Scene Graphs

Connelly Barnes CS 4810: Graphics

Acknowledgment: slides by Jason Lawrence, Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin

Overview

- 2D Transformations
 Basic 2D transformations
 Matrix representation
 Matrix composition
- 3D Transformations
 > Basic 3D transformations
 > Same as 2D
- Transformation Hierarchies
 Scene graphs
 Ray casting

Transformation Example 1

An object may appear in a scene multiple times

Draw same 3D data with different transformations

Transformation Example 2

Well-suited for humanoid characters

Rose et al. '96

Scene Graphs

- Allow us to have multiple instances of a single model – providing a reduction in model storage size
- Allow us to model objects in local coordinates and then place them into a global frame – particularly important for animation

Scene Graphs

- Allow us to have multiple instances of a single model – providing a reduction in model storage size
- Allow us to model objects in local coordinates and then place them into a global frame – particularly important for animation
- Accelerate ray-tracing by providing a hierarchical structure that can be used for bounding volume testing

Ray Casting with Hierarchies

Ray Casting With Hierarchies

- Position
- Direction
- Normal

Affine
 Translate
 Linear

$$\begin{bmatrix} a \ b \ c \ tx \\ d \ e \ f \ ty \\ g \ h \ i \ tz \\ 0 \ 0 \ 0 \ 1 \end{bmatrix} = \begin{bmatrix} 1 \ 0 \ 0 \ tx \\ 0 \ 1 \ 0 \ ty \\ 0 \ 0 \ 1 \ tz \\ 0 \ 0 \ 0 \ 1 \end{bmatrix} \times \begin{bmatrix} a \ b \ c \ 0 \\ d \ e \ f \ 0 \\ g \ h \ i \ 0 \\ 0 \ 0 \ 0 \ 1 \end{bmatrix}$$

$$M$$

$$M_T$$

$$M_L$$

Position

oApply the full affine transformation: $p'=M(p)=(M_T \times M_L)(p)$

- Direction
- Normal

Affine Translate Linear a b c tx] [1 0 0 tx] [a b c 0]0 1 0 ty | d e f 0d e f ty | X = **|ghi**0 g h i tz | 0 0 1 tz $\begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}$ 0 0 0 1 0 0 0 M_{T} M_{I} M

- Position
- Direction

oApply the linear component of the transformation: $p'=M_L(p)$

Normal

- Position
- Direction

oApply the linear component of the transformation: $p'=M_L(p)$

A direction vector *v* is defined as the difference between two positional vectors *p* and *q*: *v*=*p*-*q*.

- Position
- Direction

oApply the linear component of the transformation: $p'=M_L(p)$

A direction vector *v* is defined as the difference between two positional vectors *p* and *q*: *v*=*p*-*q*.

Applying the transformation M, we compute the transformed direction as the difference between the transformed positions: *v*'=M(*p*)-M(*q*).

- Position
- Direction

oApply the linear component of the transformation: $p'=M_L(p)$

A direction vector *v* is defined as the difference between two positional vectors *p* and *q*: *v*=*p*-*q*.

Applying the transformation M, we compute the transformed direction as the difference between the transformed positions: *v*'=M(*p*)-M(*q*). The translation terms cancel out!

Ray Casting With Hierarchies

- Transform rays, not primitives ➢ For each node …
 - Base » Transform ray by inverse of matrix [M₁] » Intersect transformed ray with primitives » Transform hit information by matrix Lower Arm $[M_2]$ Upper Arm $[M_3]$ **Robot Arm**

Angel Figures 8.8 & 8.9

Transforming a Ray

If *M* is the transformation mapping a scene-graph node into the "world" (or "global") coordinate system, then we transform a ray *r* by:
 or'.start = M⁻¹(r.start)
 or'.direction = M_l⁻¹(r.direction)

Affine
 Translate
 Linear

$$\begin{bmatrix} a \ b \ c \ tx \\ d \ e \ f \ ty \\ g \ h \ i \ tz \\ 0 \ 0 \ 0 \ 1 \end{bmatrix} = \begin{bmatrix} 1 \ 0 \ 0 \ tx \\ 0 \ 1 \ 0 \ ty \\ 0 \ 0 \ 1 \ tz \\ 0 \ 0 \ 0 \ 1 \end{bmatrix} \times \begin{bmatrix} a \ b \ c \ 0 \\ d \ e \ f \ 0 \\ g \ h \ i \ 0 \\ 0 \ 0 \ 0 \ 1 \end{bmatrix}$$
 M
 M_T
 M_L

Ray Casting With Hierarchies

- Transform rays, not primitives ➢ For each node …
 - Base » Transform ray by inverse of matrix [M₁] » Intersect transformed ray with primitives » Transform hit information by matrix Lower Arm $[M_2]$ Upper Arm $[M_3]$ **Robot Arm**

Angel Figures 8.8 & 8.9

- Position
- Direction
- Normal

p'= ?

Translate
 Scale

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
 =
 $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$
 ×
 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 M
 M_T
 M_L

2D Example:

Translate
 Scale

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 M
 M_T
 M_L

If *v* is a direction in 2D, and *n* is a vector perpendicular to *v*, we want the transformed *n* to be perpendicular to the transformed *v*:

$$\hat{v} \cdot \hat{n} = 0 \implies M_L(\hat{v}) \cdot \hat{n}' = 0$$

2D Example:

Translate
 Scale

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
 =
 $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$
 ×
 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 M
 M_T
 M_L

Say $\hat{v} = (2, 2) \dots$

Translate
 Scale

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
 =
 $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$
 ×
 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 M
 M_T
 M_L

Say
$$\hat{v} = (2, 2) \dots$$
 then $\hat{n} = (-\sqrt{.5}, \sqrt{.5})$

2D Example:

Translate
 Scale

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
 =

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
 ×

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 M
 M_T
 M_L

Say $\hat{v} = (2, 2) \dots$ then $\hat{n} = (-\sqrt{.5}, \sqrt{.5})$

Transposes:

The transpose of a matrix *M* is the matrix *M^t* whose (i,j)-th coeff. is the (j,i)-th coeff. of M:

$$M = \begin{bmatrix} m_{11} & m_{21} & m_{31} \\ m_{12} & m_{22} & m_{32} \\ m_{13} & m_{23} & m_{33} \end{bmatrix} \qquad M^{t} = \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & 2m_{33} \end{bmatrix}$$

Transposes:

• The transpose of a matrix *M* is the matrix *M^t* whose (i,j)-th coeff. is the (j,i)-th coeff. of M:

$$M = \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix} \qquad M^t = \begin{bmatrix} m_{11} & m_{21} & m_{31} \\ m_{12} & m_{22} & m_{32} \\ m_{13} & m_{23} & m_{33} \end{bmatrix}$$

• If *M* and *N* are two matrices, then the transpose of the product is the inverted product of the transposes:

$$(MN)^t = N^t M^t$$

Dot-Products :

 The dot product of two vectors v=(v_x, v_y, v_z) and w=(w_x, w_y, w_z) is obtained by summing the product of the coefficients:

$$\hat{v} \cdot \hat{w} = v_x w_x + v_y w_y + v_z w_z$$

Dot-Products :

 The dot product of two vectors v=(v_x, v_y, v_z) and w=(w_x, w_y, w_z) is obtained by summing the product of the coefficients:

$$\hat{v} \cdot \hat{w} = v_x w_x + v_y w_y + v_z w_z$$

• Can also express as a matrix product:

$$\hat{v} \cdot \hat{w} = \hat{v}^t \hat{w} = \begin{bmatrix} v_x & v_y & v_z \end{bmatrix} \begin{bmatrix} w_x \\ w_y \\ w_z \end{bmatrix}$$

Transposes and Dot-Products:

Transposes and Dot-Products:

$$\langle v, Mw \rangle = v^t Mw$$

Transposes and Dot-Products:

$$\langle v, Mw \rangle = v^t Mw$$

= $(v^t M)w$

Transposes and Dot-Products:

$$\langle v, Mw \rangle = v^t Mw$$

= $(v^t M)w$
= $(M^t v)^t w$

Transposes and Dot-Products:

$$\begin{array}{l} \langle v, Mw \rangle = v^t Mw \\ = (v^t M)w \\ = (M^t v)^t w \\ \langle v, Mw \rangle = \langle M^t v, w \rangle \end{array}$$

 If we apply the transformation M to 3D space, how does it act on normals?

- If we apply the transformation *M* to 3D space, how does it act on normals?
- A normal *n* is defined by being perpendicular to some vector(s) *v*. The transformed normal *n*' should be perpendicular to *M*(*v*):

$$\langle n, v \rangle = \langle n', Mv \rangle$$

- If we apply the transformation *M* to 3D space, how does it act on normals?
- A normal *n* is defined by being perpendicular to some vector(s) *v*. The transformed normal *n*' should be perpendicular to *M*(*v*):

$$\langle n, v \rangle = \langle n', Mv \rangle$$

= $\langle M^t n', v \rangle$

- If we apply the transformation M to 3D space, how does it act on normals?
- A normal *n* is defined by being perpendicular to some vector(s) *v*. The transformed normal *n*' should be perpendicular to *M*(*v*):

- If we apply the transformation M to 3D space, how does it act on normals?
- A normal *n* is defined by being perpendicular to some vector(s) *v*. The transformed normal *n*' should be perpendicular to *M*(*v*):

$$n, v\rangle = \langle n', Mv \rangle$$
$$= \langle M^t n', v \rangle$$
$$n = M^t n'$$
$$n' = (M^t)^{-1} n$$

Position

p'=*M*(*p*)

- Direction $p'=M_L(p)$
- Normal

 $p' = ((M_l)^t)^{-1}(p)$ Affine Translate Linear a b c tx] $\begin{bmatrix} a & b & c & 0 \end{bmatrix}$ [1 0 0 tx]d e f 0d e f ty 0 1 0 **ty** X = |**g** h i 0 g h i tz 0 0 1 tz | 0 0 0 1 0 0 0 1 0 0 0 M_{T} M_{I} M

Ray Casting With Hierarchies

Transforming a Ray

If *M* is the transformation mapping a scene-graph node into the global coordinate system, then we transform the hit information *hit* by:
 ohit'.position = *M*(*hit*.position)
 ohit'.normal = ((*M*_L)^t)⁻¹(*hit*.normal)

Affine
 Translate
 Linear

$$\begin{bmatrix} a \ b \ c \ tx \\ d \ e \ f \ ty \\ g \ h \ i \ tz \\ 0 \ 0 \ 0 \ 1 \end{bmatrix} = \begin{bmatrix} 1 \ 0 \ 0 \ tx \\ 0 \ 1 \ 0 \ ty \\ 0 \ 0 \ 1 \ tz \\ 0 \ 0 \ 0 \ 1 \end{bmatrix} \times \begin{bmatrix} a \ b \ c \ 0 \\ d \ e \ f \ 0 \\ g \ h \ i \ 0 \\ 0 \ 0 \ 0 \ 1 \end{bmatrix}$$
 M
 M_T
 M_L