\

Accelerating Ray-Scene
Intersection Calculations

Connelly Barnes

CS 4810: Graphics

Acknowledgment: slides by Jason Lawrence, Misha Kazhdan, Allison Klein,
Tom Funkhouser, Adam Finkelstein and David Dobkin

/

Overview

 Acceleration techniques
oBounding volume hierarchies
oSpatial partitions
»Uniform grids

»Qctrees
»BSP trees

/

Goal

* Find intersection with front-most primitive in group

Intersection FindIntersection(Ray ray, Scene scene)

d
min t= oo
min_shape = NULL @
For each primitive in scene

d

t = Intersect(ray, primitive);

if (t> 0 and t <min_t) then
min_shape = primitive
min t=t

h
) A
return Intersection(min t, min shape)
} B\

. .'}-’ll":-?,f}'.... ‘ot

/

Acceleration Techniques

» A direct approach tests for an intersection of every
ray with every primitive in the scene.

 Acceleration techniques:
oGrouping:
Group primitives together and test if the ray intersects
the group. If it doesn’t, don’t test individual primitives.
oOrdering:

Test primitives/groups based on their distance along
the ray. If you find a close hit, don’t test distant
primitives/groups.

/

Bounding Volumes

» Check for intersectior
oBounding cubes)
oBounding boxes
oBounding spheres

oEtc.

with the bounding volume:

. Stutf that’s easy

to 1ntersect

/

Bounding Volumes

» Check for intersection with the bounding volume

/

Bounding Volumes

» Check for intersection with the bounding volume

olf ray doesn’t intersect bounding volume,
then it doesn’t intersect its contents

/

Bounding Volumes

» Check for intersection with the bounding volume

olf ray doesn’t intersect bounding volume,
then it doesn’t intersect its contents

Still need to check for

intersections with shape.

/

Bounding Volume Hierarchies

» Build hierarchy of bounding volumes
oBounding volume of interior node contains all children

W

N

©

B

O A

D

Al

N

()

A< N
A (B

O-m

B

%

/

Bounding Volume Hierarchies

» Grouping acceleration

FindIntersection(Ray ray, Node node) {
min_t=
min_shape = NULL

// Test 1f you intersect the bounding volume

if(!intersect (node.boundingVolume)) {
return (min_t,min_shape);

)

// Test the children

for each child {
(t, shape) = FindIntersection(ray, child)
if (t <min t) {min shape=shape}

)

return (min_t, min_shape);

/

Bounding Volume Hierarchies

» Use hierarchy to accelerate ray intersections
olntersect node contents only if hit bounding volume

/

Bounding Volume Hierarchies

» Use hierarchy to accelerate ray intersections
olntersect node contents only if hit bounding volume

* Don’t need to test shapes A or B
* Need to test groups 1, 2, and 3
. Need to test shapes C, D E and F

/\%/\\
©®®
A AO U

/

Bounding Volume Hierarchies

» Grouping + Ordering acceleration

FindIntersection(Ray ray, Node node) {

// Find intersections with child node bounding volumes
// Sort 1ntersections front to back

// Process intersections (checking for early termination)
min t= oo
min_shape = NULL
for each intersected child {
if (min_t <bv_t[child]) break;
(t, shape) = FindIntersection(ray, child);
if (t <min t) {
min t=t
min_shape = shape
)
)

return (min_t, min_shape);

/

Bounding Volume Hierarchies

» Use hierarchy to accelerate ray intersections
olntersect nodes only if you haven’t hit anything closer

O

\
/

/

Bounding Volume Hierarchies

» Use hierarchy to accelerate ray intersections
olntersect nodes only if you haven't hit anything closer

* Don’t need to test shapes A, B, D, E, or F
* Need to test groups 1, 2, and 3
. Need to test shape C

/

Overview

 Acceleration techniques
oBounding volume hierarchies
oSpatial partitions
»Uniform grids

»Qctrees
»BSP trees

/

Uniform (Voxel) Grid

» Construct uniform grid over scene
olndex primitives according to overlaps with grid cells

* A primitive may belong to
multiple cells

* A cell may have multiple
primitives

4)

Uniform (Voxel) Grid

» Trace rays through grid cells
oFast
olncremental

Only check primitives
in intersected grid cells

/

Uniform (Voxel) Grid

* Potential problem:

oHow choose suitable grid resolution?

A

s Too little benefit |
| if grid is too coarsel|-....

if grid is too fine

-

“Teapot in a Stadium” Problem

Could have much complicated geometry (e.g. a teapot) inside

a single cell of the voxel grid.
Why is this problematic?

21

/

Ray-Scene Intersection

» Acceleration techniques
oSpatial partitions

»(ctrees

/

Octrees

» We can think of a voxel grid as a tree.
o The root node is the entire region

oEach node has eight children obtained by subdividing the
parent into eight equal regions

/

Octrees

» We can think of a voxel grid as a tree.
o The root node is the entire region

oEach node has eight children obtained by subdividing the
parent into eight equal regions

''

__

/

Octrees

» We can think of a voxel grid as a tree.
o The root node is the entire region

oEach node has eight children obtained by subdividing the
parent into eight equal regions

/@Kfj& BF SR

/

Octrees

» We can think of a voxel grid as a tree.
o The root node is the entire region

oEach node has eight children obtained by subdividing the
parent into eight equal regions

--
} } 1 } | 1 1 } }
1 1 I 1 I 1 I 1 1
1 1 I 1 I I I 1 1
[} [} | [} I | | [} [}
1 1 | 1 1 | | 1 1
--
| | | } }

I I 1 1 1

I I L} 1 1

1 [} 1 [} [}

1 1 1 1 1
--
1 | } }

1 I 1 1

I I 1 1

| I [} [}

| | 1 1
__
| 1 } }

I 1 1 1

I I 1 1

I I [} [}

1 | 1 1
__
1 | } }

1 I 1 1

I I 1 1

| 1 [} [}

1 1 1

I I 1 1

I I 1 1

I I [} [}

1 | 1 1

--

/

Octrees

* In an octree, we only subdivide regions that contain
more than one shape.

O @@ﬁ

/

Octrees

* In an octree, we only subdivide regions that contain
more than one shape.

__

/

Octrees

* In an octree, we only subdivide regions that contain
more than one shape.

__

gt BIo,

/

Octrees

* In an octree, we only subdivide regions that contain
more than one shape.

/

Octrees

* In an octree, we only subdivide regions that contain
more than one shape.

4)

Octrees

* In an octree, we only subdivide regions that contain
more than one shape.

» Adaptively determines grid resolutlon

/

Ray-Scene Intersection

» Acceleration techniques

oSpatial partitions

»BSP trees

/

Binary Space Partition (BSP) Tree

* Recursively partition space by planes

AW

%

®

/

Binary Space Partition (BSP) Tree

* Recursively partition space by planes
oGenerate a tree structure where the leaves store the

f”
-
-
-
-
f”
-
-
-
-
-
-
-
-
-
-
-
4”
f”
-
f”
-
-
-
-
f”
-
-
-
-
-
-
'\ -
-
-
-
-
4”
f”
” 1

/

Binary Space Partition (BSP) Tree

* Recursively partition space by planes

oGenerate a tree structure where the leaves store the
shapes.

-
f”"
f"”
_ -
-
-
-
-
4”’
f”
f"”
---x
_-" \
- \
- \
_-- \
- N
--" \
f” N
- AN
\
AN
\
N
AN
\
AN
\
AN
\
AN
AN
\

\
\
N
\
Y
\
Y
N
Y
N
N
\
N
Y
.

/f'

Binary Space Partition (BSP) Tree

* Recursively partition space by planes
oGenerate a tree structure where the leaves store the

E;I IEaJ:)(EEE;-
\
\
\
\ﬂ
\
3 \
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\ --
\ ’,*”
\ _ -
\ ,—"
\ _--"
\ _--"
\ .-
\ -7
-
\ .-
L~
_-- \
- \
_-- \
- \
- \

-
\ / / |
=" Al
- \
N
\
N
\
\
N
\
\
\
\
\
\
N
\
\
\
\
N
\
N
AY
N
\
\
\
\
\
.

/f'

Binary Space Partition (BSP) Tree

* Recursively partition space by planes

oGenerate a tree structure where the leaves store the
shapes.

\
\
\
_7
\
3
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\ -
\ _--"
-
v -
_ -
\ -
\ -
-
\ -
\ _--"
\ -
L--X
_-" \
- AN
-= A
I\ - N
- Y

\ / - .
f”’ Al
- Ay
AN
Y
AN
Y
Y
s\
7 Ay
4 \
e A
// N
AY
’
, Y
s A Y
’
-’ \\
’
e Y
e \ /
-,
AN
/’ \
e N
\
e A
4 // t
Y
’
’ AN
e Y
7’
’ \\
.

N

e
7
7
7

/

Binary Space Partition (BSP) Tree

* Recursively partition space by planes

oGenerate a tree structure where the leaves store the
shapes.

/®\
\ /\
S 4
LR

@\

/

Binary Space Partition (BSP) Tree

* Recursively partition space by planes
oEvery cell is a convex polyhedron

/®\
\ /\
S 4
EP

@\

/

Binary Space Partition (BSP) Tree

- Example: Point Intersection

-

Binary Space Partition (BSP) Tree

- Example: Point Intersection
oRecursively test what side we are on

-

Binary Space Partition (BSP) Tree

- Example: Point Intersection

oRecursively test what side we are on
»Left of 1 (root) — 2

-

Binary Space Partition (BSP) Tree

- Example: Point Intersection

oRecursively test what side we are on
»Leftof 2 — 4

@
o o

\ /\
AR

@\

/

Binary Space Partition (BSP) Tree

- Example: Point Intersection

oRecursively test what side we are on
»Right of 4 — Test B

@
o o

\ /\

A
0,

\

/

Binary Space Partition (BSP) Tree

- Example: Point Intersection
oRecursively test what side we are on
»Missed B. No intersection!

@
o o

\ /\

a0
0,

\

/

Binary Space Partition (BSP) Tree

» Example: Ray Intersection 1
o Waral

/

Binary Space Partition (BSP) Tree

» Example: Ray Intersection 1

oRecursively split the ray and test nearer and farther
halves, nearest first. Stop once you hit something:

» [est half to the left of 1

/

Binary Space Partition (BSP) Tree

» Example: Ray Intersection 1

oRecursively split the ray and test nearer and farther
halves, nearest first. Stop once you hit something:

» Test half to the right of 2

@
@/ 6

\ /\

A
0

/

Binary Space Partition (BSP) Tree

» Example: Ray Intersection 1

oRecursively split the ray and test nearer and farther
halves, nearest first. Stop once you hit something:

»|ntersection with C. Done!

@
o

3
ngg
/\ A\
O A\

O

/

Binary Space Partition (BSP) Tree

- Example: Ray Intersection 2

oRecursively split the ray and test nearer and farther
halves, nearest first. Stop once you hit something:

» [est half to the left of 1

/

Binary Space Partition (BSP) Tree

- Example: Ray Intersection 2

oRecursively split the ray and test nearer and farther
halves, nearest first. Stop once you hit something:

» Test half to the right of 2

@
@/ 6

\ /\

A
0

/

Binary Space Partition (BSP) Tree

- Example: Ray Intersection 2

oRecursively split the ray and test nearer and farther
halves, nearest first. Stop once you hit something:

»Missed C. Recurse!

@
o o

aaY

S 4
AYE,

/

Binary Space Partition (BSP) Tree

- Example: Ray Intersection 2

oRecursively split the ray and test nearer and farther
halves, nearest first. Stop once you hit something:

» [est half to left of 2

@
o o

N

S 4
AV

/

Binary Space Partition (BSP) Tree

- Example: Ray Intersection 2

oRecursively split the ray and test nearer and farther
halves, nearest first. Stop once you hit something:

» [est half to left of 4

@
o o

ayas

S 4
A

/

Binary Space Partition (BSP) Tree

- Example: Ray Intersection 2

oRecursively split the ray and test nearer and farther
halves, nearest first. Stop once you hit something:

»Missed A. Recurse!

@
o o

/\ /\
/@\% /\

/

Binary Space Partition (BSP) Tree

- Example: Ray Intersection 2

oRecursively split the ray and test nearer and farther
halves, nearest first. Stop once you hit something:

»No half to right of 4.

/

Binary Space Partition (BSP) Tree

- Example: Ray Intersection 2

oRecursively split the ray and test nearer and farther
halves, nearest first. Stop once you hit something:

» Test half to right of 1

@
@/ \

/\ /\
/@\% /\

/

Binary Space Partition (BSP) Tree

- Example: Ray Intersection 2

oRecursively split the ray and test nearer and farther
halves, nearest first. Stop once you hit something:

» [est half to left of 3

@/ \@

/
/@ \%Q/\@
O

/

Binary Space Partition (BSP) Tree

- Example: Ray Intersection 2

oRecursively split the ray and test nearer and farther
halves, nearest first. Stop once you hit something:

»|ntersection with D. Done!

/

Binary Space Partition (BSP) Tree

RayTreelntersect(Ray ray, Node node, double min, double max) {
if (Node 1s a leaf)

return intersection of closest primitive in cell, or NULL if none
else

// Find splitting point
dist = distance along the ray point to split plane of node

// Find near and far children

near child = child of node that contains the origin of Ray
far child = other child of node

// Recurse down near child first
if the interval to look 1s on near side {
isect = RayTreelntersect(ray, near child, min, max)
if(1sect) return isect // If there’s a hit, we are done

b

// If there’s no hit, test the far child
1f the interval to look 1s on far side
return RayTreelntersect(ray, far child, min, max)

/

Acceleration

* Intersection acceleration techniques are important
oBounding volume hierarchies
oSpatial partitions

» General concepts
oSort objects spatially
oMake trivial rejections quick

Expected time is sub-linear in number of primitives

/

Summary

» Writing a simple ray casting renderer is easy
oGenerate rays
olntersection tests
olLighting calculations

Image RayCast(Camera camera, Scene scene, int width, int height)
d
Image image = new Image(width, height);
for (int 1 = 0; 1 < width; 1++) {
for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, 1, j);
Intersection hit = FindIntersection(ray, scene);
image([i][j] = GetColor(hit);
h
;

return image;

/

Next Time is lllumination!

Without lllumination With lllumination

