Barycentric Coordinates
(and Some Texture Mapping)

Connelly Barnes

CS 4810: Graphics

Acknowledgment: slides by Jason Lawrence, Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin
Triangles

These are the basic building blocks of 3D models.

- Often 3D models are complex, and the surfaces are represented by a triangulated approximation.
Triangles

A triangle is defined by three non-collinear vertices:

• Any point q in the triangle is on the line segment between one vertex and some other point q' on the opposite edge.
Barycentric Coordinates

A triangle is defined by three non-collinear vertices:

• Any point \(q \) in the triangle is on the line segment between one vertex and some other point \(q' \) on the opposite edge.

• Any point on the triangle can be expressed as:
 • \(q = \{ \alpha p_1 + \beta p_2 + \gamma p_3 \mid \alpha + \beta + \gamma = 1, \alpha, \beta, \gamma \geq 0 \} \)
Barycentric Coordinates

A triangle is defined by three non-collinear vertices:

- Any point q in the triangle is on the line segment between one vertex and some other point q' on the opposite edge.

- Any point on the triangle can be expressed as:

 $q = \{ \alpha p_1 + \beta p_2 + \gamma p_3 \mid \alpha + \beta + \gamma = 1, \alpha, \beta, \gamma \geq 0 \}$

\[
\alpha p_1 + \beta p_2 + \gamma p_3 = \alpha p_1 + (1 - \alpha) \left(\frac{\beta p_2 + \gamma p_3}{1 - \alpha} \right)
\]
Barycentric Coordinates

A triangle is defined by three non-collinear vertices:

- Any point \(q \) in the triangle is on the line segment between one vertex and some other point \(q' \) on the opposite edge.
- Any point on the triangle can be expressed as:
 - \(q = \{ \alpha p_1 + \beta p_2 + \gamma p_3 \mid \alpha + \beta + \gamma = 1, \alpha, \beta, \gamma \geq 0 \} \)
Barycentric Coordinates

A triangle is defined by three non-collinear vertices:

• Any point \(q \) in the triangle is on the line segment between one vertex and some other point \(q' \) on the opposite edge.

• Any point on the triangle can be expressed as:
 • \(q=\{ \alpha p_1+\beta p_2+\gamma p_3 \mid \alpha+\beta+\gamma=1, \alpha,\beta,\gamma\geq 0 \} \)

\[\alpha p_1 + \beta p_2 + \gamma p_3 = \alpha p_1 + (1-\alpha) \left(\frac{\beta p_2 + \gamma p_3}{1-\alpha} \right) \]

A point \(q \) on the segment between \(p_1 \) and \(q' \)
Barycentric Coordinates

The barycentric coordinates of a point q:

$$q = \alpha p_1 + \beta p_2 + \gamma p_3$$

allow us to express q as a weighted average of the vertices of the triangles.
Barycentric Coordinates

Any point on the triangle can be expressed as:

• \(q = \{ \alpha p_1 + \beta p_2 + \gamma p_3 \mid \alpha + \beta + \gamma = 1, \alpha, \beta, \gamma \geq 0 \} \)

Questions:

• What happens if \(\alpha, \beta, \) or \(\gamma < 0 \)?
Barycentric Coordinates

Any point on the triangle can be expressed as:

• $q = \{ \alpha p_1 + \beta p_2 + \gamma p_3 \mid \alpha + \beta + \gamma = 1, \alpha, \beta, \gamma \geq 0 \}$

Questions:

• What happens if $\alpha, \beta, \text{ or } \gamma < 0$?

 o q is not inside the triangle but it is in the plane spanned by $p_1, p_2, \text{ and } p_3$.
Barycentric Coordinates

Any point on the triangle can be expressed as:
• \(q = \{ \alpha p_1 + \beta p_2 + \gamma p_3 \mid \alpha + \beta + \gamma = 1, \alpha, \beta, \gamma \geq 0 \} \)

Questions:
• What happens if \(\alpha, \beta, \) or \(\gamma < 0 \)?
• What happens if \(\alpha + \beta + \gamma \neq 1 \)?
Barycentric Coordinates

Any point on the triangle can be expressed as:

\[q = \alpha p_1 + \beta p_2 + \gamma p_3 \mid \alpha + \beta + \gamma = 1, \alpha, \beta, \gamma \geq 0 \]

Questions:

• What happens if \(\alpha, \beta, \) or \(\gamma < 0 \)?

• What happens if \(\alpha + \beta + \gamma \neq 1 \)?

 \(q \) is not in the plane spanned by \(p_1, p_2, \) and \(p_3 \).
Barycentric Coordinates

Any point on the triangle can be expressed as:

\[q = \{ \alpha p_1 + \beta p_2 + \gamma p_3 \mid \alpha + \beta + \gamma = 1, \alpha, \beta, \gamma \geq 0 \} \]

Questions:

• What happens if \(\alpha, \beta, \) or \(\gamma < 0 \)?

• What happens if \(\alpha + \beta + \gamma \neq 1 \)?

Note: If we force \(\alpha = 1 - \beta - \gamma \), we always get \(\alpha + \beta + \gamma = 1 \) so the point \(q \) is always in the plane containing the triangle.
Barycentric Coordinates

Barycentric coordinates are needed in:

• Ray-Tracing, to test for intersection
• Rendering, to interpolate triangle information
Barycentric Coordinates

Barycentric coordinates are needed in:

• Ray-Tracing, to test for intersection

• Rendering, to interpolate triangle information

Float TriangleIntersect(Ray r, Triangle tgl) {
 Plane p=PlaneContaining(tgl);
 Float t = IntersectionDistance(r, p);
 if (t < 0) { return -1; }
 else {
 (α, β, γ) = Barycentric(r(t), tgl);
 if (α < 0 or β < 0 or γ < 0) { return -1; }
 else { return t; }
 }
}
Barycentric Coordinates

Barycentric coordinates are needed in:

• Ray-Tracing, to test for intersection

• Rendering, to interpolate triangle information
 • In 3D models, information is often associated with vertices rather than triangles (e.g. color, normals, etc.)
Barycentric Coordinates

For example:

• We could associate the same normal/color to every point on the face of a triangle by computing:

\[
n = \frac{(p_2 - p_1) \times (p_3 - p_1)}{\| (p_2 - p_1) \times (p_3 - p_1) \|}
\]
Barycentric Coordinates

For example:

• We could associate the same normal/color to every point on the face of a triangle by computing:

\[n = \frac{(p_2 - p_1) \times (p_3 - p_1)}{\| (p_2 - p_1) \times (p_3 - p_1) \|} \]

This gives rise to flat shading/coloring across the faces

Triangle Normals
Barycentric Coordinates

Instead:

- We could associate normals to every vertex:

\[T = ((p_1, n_1), (p_2, n_2), (p_3, n_3)) \]

so that the normal at some point \(q \) in the triangle is the interpolation of the normals at the vertices:

\[
 n(q) = \frac{\alpha(q)n_1 + \beta(q)n_2 + \gamma(q)n_3}{\|\alpha(q)n_1 + \beta(q)n_2 + \gamma(q)n_3\|}
\]
Barycentric Coordinates

Instead:

• We could associate normals to every vertex:

\[T = ((p_1, n_1), (p_2, n_2), (p_3, n_3)) \]

so that the normal at some point \(q \) in the triangle is

the interpolation of the normals at the vertices:

Triangle Normals
Interpolated Point Normals
Barycentric Coordinates

So given the points p_1, p_2, and p_3, how do we compute the barycentric coordinates of a point q in the plane spanned by p_1, p_2, and p_3?

Matrix Inversion:

We can approach this is as a linear system with three equations and two unknowns:

$$q_x = (1 - \beta - \gamma)p_{1x} + \beta p_{2x} + \gamma p_{2x}$$
$$q_y = (1 - \beta - \gamma)p_{1y} + \beta p_{2y} + \gamma p_{2y}$$
$$q_z = (1 - \beta - \gamma)p_{1z} + \beta p_{2z} + \gamma p_{2z}$$
Barycentric Coordinates

So given the points \(p_1, p_2, \) and \(p_3 \), how do we compute the barycentric coordinates of a point \(q \) in the plane spanned by \(p_1, p_2, \) and \(p_3 \)?

(Signed) Area Ratios:

\[
\alpha = \frac{A_1}{A_1 + A_2 + A_3} \\
\beta = \frac{A_2}{A_1 + A_2 + A_3} \\
\gamma = \frac{A_3}{A_1 + A_2 + A_3}
\]
Barycentric Coordinates

So given the points \(p_1, p_2, \) and \(p_3 \), how do we compute the barycentric coordinates of a point \(q \) in the plane spanned by \(p_1, p_2, \) and \(p_3 \)?

(Signed) Area Ratios:

\[
\alpha = \frac{A_1}{A_1 + A_2 + A_3} \\
\beta = \frac{A_2}{A_1 + A_2 + A_3} \\
\gamma = \frac{A_3}{A_1 + A_2 + A_3}
\]

Solving this equation requires computing the areas of three triangles for every point \(q \). (DERIVATION IN CLASS)
Texture Mapping (Briefly, More Later)
Textures

- How can we go about drawing surfaces with complex detail?
Textures

- How can we go about drawing surfaces with complex detail?

- We could tessellate the sphere in a complex fashion and then associate the appropriate material properties to each vertex.
Textures

• How can we go about drawing surfaces with complex detail?

• We could use a simple tessellation and use the location of surface points to look up the appropriate color values.
Textures

- Advantages:
 - The 3D model remains simple
 - It is easier to design/modify a texture image than it is to design/modify a surface in 3D.
Another Example: Brick Wall
Another Example: Brick Wall
2D Texture

• Coordinates described by variables s and t and range over interval $(0,1)$

• Texture elements are called texels

• Often 4 bytes (rgba) per texel
Texture Mapping a Sphere

- How do you generate texture coordinates at each intersection point?

Target Model

Simple Surface

Texture Image