
Accelerating Ray-Scene
Intersection Calculations

Connelly Barnes

CS 4810: Graphics

Acknowledgment: slides by Jason Lawrence, Misha Kazhdan, Allison Klein,
Tom Funkhouser, Adam Finkelstein and David Dobkin

Overview
• Acceleration techniques
oBounding volume hierarchies
oSpatial partitions

»Uniform grids
»Octrees
»BSP trees

Goal
• Find intersection with front-most primitive in group

A

B

C

D

E

F

Intersection FindIntersection(Ray ray, Scene scene)
{
 min_t = ∞
 min_shape = NULL
 For each primitive in scene
 {
 t = Intersect(ray, primitive);
 if (t > 0 and t < min_t) then
 min_shape = primitive
 min_t = t
 }
 }
 return Intersection(min_t, min_shape)
}

4

Acceleration Techniques
• A direct approach tests for an intersection of every

ray with every primitive in the scene.

• Acceleration techniques:
oGrouping:

Group primitives together and test if the ray intersects
the group. If it doesn’t, don’t test individual primitives.

oOrdering:
Test primitives/groups based on their distance along
the ray. If you find a close hit, don’t test distant
primitives/groups.

Bounding Volumes
• Check for intersection with the bounding volume:
oBounding cubes
oBounding boxes
oBounding spheres
oEtc.

Stuff that’s easy
to intersect

Bounding Volumes
• Check for intersection with the bounding volume

Bounding Volumes
• Check for intersection with the bounding volume
oIf ray doesn’t intersect bounding volume,  

then it doesn’t intersect its contents

Bounding Volumes
• Check for intersection with the bounding volume
oIf ray doesn’t intersect bounding volume,  

then it doesn’t intersect its contents

Still need to check for 
intersections with shape.

Bounding Volume Hierarchies
• Build hierarchy of bounding volumes
oBounding volume of interior node contains all children

1

2 3

A

B

C

D

E

F

3

2

1

A B E FD

C

Bounding Volume Hierarchies

FindIntersection(Ray ray, Node node) {
 min_t = ∞
 min_shape = NULL

 // Test if you intersect the bounding volume
 if(!intersect (node.boundingVolume)) {
 return (min_t,min_shape);
 }

 // Test the children
 for each child {
 (t, shape) = FindIntersection(ray, child)
 if (t < min_t) {min_shape=shape}
 }
 return (min_t, min_shape);
}

• Grouping acceleration

Bounding Volume Hierarchies
• Use hierarchy to accelerate ray intersections
oIntersect node contents only if hit bounding volume

1

2 3C

A B E FD A

B

C

D

E

F

3

2

1
1

2

A B

C 3

Bounding Volume Hierarchies
• Use hierarchy to accelerate ray intersections
oIntersect node contents only if hit bounding volume

1

2 3C

A B E FD A

B

C

D

E

F

3

2

1
1

2

A B

C 3

• Don’t need to test shapes A or B

• Need to test groups 1, 2, and 3

• Need to test shapes C, D, E, and F

Bounding Volume Hierarchies

FindIntersection(Ray ray, Node node) {
 // Find intersections with child node bounding volumes
 ...
 // Sort intersections front to back
 ...
 // Process intersections (checking for early termination)
 min_t = ∞
 min_shape = NULL
 for each intersected child {
 if (min_t < bv_t[child]) break;
 (t, shape) = FindIntersection(ray, child);
 if (t < min_t) {
 min_t = t
 min_shape = shape
 }
 }
 return (min_t, min_shape);
}

• Grouping + Ordering acceleration

Bounding Volume Hierarchies
• Use hierarchy to accelerate ray intersections
oIntersect nodes only if you haven’t hit anything closer

1

2 3C

A B E FD A

B

C

D

E

F

3

2

1
1

2

A B

C 3

Bounding Volume Hierarchies
• Use hierarchy to accelerate ray intersections
oIntersect nodes only if you haven’t hit anything closer

1

2 3C

A B E FD A

B

C

D

E

F

3

2

1
1

2

A B

C 3

• Don’t need to test shapes A, B, D, E, or F

• Need to test groups 1, 2, and 3

• Need to test shape C

Overview
• Acceleration techniques
oBounding volume hierarchies
oSpatial partitions

»Uniform grids
»Octrees
»BSP trees

Uniform (Voxel) Grid
• Construct uniform grid over scene
oIndex primitives according to overlaps with grid cells

A

B

C

D

E

F• A primitive may belong to
multiple cells

• A cell may have multiple  
primitives

F

Uniform (Voxel) Grid
• Trace rays through grid cells
oFast
oIncremental

A

B

C

D

E

FOnly check primitives
in intersected grid cells

Uniform (Voxel) Grid
• Potential problem:
oHow choose suitable grid resolution?

A

B

C

D

E

F

Too much cost
if grid is too fine

A

B

C

D

E

F

Too little benefit
if grid is too coarse

“Teapot in a Stadium” Problem

21

Could have much complicated geometry (e.g. a teapot) inside  
a single cell of the voxel grid.

Why is this problematic?

Ray-Scene Intersection
» Acceleration techniques
oBounding volume hierarchies
oSpatial partitions

»Uniform grids
»Octrees
»BSP trees

Octrees
• We can think of a voxel grid as a tree.
oThe root node is the entire region
oEach node has eight children obtained by subdividing the

parent into eight equal regions

Octrees
• We can think of a voxel grid as a tree.
oThe root node is the entire region
oEach node has eight children obtained by subdividing the

parent into eight equal regions

Octrees
• We can think of a voxel grid as a tree.
oThe root node is the entire region
oEach node has eight children obtained by subdividing the

parent into eight equal regions

Octrees
• We can think of a voxel grid as a tree.
oThe root node is the entire region
oEach node has eight children obtained by subdividing the

parent into eight equal regions

…

Octrees
• In an octree, we only subdivide regions that contain

more than one shape.

C
A

D

E

F

B

Octrees
• In an octree, we only subdivide regions that contain

more than one shape.

C
A

D

E

F

B

Octrees
• In an octree, we only subdivide regions that contain

more than one shape.

C
A

D

E

F

B

Octrees
• In an octree, we only subdivide regions that contain

more than one shape.

C
A

D

E

F

B

Octrees
• In an octree, we only subdivide regions that contain

more than one shape.

C

D

E

F

B

A

Octrees
• In an octree, we only subdivide regions that contain

more than one shape.

• Adaptively determines grid resolution.

C

D

E

F

B

A

Ray-Scene Intersection
• Intersections with geometric primitives
oSphere
oTriangle

» Acceleration techniques
oBounding volume hierarchies
oSpatial partitions

»Uniform (Voxel) grids
»Octrees
»BSP trees

Binary Space Partition (BSP) Tree
• Recursively partition space by planes

A

B

C

D

E

F

Binary Space Partition (BSP) Tree
• Recursively partition space by planes
oGenerate a tree structure where the leaves store the

shapes.

A

B

C

D

E

F

1

1

Binary Space Partition (BSP) Tree
• Recursively partition space by planes
oGenerate a tree structure where the leaves store the

shapes.

A

B

C

D

E

F

1

2

1

2

Binary Space Partition (BSP) Tree
• Recursively partition space by planes
oGenerate a tree structure where the leaves store the

shapes.

A

B

C

D

E

F

1

2

3

1

2 3

Binary Space Partition (BSP) Tree
• Recursively partition space by planes
oGenerate a tree structure where the leaves store the

shapes.

A

B

C

D

E

F

1

2

3

1

2

4

4

3

Binary Space Partition (BSP) Tree
• Recursively partition space by planes
oGenerate a tree structure where the leaves store the

shapes.

A

B

C

D

E

F

1

2

3

1

2

4

4

3

5

5

Binary Space Partition (BSP) Tree
• Recursively partition space by planes
oEvery cell is a convex polyhedron

A

B

C

D

E

F

1

2

3

1

2

4

4

3

5

5

Binary Space Partition (BSP) Tree
• Example: Point Intersection

A

B

C

D

E

F

1

2

3

1

2

4

4

3

5

5

1

3

P

Binary Space Partition (BSP) Tree
• Example: Point Intersection
oRecursively test what side we are on

A

B

C

D

E

F

1

2

3

1

2

4

4

3

5

5

1

3

P

Binary Space Partition (BSP) Tree
• Example: Point Intersection
oRecursively test what side we are on

»Left of 1 (root) → 2

A

B

C

D

E

F

1

2

3

1

2

4

4

3

5

5

1

P

Binary Space Partition (BSP) Tree
• Example: Point Intersection
oRecursively test what side we are on

»Left of 2 → 4

A

B

C

D

E

F

1

2

3

1

2

4

4

3

5

5

1

3

P

Binary Space Partition (BSP) Tree
• Example: Point Intersection
oRecursively test what side we are on

»Right of 4 → Test B

A

B

C

D

E

F

1

2

3

1

2

4

4

3

5

5

1

3

P

Binary Space Partition (BSP) Tree
• Example: Point Intersection
oRecursively test what side we are on

»Missed B. No intersection!

A

B

C

D

E

F

1

2

3

1

2

4

4

3

5

5

1

3

P

Binary Space Partition (BSP) Tree
• Example: Ray Intersection 1
o???

A

B

C

D

E

F

1

2

3

1

2

4

4

3

5

5

1

3

Binary Space Partition (BSP) Tree
• Example: Ray Intersection 1
oRecursively split the ray and test nearer and farther

halves, nearest first. Stop once you hit something:
»Test half to the left of 1

A

B

C

D

E

F

1

2

3

1

2

4

4

3

5

5

1

3

Binary Space Partition (BSP) Tree
• Example: Ray Intersection 1
oRecursively split the ray and test nearer and farther

halves, nearest first. Stop once you hit something:
»Test half to the right of 2

A

B

C

D

E

F

1

2

3

1

2

4

4

3

5

5

1

3

Binary Space Partition (BSP) Tree
• Example: Ray Intersection 1
oRecursively split the ray and test nearer and farther

halves, nearest first. Stop once you hit something:
»Intersection with C. Done!

A

B

C

D

E

F

1

2

3

1

2

4

4

3

5

5

1

3

Binary Space Partition (BSP) Tree
• Example: Ray Intersection 2
oRecursively split the ray and test nearer and farther

halves, nearest first. Stop once you hit something:
»Test half to the left of 1

A

B

C

D

E

F

1

2

3

1

2

4

4

3

5

5

1

3

Binary Space Partition (BSP) Tree
• Example: Ray Intersection 2
oRecursively split the ray and test nearer and farther

halves, nearest first. Stop once you hit something:
»Test half to the right of 2

A

B

C

D

E

F

1

2

3

1

2

4

4

3

5

5

1

3

Binary Space Partition (BSP) Tree
• Example: Ray Intersection 2
oRecursively split the ray and test nearer and farther

halves, nearest first. Stop once you hit something:
»Missed C. Recurse!

A

B

C

D

E

F

1

2

3

1

2

4

4

3

5

5

1

3

Binary Space Partition (BSP) Tree
• Example: Ray Intersection 2
oRecursively split the ray and test nearer and farther

halves, nearest first. Stop once you hit something:
»Test half to left of 2

A

B

C

D

E

F

1

2

3

1

2

4

4

3

5

5

1

3

Binary Space Partition (BSP) Tree
• Example: Ray Intersection 2
oRecursively split the ray and test nearer and farther

halves, nearest first. Stop once you hit something:
»Test half to left of 4

A

B

C

D

E

F

1

2

3

1

2

4

4

3

5

5

1

3

Binary Space Partition (BSP) Tree
• Example: Ray Intersection 2
oRecursively split the ray and test nearer and farther

halves, nearest first. Stop once you hit something:
»Missed A. Recurse!

A

B

C

D

E

F

1

2

3

1

2

4

4

3

5

5

1

3

Binary Space Partition (BSP) Tree
• Example: Ray Intersection 2
oRecursively split the ray and test nearer and farther

halves, nearest first. Stop once you hit something:
»No half to right of 4.

A

B

C

D

E

F

1

2

3

1

2

4

4

3

5

5

1

3

Binary Space Partition (BSP) Tree
• Example: Ray Intersection 2
oRecursively split the ray and test nearer and farther

halves, nearest first. Stop once you hit something:
»Test half to right of 1

A

B

C

D

E

F

1

2

3

1

2

4

4

3

5

5

1

3

Binary Space Partition (BSP) Tree
• Example: Ray Intersection 2
oRecursively split the ray and test nearer and farther

halves, nearest first. Stop once you hit something:
»Test half to left of 3

A

B

C

D

E

F

1

2

3

1

2

4

4

3

5

5

1

3

Binary Space Partition (BSP) Tree
• Example: Ray Intersection 2
oRecursively split the ray and test nearer and farther

halves, nearest first. Stop once you hit something:
»Intersection with D. Done!

A

B

C

D

E

F

1

2

3

1

2

4

4

3

5

5

1

3

Binary Space Partition (BSP) Tree
RayTreeIntersect(Ray ray, Node node, double min, double max) {
 if (Node is a leaf)
 return intersection of closest primitive in cell, or NULL if none
 else
 // Find splitting point
 dist = distance along the ray point to split plane of node

 // Find near and far children
 near_child = child of node that contains the origin of Ray
 far_child = other child of node

 // Recurse down near child first
 if the interval to look is on near side {
 isect = RayTreeIntersect(ray, near_child, min, max)
 if(isect) return isect // If there’s a hit, we are done
 }

 // If there’s no hit, test the far child
 if the interval to look is on far side
 return RayTreeIntersect(ray, far_child, min, max)
}

Acceleration
• Intersection acceleration techniques are important
oBounding volume hierarchies
oSpatial partitions

• General concepts
oSort objects spatially
oMake trivial rejections quick

Expected time is sub-linear in number of primitives

Summary
• Writing a simple ray casting renderer is easy
oGenerate rays
oIntersection tests
oLighting calculations

Image RayCast(Camera camera, Scene scene, int width, int height)
{
 Image image = new Image(width, height);
 for (int i = 0; i < width; i++) {
 for (int j = 0; j < height; j++) {
 Ray ray = ConstructRayThroughPixel(camera, i, j);
 Intersection hit = FindIntersection(ray, scene);
 image[i][j] = GetColor(hit);
 }
 }
 return image;
}

Next Time is Illumination!

Without Illumination With Illumination

