\

Accelerating Ray-Scene
Intersection Calculations

Connelly Barnes

CS 4810: Graphics

Acknowledgment: slides by Jason Lawrence, Misha Kazhdan, Allison Klein,
Tom Funkhouser, Adam Finkelstein and David Dobkin




/

Overview

 Acceleration techniques
oBounding volume hierarchies
oSpatial partitions
»Uniform grids

»Qctrees
»BSP trees
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Goal

* Find intersection with front-most primitive in group

Intersection FindIntersection(Ray ray, Scene scene)

d
min t= oo
min_shape = NULL @
For each primitive in scene

d

t = Intersect(ray, primitive);

if (t> 0 and t <min_t) then
min_shape = primitive
min t=t

h
) A
return Intersection(min t, min shape)
} B\
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Acceleration Techniques

» A direct approach tests for an intersection of every
ray with every primitive in the scene.

 Acceleration techniques:
oGrouping:
Group primitives together and test if the ray intersects
the group. If it doesn’t, don’t test individual primitives.
oOrdering:

Test primitives/groups based on their distance along
the ray. If you find a close hit, don’t test distant
primitives/groups.
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Bounding Volumes

» Check for intersectior
oBounding cubes )
oBounding boxes
oBounding spheres

oEtc.

with the bounding volume:

. Stutf that’s easy

to 1ntersect
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Bounding Volumes

» Check for intersection with the bounding volume
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Bounding Volumes

» Check for intersection with the bounding volume

olf ray doesn’t intersect bounding volume,
then it doesn’t intersect its contents
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Bounding Volumes

» Check for intersection with the bounding volume

olf ray doesn’t intersect bounding volume,
then it doesn’t intersect its contents

Still need to check for

intersections with shape.
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Bounding Volume Hierarchies

» Build hierarchy of bounding volumes
oBounding volume of interior node contains all children
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Bounding Volume Hierarchies

» Grouping acceleration

FindIntersection(Ray ray, Node node) {
min_t=
min_shape = NULL

// Test 1f you intersect the bounding volume

if( !intersect ( node.boundingVolume ) ) {
return (min_t,min_shape);

)

// Test the children

for each child {
(t, shape) = FindIntersection(ray, child)
if (t <min t) {min shape=shape}

)

return (min_t, min_shape);
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Bounding Volume Hierarchies

» Use hierarchy to accelerate ray intersections
olntersect node contents only if hit bounding volume
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Bounding Volume Hierarchies

» Use hierarchy to accelerate ray intersections
olntersect node contents only if hit bounding volume

* Don’t need to test shapes A or B
* Need to test groups 1, 2, and 3
. Need to test shapes C, D E and F
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Bounding Volume Hierarchies

» Grouping + Ordering acceleration

FindIntersection(Ray ray, Node node) {

// Find intersections with child node bounding volumes
// Sort 1ntersections front to back

// Process intersections (checking for early termination)
min t= oo
min_shape = NULL
for each intersected child {
if (min_t <bv_t[child]) break;
(t, shape) = FindIntersection(ray, child);
if (t <min t) {
min t=t
min_shape = shape
)
)

return (min_t, min_shape);
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Bounding Volume Hierarchies

» Use hierarchy to accelerate ray intersections
olntersect nodes only if you haven’t hit anything closer
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Bounding Volume Hierarchies

» Use hierarchy to accelerate ray intersections
olntersect nodes only if you haven't hit anything closer

* Don’t need to test shapes A, B, D, E, or F
* Need to test groups 1, 2, and 3
. Need to test shape C
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Overview

 Acceleration techniques
oBounding volume hierarchies
oSpatial partitions
»Uniform grids

»Qctrees
»BSP trees
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Uniform (Voxel) Grid

» Construct uniform grid over scene
olndex primitives according to overlaps with grid cells

* A primitive may belong to
multiple cells

* A cell may have multiple
primitives




4 )

Uniform (Voxel) Grid

» Trace rays through grid cells
oFast
olncremental

Only check primitives
in intersected grid cells
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Uniform (Voxel) Grid

* Potential problem:

oHow choose suitable grid resolution?

A

s Too little benefit |
| if grid is too coarsel|-....

if grid is too fine
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“Teapot in a Stadium” Problem

Could have much complicated geometry (e.g. a teapot) inside

a single cell of the voxel grid.
Why is this problematic?

21
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Ray-Scene Intersection

» Acceleration techniques
oSpatial partitions

»(ctrees
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Octrees

» We can think of a voxel grid as a tree.
o The root node is the entire region

oEach node has eight children obtained by subdividing the
parent into eight equal regions
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Octrees

» We can think of a voxel grid as a tree.
o The root node is the entire region

oEach node has eight children obtained by subdividing the
parent into eight equal regions
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Octrees

» We can think of a voxel grid as a tree.
o The root node is the entire region

oEach node has eight children obtained by subdividing the
parent into eight equal regions
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Octrees

» We can think of a voxel grid as a tree.
o The root node is the entire region

oEach node has eight children obtained by subdividing the
parent into eight equal regions
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Octrees

* In an octree, we only subdivide regions that contain
more than one shape.

___________________________________________________________
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Octrees

* In an octree, we only subdivide regions that contain
more than one shape.
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Octrees

* In an octree, we only subdivide regions that contain
more than one shape.
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Octrees

* In an octree, we only subdivide regions that contain
more than one shape.
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Octrees

* In an octree, we only subdivide regions that contain
more than one shape.
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Octrees

* In an octree, we only subdivide regions that contain
more than one shape.

» Adaptively determines grid resolutlon
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Ray-Scene Intersection

» Acceleration techniques

oSpatial partitions

»BSP trees




/

Binary Space Partition (BSP) Tree

* Recursively partition space by planes
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Binary Space Partition (BSP) Tree

* Recursively partition space by planes
oGenerate a tree structure where the leaves store the
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Binary Space Partition (BSP) Tree

* Recursively partition space by planes

oGenerate a tree structure where the leaves store the
shapes.
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Binary Space Partition (BSP) Tree

* Recursively partition space by planes
oGenerate a tree structure where the leaves store the
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Binary Space Partition (BSP) Tree

* Recursively partition space by planes

oGenerate a tree structure where the leaves store the
shapes.
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Binary Space Partition (BSP) Tree

* Recursively partition space by planes

oGenerate a tree structure where the leaves store the
shapes.
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Binary Space Partition (BSP) Tree

* Recursively partition space by planes
oEvery cell is a convex polyhedron
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Binary Space Partition (BSP) Tree

- Example: Point Intersection




-

Binary Space Partition (BSP) Tree

- Example: Point Intersection
oRecursively test what side we are on
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Binary Space Partition (BSP) Tree

- Example: Point Intersection

oRecursively test what side we are on
»Left of 1 (root) — 2
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Binary Space Partition (BSP) Tree

- Example: Point Intersection

oRecursively test what side we are on
»Leftof 2 — 4
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Binary Space Partition (BSP) Tree

- Example: Point Intersection

oRecursively test what side we are on
»Right of 4 — Test B
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Binary Space Partition (BSP) Tree

- Example: Point Intersection
oRecursively test what side we are on
»Missed B. No intersection!
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Binary Space Partition (BSP) Tree

» Example: Ray Intersection 1
o Waral
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Binary Space Partition (BSP) Tree

» Example: Ray Intersection 1

oRecursively split the ray and test nearer and farther
halves, nearest first. Stop once you hit something:

» [est half to the left of 1
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Binary Space Partition (BSP) Tree

» Example: Ray Intersection 1

oRecursively split the ray and test nearer and farther
halves, nearest first. Stop once you hit something:

» Test half to the right of 2
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Binary Space Partition (BSP) Tree

» Example: Ray Intersection 1

oRecursively split the ray and test nearer and farther
halves, nearest first. Stop once you hit something:

»|ntersection with C. Done!
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Binary Space Partition (BSP) Tree

- Example: Ray Intersection 2

oRecursively split the ray and test nearer and farther
halves, nearest first. Stop once you hit something:

» [est half to the left of 1
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Binary Space Partition (BSP) Tree

- Example: Ray Intersection 2

oRecursively split the ray and test nearer and farther
halves, nearest first. Stop once you hit something:

» Test half to the right of 2
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Binary Space Partition (BSP) Tree

- Example: Ray Intersection 2

oRecursively split the ray and test nearer and farther
halves, nearest first. Stop once you hit something:

»Missed C. Recurse!
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Binary Space Partition (BSP) Tree

- Example: Ray Intersection 2

oRecursively split the ray and test nearer and farther
halves, nearest first. Stop once you hit something:

» [est half to left of 2
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Binary Space Partition (BSP) Tree

- Example: Ray Intersection 2

oRecursively split the ray and test nearer and farther
halves, nearest first. Stop once you hit something:

» [est half to left of 4
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Binary Space Partition (BSP) Tree

- Example: Ray Intersection 2

oRecursively split the ray and test nearer and farther
halves, nearest first. Stop once you hit something:

»Missed A. Recurse!
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Binary Space Partition (BSP) Tree

- Example: Ray Intersection 2

oRecursively split the ray and test nearer and farther
halves, nearest first. Stop once you hit something:

»No half to right of 4.
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Binary Space Partition (BSP) Tree

- Example: Ray Intersection 2

oRecursively split the ray and test nearer and farther
halves, nearest first. Stop once you hit something:

» Test half to right of 1
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Binary Space Partition (BSP) Tree

- Example: Ray Intersection 2

oRecursively split the ray and test nearer and farther
halves, nearest first. Stop once you hit something:

» [est half to left of 3
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Binary Space Partition (BSP) Tree

- Example: Ray Intersection 2

oRecursively split the ray and test nearer and farther
halves, nearest first. Stop once you hit something:

»|ntersection with D. Done!
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Binary Space Partition (BSP) Tree

RayTreelntersect(Ray ray, Node node, double min, double max) {
if (Node 1s a leaf)

return intersection of closest primitive in cell, or NULL if none
else

// Find splitting point
dist = distance along the ray point to split plane of node

// Find near and far children

near child = child of node that contains the origin of Ray
far child = other child of node

// Recurse down near child first
if the interval to look 1s on near side {
isect = RayTreelntersect(ray, near child, min, max)
if( 1sect ) return isect // If there’s a hit, we are done

b

// If there’s no hit, test the far child
1f the interval to look 1s on far side
return RayTreelntersect(ray, far child, min, max)
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Acceleration

* Intersection acceleration techniques are important
oBounding volume hierarchies
oSpatial partitions

» General concepts
oSort objects spatially
oMake trivial rejections quick

Expected time is sub-linear in number of primitives
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Summary

» Writing a simple ray casting renderer is easy
oGenerate rays
olntersection tests
olLighting calculations

Image RayCast(Camera camera, Scene scene, int width, int height)
d
Image image = new Image(width, height);
for (int 1 = 0; 1 < width; 1++) {
for (int j = 0; j < height; j++) {
Ray ray = ConstructRayThroughPixel(camera, 1, j);
Intersection hit = FindIntersection(ray, scene);
image([i][j] = GetColor(hit);
h
;

return image;
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Next Time is lllumination!

Without lllumination With lllumination




