplicit representation:

 $P \cdot N + d = 0, \text{ or}$ ax + by + cz + d = 0

typedef struct {
 Vector N;
 Distance d;
} Plane;

oN is the plane "normal"
 »Unit-length vector
 »Perpendicular to plane

3D Polygon

Area "inside" a sequence of coplanar points
 oTriangle
 oQuadrilateral
 oConvex
 oStar-shaped
 oConcave
 oSelf-intersecting

typedef struct {
 Point *points;
 int npoints;
} Polygon;

Points are in counter-clockwise order

oHoles (use > 1 polygon struct)

3D Sphere

All points at distance "r" from point "(c_x, c_y, c_z)"
 oImplicit representation:

$$(x - c_x)^2 + (y - c_y)^2 + (z - c_z)^2 = r^2$$

oParametric representation:

»x = r cos(
$$\phi$$
) cos(Θ) + c_x
»y = r cos(ϕ) sin(Θ) + c_y
»z = r sin(ϕ) + c_z

typedef struct {
 Point center;
 Distance radius;
} Sphere;

Other 3D primitives

- Cone
- Cylinder
- Ellipsoid
- Box
- Etc.

3D Geometric Primitives

More detail on 3D modeling later in course

o Point
o Line segment
o Polygon
o Polyhedron
o Curved surface
o Solid object
o etc.

Overview

- 3D scene representation
- 3D viewer representation
- Visible surface determination
- Lighting simulation

How is the viewing device described in a computer?

Camera Models

The most common model is pin-hole camera
 oAll captured light rays arrive along paths toward focal point without lens distortion (everything is in focus)

Camera Parameters

• What are the parameters of a camera?

Camera Parameters

- Position
 oEye position (px, py, pz)
- Orientation

 oView direction (dx, dy, dz)
 oUp direction (ux, uy, uz)
- Aperture
 oField of view (xfov, yfov)
- Film plane
 o"Look at" point
 oView plane normal

Other Models: Depth of Field

Close Focused

Distance Focused

P. Haeberli

Other Models: Motion Blur

- Mimics effect of open camera shutter
- Gives perceptual effect of high-speed motion
- Generally involves temporal super-sampling

Other Models: Lens Distortion

- Camera lens bends light, especially at edges
- Common types are barrel and pincushion

Barrel Distortion

Pincushion Distortion

Other Models: Lens Distortion

- Camera lens bends light, especially at edges
- Common types are barrel and pincushion

Barrel Distortion

No Distortion

Other Models: Lens Distortion

Lens flares are another kind of distortion

Star Wars: Knights of the Old Republic (BioWare)

Overview

- 3D scene representation
- 3D viewer representation
- Visible surface determination
- Lighting simulation

How can the front-most surface be found with an algorithm?

Visible Surface Determination

 The color of each pixel on the view plane depends on the radiance emanating from visible surfaces

Simplest method is ray casting

Ray Casting

• For each sample ...

oConstruct ray from eye position through view plane
oFind first surface intersected by ray through pixel
oCompute color of sample based on surface radiance

Ray Casting

• For each sample ...

oConstruct ray from eye position through view plane
oFind first surface intersected by ray through pixel
oCompute color of sample based on surface radiance

Visible Surface Determination

• For each sample ...

oConstruct ray from eye position through view plane
oFind first surface intersected by ray through pixel
oCompute color of sample based on surface radiance

More efficient algorithms utilize spatial coherence!

Rendering Algorithms

Rendering is a problem in sampling and reconstruction!

Overview

- 3D scene representation
- 3D viewer representation
- Visible surface determination
- » Lighting simulation

How do we compute the radiance for each sample ray?

Lighting parameters

 oLight source emission
 oSurface reflectance
 oAtmospheric attenuation

Lighting parameters

 oLight source emission
 oSurface reflectance
 oAtmospheric attenuation

Lighting parameters

 oLight source emission
 oSurface reflectance
 oAtmospheric attenuation

Durand & Dorsey Siggraph '02

- Direct illumination
 oRay casting
 oPolygon shading
- Global illumination

 oRay tracing
 oMonte Carlo methods
 oRadiosity methods

More on these methods later!

Summary

- Major issues in 3D rendering o3D scene representation o3D viewer representation oVisible surface determination oLighting simulation

Next Lecture

- Ray intersections
- Light and reflectance models
- Indirect illumination

Rendered by Tor Olav Kristensen using POV-Ray

For assignment #2, you will write a ray tracer!