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Modeling Transformations
• Specify transformations for objects 

• Allows definitions of objects in own coordinate systems
• Allows use of object definition multiple times in a scene
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Overview
• 2D Transformations

• Basic 2D transformations
• Matrix representation
• Matrix composition

• 3D Transformations
• Basic 3D transformations
• Same as 2D
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Simple 2D Transformation
Rotation (around origin)
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Basic 2D Transformations
• Translation:

• x’ = x + tx
• y’ = y + ty

• Scale:
• x’ = x * sx 
• y’ = y * sy

• Rotation:
• x’ = x*cosΘ - y*sinΘ 
• y’ = x*sinΘ + y*cosΘ 
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Transformations  
can be combined 
(with simple algebra)
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x’ = x*sx
y’ = y*sy

(x,y)
(x’,y’)



Basic 2D Transformations
• Translation:

• x’ = x + tx
• y’ = y + ty

• Scale:
• x’ = x * sx 
• y’ = y * sy

• Rotation:
• x’ = x*cosΘ - y*sinΘ 
• y’ = x*sinΘ + y*cosΘ 
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(x’,y’)

x’ = (x*sx)*cosΘ − (y*sy)*sinΘ
y’ = (x*sx)*sinΘ  + (y*sy)*cosΘ



Basic 2D Transformations
• Translation:

• x’ = x + tx
• y’ = y + ty

• Scale:
• x’ = x * sx 
• y’ = y * sy

• Rotation:
• x’ = x*cosΘ - y*sinΘ 
• y’ = x*sinΘ + y*cosΘ 
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(x’,y’)

x’ = ((x*sx)*cosΘ − (y*sy)*sinΘ) + tx
y’ = ((x*sx)*sinΘ  + (y*sy)*cosΘ) + ty



Basic 2D Transformations
• Translation:

• x’ = x + tx
• y’ = y + ty

• Scale:
• x’ = x * sx 
• y’ = y * sy

• Rotation:
• x’ = x*cosΘ - y*sinΘ 
• y’ = x*sinΘ + y*cosΘ 
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x’ = ((x*sx)*cosΘ − (y*sy)*sinΘ) + tx
y’ = ((x*sx)*sinΘ  + (y*sy)*cosΘ) + ty



Overview
• 2D Transformations

• Basic 2D transformations
• Matrix representation
• Matrix composition

• 3D Transformations
• Basic 3D transformations
• Same as 2D
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Matrix Representation
• Represent 2D transformation by a matrix 
 

• Multiply matrix by column vector 
⇔ apply transformation to point



Matrix Representation
• Transformations combined by multiplication

Matrices are a convenient and efficient way 
to represent a sequence of transformations!



2x2 Matrices
• What types of transformations can be  

represented with a 2x2 matrix?

2D Scale around (0,0)?
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2x2 Matrices
• What types of transformations can be  

represented with a 2x2 matrix?

2D Scale around (0,0)?

2D Mirror over Y axis?

Like scale with 
negative scale values



2x2 Matrices
• What types of transformations can be  

represented with a 2x2 matrix?
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2x2 Matrices
• What types of transformations can be  

represented with a 2x2 matrix?

2D Translation?

Only linear 2D transformations 
can be represented with a 2x2 matrix

NO!



Linear Transformations
• Linear transformations are combinations of …

• Scale, and
• Rotation

• Properties of linear transformations:
• Satisfies:
• Origin maps to origin
• Lines map to lines
• Parallel lines remain parallel
• Closed under composition
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Linear Transformations
• Linear transformations are combinations of …

• Scale, and
• Rotation

• Properties of linear transformations:
• Satisfies:
• Origin maps to origin
• Lines map to lines
• Parallel lines remain parallel
• Closed under composition
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Translations do not map 
the origin to the origin



Homogeneous Coordinates
• Add a 3rd coordinate to every 2D point

• (x, y, w) represents a point at location (x/w, y/w)
• (x, y, 0) represents a point at infinity
• (0, 0, 0) is not allowed
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1 2
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2
(2,1,1) or (4,2,2) or (6,3,3)

Convenient coordinate system to  
represent many useful transformations
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2D Translation
• 2D translation represented by a 3x3 matrix

• Point represented with homogeneous coordinates
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2D Translation
• 2D translation represented by a 3x3 matrix

• Point represented with homogeneous coordinates
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Basic 2D Transformations
• Basic 2D transformations as 3x3 matrices

Translate

Rotate

Scale



Affine Transformations
• Affine transformations are combinations of …

• Linear transformations, and
• Translations

• Properties of affine transformations:
• Origin does not necessarily map to origin
• Lines map to lines
• Parallel lines remain parallel
• Closed under composition
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Projective Transformations
• Projective transformations …

• Affine transformations, and
• Projective warps

• Properties of projective transformations:
• Origin does not necessarily map to origin
• Lines map to lines
• Parallel lines do not necessarily remain parallel
• Closed under composition
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Overview
• 2D Transformations

• Basic 2D transformations
• Matrix representation
• Matrix composition

• 3D Transformations
• Basic 3D transformations
• Same as 2D
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Matrix Composition
• Transformations can be combined by  

matrix multiplication

p’   =      T(tx,ty)               R(Θ)           S(sx,sy)     p



Matrix Composition
• Matrices are a convenient and efficient way to represent a sequence of 

transformations
• General purpose representation
• Hardware matrix multiply
• Efficiency with pre-multiplication

• Matrix multiplication is associative
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p’ = (T * (R * (S*p)  )  )
p’ = (T*R*S) * p



Matrix Composition
• Be aware: order of transformations matters

»Matrix multiplication is not commutative

p’ = T * R * S * p

“Global” “Local”



Matrix Composition
• Rotate by Θ around arbitrary point (a,b)

(a,b)

(a,b)



Matrix Composition
• Rotate by Θ around arbitrary point (a,b)

• M=T(a,b) * R(Θ) * T(-a,-b)

• Scale by sx,sy around arbitrary point (a,b)
• M=T(a,b) * S(sx,sy) * T(-a,-b)
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The trick: 
  First, translate (a,b) to the origin. 
  Next, do the rotation about origin. 
  Finally, translate back.

(Use the same trick.)

(a,b)

(a,b)



Overview
• 2D Transformations

• Basic 2D transformations
• Matrix representation
• Matrix composition

• 3D Transformations
• Basic 3D transformations
• Same as 2D
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3D Transformations
• Same idea as 2D transformations

• Homogeneous coordinates: (x,y,z,w) 
• 4x4 transformation matrices
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Basic 3D Transformations

Identity Scale

Translation



Basic 3D Transformations
Pitch-Roll-Yaw Convention:
• Any rotation can be expressed as the combination of a 

rotation about the x-, the y-, and the z-axis.

Rotate around Z axis:

Rotate around Y axis:

Rotate around X axis:



Basic 3D Transformations
Pitch-Roll-Yaw Convention:
• Any rotation can be expressed as the combination of a 

rotation about the x-, the y-, and the z-axis.

Rotate around Z axis:

Rotate around Y axis:

Rotate around X axis:

How would you rotate 
around an arbitrary axis U?



Rotation By ψ Around Arbitrary Axis U
• Align U with major axis

• T(a,b,c) = Translate U by (a,b,c) to pass through origin
• Rx(θ), Ry(φ)= Do two separate rotations around two 

other axes (e.g. x, and y) by θ and φ degrees to get it 
aligned with the third (e.g. z)

• Perform rotation by ψ around the major axis = Rz(ψ)
• Do inverse of original transformation for alignment
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Rotation By ψ Around Arbitrary Axis U
• Align U with major axis

• T(a,b,c) = Translate U by (a,b,c) to pass through origin
• Rx(θ), Ry(φ)= Do two separate rotations around two 

other axes (e.g. x, and y) by θ and φ degrees to get it 
aligned with the third (e.g. z)

• Perform rotation by ψ around the major axis = Rz(ψ)
• Do inverse of original transformation for alignment
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Aligning Transformation



Rotation By ψ Around Arbitrary Axis U
• Homogeneous coordinates matrix to rotate an angle ψ 

around axis U passing through origin:

• Here (x, y, z) are components of U (a unit vector)
• c = cos(ψ)
• s = sin(ψ) 

• Derivation: this is Rodrigues' rotation formula in matrix form 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https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula

