3D Rendering

Connelly Barnes

CS 4810: Graphics

Acknowledgment: slides by Jason Lawrence, Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin

Rendering

- Generate an image from geometric primitives

Geometric Primitives

Raster
Image

Rendering

- Generate an image from geometric primitives

Rendering

3D
2D

3D Rendering Example

What issues must be addressed by a 3D rendering system?

Overview

- 3D scene representation
-3D viewer representation
- Visible surface determination
- Lighting simulation

Overview

- 3D scene representation
-3D viewer representation
- Visible surface determination
- Lighting simulation

How is the 3D scene described in a computer?

3D Scene Representation

- Scene is usually approximated by 3D primitives oPoint
oLine segment
oPolygon
oPolyhedron oCurved surface oSolid object oetc.

3D Point

- Specifies a location

3D Point

- Specifies a location oRepresented by three coordinates olnfinitely small

```
typedef struct {
    Coordinate x;
    Coordinate y;
    Coordinate z;
} Point;
```

- $(\mathrm{x}, \mathrm{y}, \mathrm{z})$

3D Vector

- Specifies a direction and a magnitude

3D Vector

- Specifies a direction and a magnitude
oRepresented by three coordinates
oMagnitude IIVII = sqrt(dx dx $+d y d y+d z d z)$
oHas no location

typedef struct \{

Coordinate dx;
Coordinate dy;
Coordinate dz;
Vector;

3D Vector

- Specifies a direction and a magnitude
oRepresented by three coordinates
oMagnitude IIVII $=$ sqrt(dx dx $+d y d y+d z d z)$
oHas no location

```
typedef struct {
Coordinate dx; Coordinate dy;
Coordinate dz;
\} Vector;
```

- Dot product of two 3D vectors

$\mathbf{o V}_{1} \cdot V_{2}=d x_{1} d x_{2}+d y_{1} d y_{2}+d z_{1} d z_{2}$
$o \mathrm{~V}_{1} \cdot \mathrm{~V}_{2}=\left\|\mathrm{V}_{1}\right\|\left\|\mathrm{V}_{2}\right\| \cos (\Theta)$

Linear Algebra: a Little Review

- What is...?
- $\mathrm{V}_{1} \cdot \mathrm{~V}_{1}=$?

Linear Algebra: a Little Review

- What is...?
- $V_{1} \cdot V_{1}=d x d x+d y d y+d z d z$

Linear Algebra: a Little Review

- What is...?
- $\mathrm{V}_{1} \cdot \mathrm{~V}_{1}=(\text { Magnitude })^{2}$

Linear Algebra: a Little Review

- $\mathrm{V}_{1} \cdot \mathrm{~V}_{1}=(\text { Magnitude })^{2}$
- Now, let V_{1} and V_{2} both be unit-length vectors.
- What is...?
- $\mathrm{V}_{1} \cdot \mathrm{~V}_{1}=$

Linear Algebra: a Little Review

- $\mathrm{V}_{1} \cdot \mathrm{~V}_{1}=(\text { Magnitude })^{2}$
- Now, let V_{1} and V_{2} both be unit-length vectors.
- What is...?
- $\mathrm{V}_{1} \cdot \mathrm{~V}_{1}=\left\|\mathrm{V}_{1}\right\|\left\|\mathrm{V}_{1}\right\| \cos (\Theta)$

Linear Algebra: a Little Review

- $\mathrm{V}_{1} \cdot \mathrm{~V}_{1}=(\text { Magnitude })^{2}$
- Now, let V_{1} and V_{2} both be unit-length vectors.
- What is...?
- $\mathrm{V}_{1} \cdot \mathrm{~V}_{1}=\left\|\mathrm{V}_{1}\right\|\left\|\mathrm{V}_{1}\right\| \cos (\Theta)=\cos (\Theta)$

Linear Algebra: a Little Review

- $\mathrm{V}_{1} \cdot \mathrm{~V}_{1}=(\text { Magnitude })^{2}$
- Now, let V_{1} and V_{2} both be unit-length vectors.
- What is...?
- $\mathrm{V}_{1} \cdot \mathrm{~V}_{1}=\left\|\mathrm{V}_{1}\right\|\left\|\mathrm{V}_{1}\right\| \cos (\Theta)=\cos (\Theta)=\cos (0)$

Linear Algebra: a Little Review

- $\mathrm{V}_{1} \cdot \mathrm{~V}_{1}=(\text { Magnitude })^{2}$
- Now, let V_{1} and V_{2} both be unit-length vectors.
- What is...?
- $\mathrm{V}_{1} \cdot \mathrm{~V}_{1}=1$

Linear Algebra: a Little Review

- $\mathrm{V}_{1} \cdot \mathrm{~V}_{1}=(\text { Magnitude })^{2}$
- Now, let V_{1} and V_{2} both be unit-length vectors.
- What is...?
- $\mathrm{V}_{1} \cdot \mathrm{~V}_{1}=1$
- $\mathrm{V}_{1} \cdot \mathrm{~V}_{2}=$

Linear Algebra: a Little Review

- $\mathrm{V}_{1} \cdot \mathrm{~V}_{1}=(\text { Magnitude })^{2}$
- Now, let V_{1} and V_{2} both be unit-length vectors.
- What is...?
- $\mathrm{V}_{1} \cdot \mathrm{~V}_{1}=1$
- $\mathrm{V}_{1} \cdot \mathrm{~V}_{2}=\left\|\mathrm{V}_{1}\right\| I \| \mathrm{V}_{2} I I \cos (\Theta)$

Linear Algebra: a Little Review

- $\mathrm{V}_{1} \cdot \mathrm{~V}_{1}=(\text { Magnitude })^{2}$
- Now, let V_{1} and V_{2} both be unit-length vectors.
- What is...?
- $\mathrm{V}_{1} \cdot \mathrm{~V}_{1}=1$
- $\mathrm{V}_{1} \cdot \mathrm{~V}_{2}=\left\|\mathrm{V}_{1}\right\|\left\|\mathrm{V}_{2}\right\| \cos (\Theta)=\cos (\Theta)$

Linear Algebra: a Little Review

- $\mathrm{V}_{1} \cdot \mathrm{~V}_{1}=(\text { Magnitude })^{2}$
- Now, let V_{1} and V_{2} both be unit-length vectors.
- What is...?
- $\mathrm{V}_{1} \cdot \mathrm{~V}_{1}=1$
- $\mathrm{V}_{1} \cdot \mathrm{~V}_{2}=\cos (\Theta)=($ adjacent $/$ hyp $)$

Linear Algebra: a Little Review

- $\mathrm{V}_{1} \cdot \mathrm{~V}_{1}=(\text { Magnitude })^{2}$
- Now, let V_{1} and V_{2} both be unit-length vectors.
- What is...?
- $\mathrm{V}_{1} \cdot \mathrm{~V}_{1}=1$
- $\mathrm{V}_{1} \cdot \mathrm{~V}_{2}=($ adjacent $/ 1)$

Linear Algebra: a Little Review

- $\mathrm{V}_{1} \cdot \mathrm{~V}_{1}=(\text { Magnitude })^{2}$
- Now, let V_{1} and V_{2} both be unit-length vectors.
- What is...?
- $\mathrm{V}_{1} \cdot \mathrm{~V}_{1}=1$
- $\mathrm{V}_{1} \cdot \mathrm{~V}_{2}=$ length of V_{1} projected onto V_{2} (or vice-versa)

3D Vector

- Specifies a direction and a magnitude
oRepresented by three coordinates
oMagnitude IIVII $=$ sqrt(dx dx $+d y d y+d z d z)$
oHas no location

```
typedef struct {
    Coordinate dx;
    Coordinate dy;
    Coordinate dz;
} Vector;
```

- Cross product of two 3D vectors

$\mathrm{o}_{1} \times \mathrm{V}_{2}=$ Vector normal to plane $\mathrm{V}_{1}, \mathrm{~V}_{2}$
oll $\mathrm{V}_{1} \times \mathrm{V}_{2}\|=\| \mathrm{V}_{1}$ II II $\mathrm{V}_{2} \| \sin (\Theta)$

Linear Algebra: More Review

- Let $C=A \times B$:
$o C x=A y B z-A z B y$
$o C y=A z B x-A x B z$
$o C z=A x B y-A y B x$
$-\mathrm{A} \times \mathrm{B}=-\mathrm{B} \times \mathrm{A}$ (remember "right-hand" rule)
- We can do similar derivations to show:
$\mathbf{o} \mathrm{V}_{1} \times \mathrm{V}_{2}=\| \mathrm{V}_{1} I I I I \mathrm{~V}_{2} I I \sin (\Theta) n$, where n is unit vector normal to V_{1} and V_{2}
oll $\mathrm{V}_{1} \times \mathrm{V}_{1}$ II $=0$
oll $\mathrm{V}_{1} \times\left(-\mathrm{V}_{1}\right) \|=0$
- http://physics.syr.edu/courses/java-suite/crosspro.html

3D Line Segment

- Linear path between two points

3D Line Segment

- Use a linear combination of two points oParametric representation:

$$
» P=P_{1}+t\left(P_{2}-P_{1}\right), \quad(0 \leq t \leq 1)
$$

typedef struct \{
Point P1;
Point P2;
\} Segment;

3D Ray

- Line segment with one endpoint at infinity oParametric representation:
»P=P1+tV, (0<=t<m)
typedef struct \{
Point P1;
Vector V;
\} Ray;

3D Line

- Line segment with both endpoints at infinity oParametric representation:

$$
» P=P_{1}+t V, \quad(-\infty<t<\infty)
$$

3D Plane

- A linear combination of three points

$\mathrm{P}_{1}{ }^{\bullet}$

3D Plane

- A linear combination of three points
olmplicit representation:

$$
\begin{aligned}
& » P \cdot N+d=0, \text { or } \\
& >a x+b y+c z+d=0
\end{aligned}
$$

```
typedef struct {
    Vector N;
    Distance d;
    Plane;
```


3D Polygon

- Area "inside" a sequence of coplanar points
oTriangle
oQuadrilateral
oConvex
oStar-shaped

oConcave
oSelf-intersecting

```
typedef struct {
    Point *points;
    int npoints;
} Polygon;
```

Points are in counter-clockwise order oHoles (use > 1 polygon struct)

3D Sphere

- All points at distance "r" from point " $\left(\mathrm{c}_{\mathrm{x}}, \mathrm{c}_{\mathrm{y}}, \mathrm{c}_{\mathrm{z}}\right)$ " olmplicit representation:

$$
»\left(x-c_{x}\right)^{2}+\left(y-c_{y}\right)^{2}+\left(z-c_{z}\right)^{2}=r^{2}
$$

oParametric representation:

$$
\begin{aligned}
& » x=r \cos (\phi) \cos (\Theta)+c_{x} \\
& » y=r \cos (\phi) \sin (\Theta)+c_{y} \\
& » z=r \sin (\phi)+c_{z}
\end{aligned}
$$

Point center;
Distance radius;
\} Sphere;

Other 3D primitives

- Cone
- Cylinder
- Ellipsoid
- Box
- Etc.

3D Geometric Primitives

- More detail on 3D modeling later in course
o Line segment
oPolyhedron
oCurved surface
oSolid object
oetc.

Overview

- 3D scene representation
-3D viewer representation
- Visible surface determination
- Lighting simulation

How is the viewing device described in a computer?

Camera Models

- The most common model is pin-hole camera
oAll captured light rays arrive along paths toward focal point without lens distortion (everything is in focus)

View plane

Eye position
(focal point)

Camera Parameters

-What are the parameters of a camera?

Camera Parameters

- Position
oEye position (px, py, pz)
- Orientation
oView direction (dx, dy, dz)
oUp direction (ux, uy, uz)
- Aperture
oField of view (xfov, yfov)
- Film plane
o"Look at" point
oView plane normal

Other Models: Depth of Field

Close Focused

Distance Focused

Other Models: Motion Blur

- Mimics effect of open camera shutter
- Gives perceptual effect of high-speed motion
- Generally involves temporal super-sampling

Other Models: Lens Distortion

- Camera lens bends light, especially at edges
- Common types are barrel and pincushion

Barrel Distortion

Pincushion Distortion

Other Models: Lens Distortion

- Camera lens bends light, especially at edges
- Common types are barrel and pincushion

Barrel Distortion

No Distortion

Other Models: Lens Distortion

Lens flares are another kind of distortion

Star Wars: Knights of the Old Republic

Overview

- 3D scene representation
-3D viewer representation
- Visible surface determination
- Lighting simulation

How can the front-most surface be found with an algorithm?

Visible Surface Determination

- The color of each pixel on the view plane depends on the radiance emanating from visible surfaces

Simplest method is ray casting

Ray Casting

- For each sample ...
oConstruct ray from eye position through view plane oFind first surface intersected by ray through pixel oCompute color of sample based on surface radiance

Ray Casting

- For each sample ...
oConstruct ray from eye position through view plane oFind first surface intersected by ray through pixel oCompute color of sample based on surface radiance

Visible Surface Determination

- For each sample ...
oConstruct ray from eye position through view plane oFind first surface intersected by ray through pixel oCompute color of sample based on surface radiance

More efficient algorithms utilize spatial coherence!

Rendering Algorithms

Rendering is a problem in sampling and reconstruction!

Overview

- 3D scene representation
-3D viewer representation
- Visible surface determination
" Lighting simulation

How do we compute the radiance for each sample ray?

Lighting Simulation

- Lighting parameters
oLight source emission
oSurface reflectance
oAtmospheric attenuation

Lighting Simulation

- Lighting parameters
oLight source emission
oSurface reflectance

Lighting Simulation

- Lighting parameters oLight source emission oSurface reflectance oAtmospheric attenuation

Real-Time Volumetric Shadows paper [Chen et al. 2011]

Durand \& Dorsey Siggraph ‘02

Lighting Simulation

- Direct illumination
oRay casting
oPolygon shading

More on these methods later!

Summary

- Major issues in 3D rendering
o3D scene representation
o3D viewer representation
oVisible surface determination
oLighting simulation
- Concluding note
oAccurate physical simulation is complex and intractable
»Rendering algorithms apply many approximations to simplify representations and computations

Next Lecture

- Ray intersections
- Light and reflectance models
- Indirect illumination

Rendered by Tor Olav Kristensen using POV-Ray

For assignment \#2, you will write a ray tracer!

