
Scene Graphs

Connelly Barnes

CS 4810: Graphics

Acknowledgment: slides by Jason Lawrence, Misha Kazhdan, Allison Klein, Tom
Funkhouser, Adam Finkelstein and David Dobkin

Overview
• 2D Transformations

ØBasic 2D transformations
ØMatrix representation
ØMatrix composition

• 3D Transformations
ØBasic 3D transformations
ØSame as 2D

• Transformation Hierarchies
ØScene graphs
ØRay casting

Transformation Example 1
• An object may appear in a scene multiple times

Draw same 3D data with
different transformations

Transformation Example 1

Building

Floor 4 Floor5Floor 3Floor 2Floor 1

Chair KBookshelf 1

Desk ChairBookshelf

Desk 1 Desk 2 Chair 1

Floor Furniture

Office NOffice 1

Office Furniture

Definitions

Instances

Transformation Example 2

Rose et al. `96

• Well-suited for humanoid characters

Root

LHip

LKnee

LAnkle

RHip

RKnee

RAnkle

Chest

LCollar

LShld

LElbow

LWrist

RCollar

RShld

RElbow

RWrist

Neck

Head

Scene Graphs
• Allow us to have multiple instances of a single model

– providing a reduction in model storage size

• Allow us to model objects in local coordinates and
then place them into a global frame – particularly
important for animation

Scene Graphs
• Allow us to have multiple instances of a single model

– providing a reduction in model storage size

• Allow us to model objects in local coordinates and
then place them into a global frame – particularly
important for animation

• Accelerate ray-tracing by providing a hierarchical
structure that can be used for bounding volume
testing

Ray Casting with Hierarchies

Ray Casting with Hierarchies

• Transform the shape (M)
• Compute the intersection

Ray Casting with Hierarchies

• Transform the ray (M-1)
• Compute the intersection
• Transform the intersection (M)

• Transform the shape (M)
• Compute the intersection

Angel Figures 8.8 & 8.9

Ray Casting With Hierarchies
• Transform rays, not primitives

ØFor each node ...
»Transform ray by inverse of matrix
»Intersect transformed ray with primitives
»Transform hit information by matrix

Base
[M1]

Lower Arm
[M2]

Upper Arm
[M3]

Robot Arm

Applying a Transformation
• Position

• Direction

• Normal

M

Affine Translate Linear

MT ML

Applying a Transformation
• Position
oApply the full affine transformation:

p’=M(p)=(MT×ML)(p)

• Direction

• Normal

M

Affine Translate Linear

MT ML

Applying a Transformation
• Position

• Direction
oApply the linear component of the transformation:

p’=ML(p)

• Normal

M

Affine Translate Linear

MT ML

Applying a Transformation
• Position

• Direction
oApply the linear component of the transformation:

p’=ML(p)

A direction vector v is defined as the difference between two positional
vectors p and q: v=p-q.

q v

p

Applying a Transformation
• Position

• Direction
oApply the linear component of the transformation:

p’=ML(p)

A direction vector v is defined as the difference between two positional
vectors p and q: v=p-q.

Applying the transformation M, we compute the transformed direction as
the difference between the transformed positions: v’=M(p)-M(q).

q v

p
v’

M(p)

M(q)

Applying a Transformation
• Position

• Direction
oApply the linear component of the transformation:

p’=ML(p)

A direction vector v is defined as the difference between two positional
vectors p and q: v=p-q.

Applying the transformation M, we compute the transformed direction as
the difference between the transformed positions: v’=M(p)-M(q).

The translation terms cancel out!

q v

p
v’

M(p)

M(q)

Angel Figures 8.8 & 8.9

Ray Casting With Hierarchies
• Transform rays, not primitives

ØFor each node ...
»Transform ray by inverse of matrix
»Intersect transformed ray with primitives
»Transform hit information by matrix

Base
[M1]

Lower Arm
[M2]

Upper Arm
[M3]

Robot Arm

Transforming a Ray
• If M is the transformation mapping a scene-graph

node into the “world” (or “global”) coordinate system,
then we transform a ray r by:
or’.start = M-1(r.start)
or’.direction = ML-1(r.direction)

M

Affine Translate Linear

MT ML

Angel Figures 8.8 & 8.9

Ray Casting With Hierarchies
• Transform rays, not primitives

ØFor each node ...
»Transform ray by inverse of matrix
»Intersect transformed ray with primitives
»Transform hit information by matrix

Base
[M1]

Lower Arm
[M2]

Upper Arm
[M3]

Robot Arm

Applying a Transformation
• Position

• Direction

• Normal
p’= ?

M MT ML

Affine Translate Linear

Normal Transformation
2D Example:

Translate Scale

M MT ML

Normal Transformation
2D Example:

If v is a direction in 2D, and n is a vector perpendicular
to v, we want the transformed n to be perpendicular to
the transformed v:

Translate Scale

M MT ML

v̂ · n̂ = 0 ML(v̂) · n̂0 = 0

Normal Transformation

Translate Scale

M MT ML

v

2D Example:

Say …v̂ = (2, 2)

Normal Transformation

Translate Scale

M MT ML

vn

2D Example:

Say … then n̂ = (�
p
.5,

p
.5)v̂ = (2, 2)

v̂ · n̂ = 0

Normal Transformation

Translate Scale

M MT ML

vn

ML(v)

2D Example:

Say … then n̂ = (�
p
.5,

p
.5)v̂ = (2, 2)

ML(v̂) = (2, 4)

v̂ · n̂ = 0

Normal Transformation

Translate Scale

M MT ML

vn

ML(v)

2D Example:

Say … then n̂ = (�
p
.5,

p
.5)v̂ = (2, 2)

ML(v̂) = (2, 4)

v̂ · n̂ = 0

ML(n̂) = (�
p
.5,

p
2)

Normal Transformation

Translate Scale

M MT ML

vn

ML(v)

2D Example:

Say … then n̂ = (�
p
.5,

p
.5)v̂ = (2, 2)

ML(v̂) = (2, 4)

v̂ · n̂ = 0 ML(v̂) ·ML(n̂) 6= 0

ML(n̂) = (�
p
.5,

p
2)

Normal Transformation

Translate Scale

M MT ML

vn

ML(v)

2D Example:

Say … then n̂ = (�
p
.5,

p
.5)v̂ = (2, 2)

ML(v̂) = (2, 4)

v̂ · n̂ = 0 ML(v̂) ·ML(n̂) 6= 0

ML(n̂) = (�
p
.5,

p
2)

Simply applying the directional part of the
transformation to n does not result in a vector

that is perpendicular to the transformed v.

Recall
Transposes:

• The transpose of a matrix M is the matrix Mt whose
(i,j)-th coeff. is the (j,i)-th coeff. of M:

Recall
Transposes:

• The transpose of a matrix M is the matrix Mt whose
(i,j)-th coeff. is the (j,i)-th coeff. of M: 
 
 
 

• If M and N are two matrices, then the transpose of
the product is the inverted product of the transposes:

(MN)t = N tM t

Recall
Dot-Products :

• The dot product of two vectors v=(vx,vy,vz) and
w=(wx,wy,wz) is obtained by summing the product of
the coefficients:

v̂ · ŵ = v
x

w
x

+ v
y

w
y

+ v
z

w
z

Recall
Dot-Products :

• The dot product of two vectors v=(vx,vy,vz) and
w=(wx,wy,wz) is obtained by summing the product of
the coefficients:

• Can also express as a matrix product:

v̂ · ŵ = v
x

w
x

+ v
y

w
y

+ v
z

w
z

v̂ · ŵ = v̂tŵ =
⇥
v
x

v
y

v
z

⇤
2

4
w

x

w
y

w
z

3

5

Recall
Transposes and Dot-Products:

• If M is a matrix, the dot product of v with M applied to
w is the dot product of the transpose of M applied to v
with w:

Recall
Transposes and Dot-Products:

• If M is a matrix, the dot product of v with M applied to
w is the dot product of the transpose of M applied to v
with w:

hv, Mwi = vtMw

Recall
Transposes and Dot-Products:

• If M is a matrix, the dot product of v with M applied to
w is the dot product of the transpose of M applied to v
with w:

hv, Mwi = vtMw
= (vtM)w

Recall
Transposes and Dot-Products:

• If M is a matrix, the dot product of v with M applied to
w is the dot product of the transpose of M applied to v
with w:

hv, Mwi = vtMw
= (vtM)w
= (M tv)tw

Recall
Transposes and Dot-Products:

• If M is a matrix, the dot product of v with M applied to
w is the dot product of the transpose of M applied to v
with w:

hv, Mwi = hM tv, wi

hv, Mwi = vtMw
= (vtM)w
= (M tv)tw

Applying a Transformation
• If we apply the transformation M to 3D space, how

does it act on normals?

Applying a Transformation
• If we apply the transformation M to 3D space, how

does it act on normals?

• A normal n is defined by being perpendicular to some
vector(s) v. The transformed normal n’ should be
perpendicular to M(v):

hn, vi = hn0, Mvi

Applying a Transformation
• If we apply the transformation M to 3D space, how

does it act on normals?

• A normal n is defined by being perpendicular to some
vector(s) v. The transformed normal n’ should be
perpendicular to M(v):

= hM tn0, vi
hn, vi = hn0, Mvi

Applying a Transformation
• If we apply the transformation M to 3D space, how

does it act on normals?

• A normal n is defined by being perpendicular to some
vector(s) v. The transformed normal n’ should be
perpendicular to M(v):

n = M tn0

= hM tn0, vi
hn, vi = hn0, Mvi

Applying a Transformation
• If we apply the transformation M to 3D space, how

does it act on normals?

• A normal n is defined by being perpendicular to some
vector(s) v. The transformed normal n’ should be
perpendicular to M(v):

n0 = (M t)�1n
n = M tn0

= hM tn0, vi
hn, vi = hn0, Mvi

Applying a Transformation
• Position

p’=M(p)

• Direction
p’=ML(p)

• Normal
p’=((ML)t)-1(p)

M

Affine Translate Linear

MT ML

Angel Figures 8.8 & 8.9

Ray Casting With Hierarchies
• Transform rays, not primitives
oFor each node ...

»Transform ray by inverse of matrix
»Intersect transformed ray with primitives
»Transform hit information by matrix

Base
[M1]

Lower Arm
[M2]

Upper Arm
[M3]

Robot Arm

Transforming a Ray
• If M is the transformation mapping a scene-graph

node into the global coordinate system, then we
transform the hit information hit by:
ohit’.position = M (hit.position)
ohit’.normal = ((ML)t)-1(hit.normal)

M

Affine Translate Linear

MT ML

