Scene Graphs

Connelly Barnes

CS 4810: Graphics

Acknowledgment: slides by Jason Lawrence, Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin

Overview

- 2D Transformations
>Basic 2D transformations
>Matrix representation
$>$ Matrix composition
- 3D Transformations
>Basic 3D transformations
$>$ Same as 2D
- Transformation Hierarchies
$>$ Scene graphs
>Ray casting

Transformation Example 1

- An object may appear in a scene multiple times

Draw same 3D data with different transformations

Transformation Example 1

Transformation Example 2

- Well-suited for humanoid characters

Scene Graphs

- Allow us to have multiple instances of a single model - providing a reduction in model storage size
- Allow us to model objects in local coordinates and then place them into a global frame - particularly important for animation

Scene Graphs

- Allow us to have multiple instances of a single model - providing a reduction in model storage size
- Allow us to model objects in local coordinates and then place them into a global frame - particularly important for animation
- Accelerate ray-tracing by providing a hierarchical structure that can be used for bounding volume testing

Ray Casting with Hierarchies

Ray Casting with Hierarchies

Ray Casting with Hierarchies

Ray Casting With Hierarchies

- Transform rays, not primitives
>For each node ...
"Transform ray by inverse of matrix
"Intersect transformed ray with primitives
"Transform hit information by matrix

Applying a Transformation

- Position
- Direction
- Normal

Affine	Tra	Linear
c tx	100 tx	[abcc
d efty	010 ty	d efo
tz	001 tz	
0 0 1	$\begin{array}{llll}0 & 0 & 0 \\ 1\end{array}$	00
	M_{T}	

Applying a Transformation

- Position
oApply the full affine transformation:

$$
p^{\prime}=M(p)=\left(M_{T} \times M_{L}\right)(p)
$$

- Direction
- Normal

Affine	Tra	Linear
c tx	100 tx	[abcc
d efty	010 ty	d efo
tz	001 tz	
0 0 1	$\begin{array}{llll}0 & 0 & 0 \\ 1\end{array}$	00
	M_{T}	

Applying a Transformation

- Position
- Direction
oApply the linear component of the transformation:

$$
p^{\prime}=M_{L}(p)
$$

- Normal

> M
> $M_{T} \quad M_{L}$

Applying a Transformation

- Position
- Direction
oApply the linear component of the transformation:

$$
p^{\prime}=M_{L}(p)
$$

A direction vector v is defined as the difference between two positional vectors p and $q: v=p-q$.

Applying a Transformation

- Position
- Direction
oApply the linear component of the transformation:

$$
p^{\prime}=M_{L}(p)
$$

A direction vector v is defined as the difference between two positional vectors p and $q: v=p-q$.
Applying the transformation M , we compute the transformed direction as the difference between the transformed positions: $v^{\prime}=\mathbf{M}(p)-M(q)$.

Applying a Transformation

- Position
- Direction
oApply the linear component of the transformation:

$$
p^{\prime}=M_{L}(p)
$$

A direction vector v is defined as the difference between two positional vectors p and $q: v=p-q$.
Applying the transformation M , we compute the transformed direction as the difference between the transformed positions: $v^{\prime}=\mathbf{M}(p)-\mathrm{M}(q)$.
The translation terms cancel out!

Ray Casting With Hierarchies

- Transform rays, not primitives
>For each node ...
"Transform ray by inverse of matrix "Intersect transformed ray with primitives
»Transform hit information by matrix

Transforming a Ray

- If M is the transformation mapping a scene-graph node into the "world" (or "global") coordinate system, then we transform a ray r by:
or' start $=M^{-1}(r$. start $)$
or'. direction $=M_{L^{-1}}($ r. direction $)$

> M
> $M_{T} \quad M_{L}$

Ray Casting With Hierarchies

- Transform rays, not primitives
>For each node ...
"Transform ray by inverse of matrix "Intersect transformed ray with primitives
»Transform hit information by matrix

Applying a Transformation

- Position
- Direction
- Normal

$$
p^{\prime}=?
$$

Affine	Tra	Linear
c tx	100 tx	[abcc
d efty	010 ty	d efo
tz	001 tz	
0 0 1	$\begin{array}{llll}0 & 0 & 0 \\ 1\end{array}$	00
	M_{T}	

Normal Transformation

2D Example:

$$
\left.\begin{array}{c}
{\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{array}\right]} \\
M
\end{array}\right] \stackrel{\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]}{M_{T}} \stackrel{\text { Traslate }}{\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]} \begin{gathered}
\text { Scale } \\
M_{L}
\end{gathered}
$$

Normal Transformation

2D Example:

$$
\underset{M}{\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{array}\right]} \underset{M_{T}}{\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{ccc}
\text { Translate }
\end{array}\right]} \underset{M_{L}}{\left[\begin{array}{lll}
\text { Scale } \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]}
$$

If v is a direction in 2D, and n is a vector perpendicular to v, we want the transformed n to be perpendicular to the transformed v :

$$
\hat{v} \cdot \hat{n}=0 \Longleftrightarrow M_{L}(\hat{v}) \cdot \hat{n}^{\prime}=0
$$

Normal Transformation

 2D Example:$$
\begin{aligned}
& \text { Translate Scale } \\
& \underset{M}{\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{array}\right]}=\underset{M_{T}}{\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]} \underset{M_{L}}{\left[\begin{array}{ll}
\end{array}\right]}
\end{aligned}
$$

Say $\hat{v}=(2,2) \ldots$

Normal Transformation

 2D Example:$$
\begin{aligned}
& \text { Translate Scale } \\
& \underset{M}{\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{array}\right]}=\underset{M_{T}}{\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]} \underset{M_{L}}{\left[\begin{array}{ll}
(1)
\end{array}\right.}
\end{aligned}
$$

Say $\hat{v}=(2,2) \ldots$ then $\hat{n}=(-\sqrt{.5}, \sqrt{.5})$

Normal Transformation

 2D Example:$$
\begin{aligned}
& \text { Translate Scale } \\
& {\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
& M \quad M_{T} \quad M_{L}
\end{aligned}
$$

Say $\hat{v}=(2,2) \ldots$ then $\hat{n}=(-\sqrt{.5}, \sqrt{.5})$

Normal Transformation

 2D Example:$$
\underset{M}{\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{array}\right]} \stackrel{\text { Translate }}{\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{lll}
\text { Scale } \\
M_{T}
\end{array}\right]} \underset{M_{L}}{\left[\begin{array}{lll}
0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]}
$$

Say $\hat{v}=(2,2) \ldots$ then $\hat{n}=(-\sqrt{.5}, \sqrt{.5})$

$$
M_{L}(\hat{n})=(-\sqrt{.5}, \sqrt{2})
$$

$$
M_{L}(\hat{v})=(2,4)
$$

$$
\hat{v} \cdot \hat{n}=0
$$

Normal Transformation

 2D Example:$$
\underset{M}{\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{array}\right]} \stackrel{\text { Translate }}{\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{lll}
\text { Scale } \\
M_{T} & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]} \underset{M_{L}}{ }
$$

Say $\hat{v}=(2,2) \ldots$ then $\hat{n}=(-\sqrt{.5}, \sqrt{.5})$

$$
M_{L}(\hat{v})=(2,4)
$$

$$
\hat{v} \cdot \hat{n}=0
$$

$$
\begin{aligned}
& M_{L}(\hat{n})=(-\sqrt{.5}, \sqrt{2}) \\
& M_{L}(\hat{v}) \cdot M_{L}(\hat{n}) \neq 0
\end{aligned}
$$

Normal Transformation

2D Example:

$$
\begin{aligned}
& \text { Translate Scale } \\
& {\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
& \text { M Mr } \\
& \text { M }
\end{aligned}
$$

Simply applying the directional part of the
Say $\hat{v}=$ transformation to n does not result in a vector that is perpendicular to the transformed $v . \quad-\sqrt{.5}, \sqrt{2})$

Recall

Transposes:

- The transpose of a matrix M is the matrix M^{t} whose (i,j)-th coeff. is the (j, i)-th coeff. of M :

$$
M=\left[\begin{array}{lll}
m_{11} & m_{21} & m_{31} \\
m_{12} & m_{22} & m_{32} \\
m_{13} & m_{23} & m_{33}
\end{array}\right] \quad M^{t}=\left[\begin{array}{lll}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{32} & m_{33}
\end{array}\right]
$$

Recall

Transposes:

- The transpose of a matrix M is the matrix M^{t} whose (i, j)-th coeff. is the (j, i)-th coeff. of M :

$$
M=\left[\begin{array}{lll}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{32} & m_{33}
\end{array}\right] \quad M^{t}=\left[\begin{array}{lll}
m_{11} & m_{21} & m_{31} \\
m_{12} & m_{22} & m_{32} \\
m_{13} & m_{23} & m_{33}
\end{array}\right]
$$

- If M and N are two matrices, then the transpose of the product is the inverted product of the transposes:

$$
(M N)^{t}=N^{t} M^{t}
$$

Recall

Dot-Products :

- The dot product of two vectors $v=\left(v_{x}, v_{y}, v_{z}\right)$ and $w=\left(w_{x}, w_{y}, w_{z}\right)$ is obtained by summing the product of the coefficients:

$$
\hat{v} \cdot \hat{w}=v_{x} w_{x}+v_{y} w_{y}+v_{z} w_{z}
$$

Recall

Dot-Products :

- The dot product of two vectors $v=\left(v_{x}, v_{y}, v_{z}\right)$ and $w=\left(w_{x}, w_{y}, w_{z}\right)$ is obtained by summing the product of the coefficients:

$$
\hat{v} \cdot \hat{w}=v_{x} w_{x}+v_{y} w_{y}+v_{z} w_{z}
$$

- Can also express as a matrix product:

$$
\hat{v} \cdot \hat{w}=\hat{v}^{t} \hat{w}=\left[\begin{array}{lll}
v_{x} & v_{y} & v_{z}
\end{array}\right]\left[\begin{array}{l}
w_{x} \\
w_{y} \\
w_{z}
\end{array}\right]
$$

Recall

Transposes and Dot-Products:

- If M is a matrix, the dot product of v with M applied to w is the dot product of the transpose of M applied to v with w :

Recall

Transposes and Dot-Products:

- If M is a matrix, the dot product of v with M applied to w is the dot product of the transpose of M applied to v with w :

$$
\langle v, M w\rangle=v^{t} M w
$$

Recall

Transposes and Dot-Products:

- If M is a matrix, the dot product of v with M applied to w is the dot product of the transpose of M applied to v with w :

$$
\begin{aligned}
\langle v, M w\rangle & =v^{t} M w \\
& =\left(v^{t} M\right) w
\end{aligned}
$$

Recall

Transposes and Dot-Products:

- If M is a matrix, the dot product of v with M applied to w is the dot product of the transpose of M applied to v with w :

$$
\begin{aligned}
\langle v, M w\rangle & =v^{t} M w \\
& =\left(v^{t} M\right) w \\
& =\left(M^{t} v\right)^{t} w
\end{aligned}
$$

Recall

Transposes and Dot-Products:

- If M is a matrix, the dot product of v with M applied to w is the dot product of the transpose of M applied to v with w :

$$
\begin{aligned}
\langle v, M w\rangle & =v^{t} M w \\
& =\left(v^{t} M\right) w \\
& =\left(M^{t} v\right)^{t} w \\
\langle v, M w\rangle & =\left\langle M^{t} v, w\right\rangle
\end{aligned}
$$

Applying a Transformation

- If we apply the transformation M to 3D space, how does it act on normals?

Applying a Transformation

- If we apply the transformation M to 3D space, how does it act on normals?
- A normal n is defined by being perpendicular to some vector(s) v. The transformed normal n ' should be perpendicular to $M(v)$:

$$
\langle n, v\rangle=\left\langle n^{\prime}, M v\right\rangle
$$

Applying a Transformation

- If we apply the transformation M to 3D space, how does it act on normals?
- A normal n is defined by being perpendicular to some vector(s) v. The transformed normal n 'should be perpendicular to $M(v)$:

$$
\begin{aligned}
\langle n, v\rangle & =\left\langle n^{\prime}, M v\right\rangle \\
& =\left\langle M^{t} n^{\prime}, v\right\rangle
\end{aligned}
$$

Applying a Transformation

- If we apply the transformation M to 3D space, how does it act on normals?
- A normal n is defined by being perpendicular to some vector(s) v. The transformed normal n 'should be perpendicular to $M(v)$:

$$
\begin{aligned}
\langle n, v\rangle & =\left\langle n^{\prime}, M v\right\rangle \\
& =\left\langle M^{t} n^{\prime}, v\right\rangle \\
& =M^{t} n^{\prime}
\end{aligned}
$$

Applying a Transformation

- If we apply the transformation M to 3D space, how does it act on normals?
- A normal n is defined by being perpendicular to some vector(s) v. The transformed normal n 'should be perpendicular to $M(v)$:

$$
\begin{aligned}
& \langle n, v\rangle=\left\langle n^{\prime}, M v\right\rangle \\
& =\left\langle M^{t} n^{\prime}, v\right\rangle \\
& n=M^{t} n^{\prime} \\
& n^{\prime}=\left(M^{t}\right)^{-1} n
\end{aligned}
$$

Applying a Transformation

- Position

$$
p^{\prime}=M(p)
$$

- Direction

$$
p^{\prime}=M_{L}(p)
$$

- Normal

$$
\begin{aligned}
& p^{\prime}=\left(\left(M_{L}\right)^{t}\right)^{-1}(p) \\
& \text { Affine Translate Linear } \\
& {\left[\begin{array}{llll}
a & b & c & t x \\
d & e & f & t y \\
g & h & i & t z \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & \text { tx } \\
0 & 1 & 0 & \text { ty } \\
0 & 0 & 1 & \text { oz } \\
0 & 0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{cccc}
a & b & c & 0 \\
\text { d } & \text { e } & f & 0 \\
g & h & i & 0 \\
0 & 0 & 0 & 1
\end{array}\right]} \\
& \text { M } \\
& M_{T} \quad M_{L}
\end{aligned}
$$

Ray Casting With Hierarchies

- Transform rays, not primitives
oFor each node ...
»Transform ray by inverse of matrix
"Intersect transformed ray with primitives
"Transform hit information by matrix

Transforming a Ray

- If M is the transformation mapping a scene-graph node into the global coordinate system, then we transform the hit information hit by:
ohit'.position = M (hit .position)
ohit'.normal $=\left(\left(M_{L}\right)^{t}\right)^{-1}$ (hit .normal)

> M
> $M_{T} \quad M_{L}$

