Clipping and Scan Conversion

Connelly Barnes

CS 4810: Graphics

Acknowledgment: slides by Jason Lawrence, Misha Kazhdan, Allison Klein,

Tom Funkhouser, Adam Finkelstein and David Dobkin
\§

4)

3D Rendering Pipeline (or direct ilumination)

3D Primitives
| 3D Modeling Coordinates

Modeling
Transformation

3D World Coordinates

Camera
Transformation

3D Camera Coordinates

Lighting

3D Camera Coordinates

Trans ormation

2D Screen Coordinates

Clipping

2D Screen Coordinates

Vlewport
Transformation

l 2D Image Coordinates

Scan
Conversmn

|
|
|
| Projection
|
|
|

2D Image Coordinates
Image ’ 2D Image

/

Transformations
p(X’y’Z)

l 3D Object Coordinates

Modelin
Transformation
\ 3D World Coordinates

Camera_
Transformation

l 3D Camera Coordinates

Prog'ection_
Transtormation

\ 2D Screen Coordinates

Window-to-Viewport
Transformation

\ 2D Image Coordinates

p'(X,y’)

3D World
Coordinates

/

Transformations
p(X’y’Z)

l 3D Object Coordinates

Modelin
Transformation
\ 3D World Coordinates

Camera_
Transformation

l 3D Camera Coordinates

Prog'ection_
Transtormation

\ 2D Screen Coordinates

Window-to-Viewport
Transformation

\ 2D Image Coordinates

p'(X,y’)

3D World
Coordinates

Transtorm=M
M = local to world transform

/

Transformations
p(X’y’Z)

l 3D Object Coordinates

Modeling
Transformation

\ 3D World Coordinates

Camera_
Transformation

3D Camera Coordinates

Prog'ection_
Transtormation

\ 2D Screen Coordinates

Window-to-Viewport
Transformation

\ 2D Image Coordinates

p'(X,y’)

3D Camera
Coordinates

3D World
Coordinates

Transform=M
M = local to world transform

4)
Camera Up

Transformations
p(X,y,Z)

l 3D Object Coordinates

[Modeling,] Camera Right
Transformation
X
N

\ 3D World Coordinates

Camera
Transformation

3D Camera Coordinates

Projection rm= -1 _z\[
[Transgormation] TranSfO C
C := camera transform

2D Screen Coordinates

[Window-tz)-Viewport] -Rx ~ X Bx Ex
Transformation R B E
C=|" Sy Ty Ty

2D Image Coordinates R,U,B,E,

p'(X%y’) 000 1

/

Transformations
p(X’y’Z)

l 3D Object Coordinates

Modeling
Transformation

\ 3D World Coordinates

Camera_
Transformation

Isomelric One-point perspective Three-point perspeclive

\ 3D Camera Coordinates

Projection Transform=PC-'M

Transtormation . .
P :=projection transform
\ 2D Screen Coordinates

: : (10 0 O]
Window-to-Viewport 1 0 Leosp O
Transformation , 0 1 Lsing 0 - 01 00
\ 2D Image Coordinates o 0 0 0 0 P 00 10
))) 1
\ e - L -

/

Transformations
p(X’y’Z)

l 3D Object Coordinates

Modeling
Transformation

\ 3D World Coordinates

Camera_
Transformation

l 3D Camera Coordinates

Prog'ection_
Transtormation

\ 2D Screen Coordinates

Window-to-Viewport
Transformation

2D Image Coordinates

p'(X,y’)

Normalized Coords Image
B :) \ ’T |
Viewport

Transform=VPC-'M
V' .= viewport transform

/

Transformations
p(X’y’Z)

l 3D Object Coordinates

Modeling
Transformation

\ 3D World Coordinates

Camera_
Transformation

l 3D Camera Coordinates

Prog'ection_
Transtormation

\ 2D Screen Coordinates

Window-to-Viewport
Transformation

2D Image Coordinates

p'(X,y’)

Y

h
Wy

w, ! -

Screen Coordinates

V =

> WX2

"1
Vy

Viewport

(Vi:Vy)

VXI «

:VX2

Image Coordinates

Transform=VPC-'M
V' .= viewport transform

1 0 0v.]

< —~= X ~

010wV
000 O

000 1

\'

1
X

-V

W

2
X
2
X

0

00-100

010
00O
00O

—w]
—-W

1
|
Y
0
1

J

/

3D Rendering Pipeline (for direct illumination)
p(X,y’Z)

l 3D Object Coordinates

Modeling
Transformation

\ 3D World Coordinates

Camera_
Transformation

l 3D Camera Coordinates

Prog'ection_ 2D Viewport
Transtormation \

\ 2D Screen Coordinates P -
1 ;f;-_‘ _ . J :
| A, 708 I
Window-to-Viewport v b e S
Transformation ! %‘ |
. | k' ‘i I

\ 2D Image Coordinates e

2D Screen

p,(x,’y,) 3D Model

-

3D Rendering Pipeline (or direct ilumination)

3D Primitives
| 3D Modeling Coordinates

Modeling
Transformation

3D World Coordinates

Transformation

3D Camera Coordinates

Lighting

3D Camera Coordinates

Pro ectlon
Trans ormation

|
[Camera
|
|

2D Screen Coordinates

Clipping

2D Screen Coordinates

Vlewport
Transformation

2D Image Coordinates

Scan
Conversion

1 2D Image Coordinates
Image

-

Clipping

 Avoid drawing parts of primitives outside window
oWindow defines part of scene being viewed
oMust draw geometric primitives only inside window

e

...........

Screen Coordinates

Clipping

 Avoid drawing parts of primitives outside window
oPoints
oLine Segments
oPolygons

——

L PR

N Screen Coordinates

/

Point Clipping
» Is point (Xx,y) inside the clip window?
wy2
(X,y)
®
vx;yl
wx |- - WX2
Window

/

Point Clipping
» Is point (Xx,y) inside the clip window?
\sz inside
(x >=
(X,y) (x <=
e (y >=
(y <=
\§y1
wx |- - WX2
Window

wxl) &&
wx2) &&
wyl) &é&
wy2) ;

Clipping

 Avoid drawing parts of primitives outside window
oPoints
oLine Segments
oPolygons

——

L PR

N Screen Coordinates

/

Line Segment Clipping

* Find the part of a line inside the clip window

P, T~ D
P3/P4 8

Before Clipping

/

Line Segment Clipping

* Find the part of a line inside the clip window

After Clipping

/

Cohen-Sutherland Line Clipping

» Use simple tests to classifty easy cases first

P, T~ D
P3/P4 8

/

Cohen-Sutherland Line Clipping

» If both outcodes are 0, line segment is inside
» If AND of outcodes not 0O, line segment is outside
 Otherwise clip and test

Bit 4

/

Cohen-Sutherland Line Clipping

* If both outcodes are 0, line segment is inside
» If AND of outcodes not 0O, line segment is outside
 Otherwise clip and test

P7

Bit 4

/

Cohen-Sutherland Line Clipping

» If both outcodes are 0, line segment is inside
» If AND of outcodes not 0, line segment is outside
 Otherwise clip and test

P7

Bit 4

/

Cohen-Sutherland Line Clipping

» If both outcodes are 0, line segment is inside
» If AND of outcodes not 0O, line segment is outside
» Otherwise clip and test

P7

Bit 4

/

Cohen-Sutherland Line Clipping

» If both outcodes are 0, line segment is inside
» If AND of outcodes not 0O, line segment is outside
» Otherwise clip and test

P7

Bit 4

Bit 1 Bit 2

/

Cohen-Sutherland Line Clipping

» If both outcodes are 0, line segment is inside
» If AND of outcodes not 0O, line segment is outside
» Otherwise clip and test

P7

Bit 4

Bit 1 Bit 2

/

Cohen-Sutherland Line Clipping

» If both outcodes are 0, line segment is inside
» If AND of outcodes not 0O, line segment is outside

» Otherwise clip and test
P7

Bit 4

Bit 1

/

Cohen-Sutherland Line Clipping

» If both outcodes are 0, line segment is inside
» If AND of outcodes not 0O, line segment is outside

» Otherwise clip and test
P7

Bit 4

Bit 1

/

Cohen-Sutherland Line Clipping

» If both outcodes are 0, line segment is inside
» If AND of outcodes not 0O, line segment is outside

» Otherwise clip and test
P5

Bit 4

Bit 1

/

Cohen-Sutherland Line Clipping

» If both outcodes are 0, line segment is inside
» If AND of outcodes not 0O, line segment is outside

» Otherwise clip and test
P5

Bit 4

Bit 1

/

Cohen-Sutherland Line Clipping

» If both outcodes are 0, line segment is inside
» If AND of outcodes not 0O, line segment is outside

» Otherwise clip and test
\ Bit 4

Bit 1 Bit 2

/

Cohen-Sutherland Line Clipping

» If both outcodes are 0, line segment is inside
» If AND of outcodes not 0O, line segment is outside

» Otherwise clip and test
\.\ Bit 4

Bit 1 Bit 2

/

Cohen-Sutherland Line Clipping

» If both outcodes are 0, line segment is inside
» If AND of outcodes not 0O, line segment is outside
» Otherwise clip and test

\ Bit 4

Bit 1 Bit 2

/

Cohen-Sutherland Line Clipping

» If both outcodes are 0, line segment is inside
» If AND of outcodes not 0O, line segment is outside
» Otherwise clip and test

Bit 4

Bit 1 Bit 2

/

Cohen-Sutherland Line Clipping

» If both outcodes are 0, line segment is inside
» If AND of outcodes not 0O, line segment is outside
» Otherwise clip and test

Bit 4

Bit 1 Bit 2

/

Cohen-Sutherland Line Clipping

» If both outcodes are 0, line segment is inside
» If AND of outcodes not 0O, line segment is outside
» Otherwise clip and test

Bit 4

Note: both
lines have
the same

—_- "\ bit codes!

- ::\?/P(O Bit 3

Bit 1 Bit 2

/

Cohen-Sutherland Line Clipping

» If both outcodes are 0, line segment is inside
» If AND of outcodes not 0O, line segment is outside
» Otherwise clip and test

Bit 4

Bit 1 Bit 2

/

Cohen-Sutherland Line Clipping

» If both outcodes are 0, line segment is inside
» If AND of outcodes not 0O, line segment is outside
» Otherwise clip and test

Bit 4

Bit 1 Bit 2

/

Cohen-Sutherland Line Clipping

» If both outcodes are 0, line segment is inside
» If AND of outcodes not 0, line segment is outside

 Otherwise clip

and test

Bit 1

Bit 4

Bit 3

/

Cohen-Sutherland Line Clipping

» If both outcodes are 0, line segment is inside

» If AND of outcodes not 0, line segment is outside

 Otherwise clip

and test

Bit 1

Bit 2

Bit 4

Bit 3

/

Cohen-Sutherland Line Clipping

\ Bit 4

» Before clipping

/

Cohen-Sutherland Line Clipping
» After clipping

Bit 1 Bit 2

Bit 4

Bit 3

Clipping

 Avoid drawing parts of primitives outside window
oPoints
oLine Segments
oPolygons

——

L PR

N Screen Coordinates

/

Polygon Clipping

» Find the part of a polygon inside the clip window

A

Before Clipping

/

Polygon Clipping

» Find the part of a polygon inside the clip window

VAN

After Clipping

/

Sutherland-Hodgeman Clipping

- Clip to each window boundary one at a time

A

/

Sutherland-Hodgeman Clipping

- Clip to each window boundary one at a time

A

/

Sutherland-Hodgeman Clipping

- Clip to each window boundary one at a time

A

/

Sutherland-Hodgeman Clipping

- Clip to each window boundary one at a time

e A

/

Sutherland-Hodgeman Clipping

- Clip to each window boundary one at a time

A

[

Sutherland-Hodgeman Clipping

* How do we clip a polygon with respect to a line?

Window
Boundary

/

Sutherland-Hodgeman Clipping

* Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

P,
P,

Window
Boundary

/

Sutherland-Hodgeman Clipping

* Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

P,
P,

Window
Boundary

/

Sutherland-Hodgeman Clipping

* Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

Window
Boundary

(

Sutherland-Hodgeman Clipping

* Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

Window
Boundary

(

Sutherland-Hodgeman Clipping

* Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

P2
\ P1

Window
Boundary

o

P3

(

Sutherland-Hodgeman Clipping

* Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

P2
\ P1

Window
Boundary

o

P3

(

Sutherland-Hodgeman Clipping

* Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

P2
\ P1

Window
Boundary

o

P3

(

Sutherland-Hodgeman Clipping

* Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

P2
\ P1

Window
Boundary P’ p”

P3

(

Sutherland-Hodgeman Clipping

* Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

P2
\ P1

Window
Boundary P’ p”

-

3D Rendering Pipeline (or direct ilumination)

3D Primitives
| 3D Modeling Coordinates

Modeling

Transformation

3D World Coordinates

Transformation

3D Camera Coordinates

Lighting

3D Camera Coordinates

Pro ectlon

|
[Camera
|
|

Trans ormation

2D Screen Coordinates

Clipping

2D Screen Coordinates

Vlewport

Transformation

l

2D Image Coordinates

Scan
Conversion

l

Image

2D Image Coordinates

3D Model

2D Window

2D Screen

2D Rendering Pipeline

2D Primitives

l
Clipping
l

Scan Fill pixels representing primitives
Conversion in screen coordinates

Image

Clip portions of geometric primitives
residing outside the window

/

Overview

« Scan conversion
oFigure out which pixels to fill

» Shading
oDetermine a color for each filled pixel

* Depth test
oDetermine when the color of a pixel should be overwritten

/

Scan Conversion

* Render an image of a geometric primitive
by setting pixel colors

void SetPixel (int x, int y, Color rgba)

- Example: Filling the inside of a triangle

P

63

-

Scan Conversion

* Render an image of a geometric primitive
by setting pixel colors

void SetPixel (int x, int y, Color rgba)

- Example: Filling the inside of a triangle

/

Triangle Scan Conversion

* Properties of a good algorithm

oMUST BE FAST!
oNo cracks between adjacent primitives

-

Simple Algorithm

» Color all pixels inside triangle

void ScanTriangle (Triangle T, Color rgba) {
for each pixel P at (x,y) {
i1f (Inside (T, P))
SetPixel (x, y, rgba);

/

Line defines two halfspaces

» Test: use implicit equation for a line

o0
o0
o0

nline: ax+by+c=0
nright: ax+by+c<0

N left: ax+by+c>0

/

Inside Triangle Test

» Apoint is inside a triangle if it is in the
positive half-space of all three boundary lines
o Triangle vertices are ordered counter-clockwise
oPoint must be on the left side of every boundary line

/

Inside Triangle Test

Boolean Inside(Triangle T, Point P)
{
for each boundary line L of T {
Scalar d = L.a*P.x + L.b*P.y + L.c;
if (d < 0.0) return FALSE;

}
return TRUE;

) O

-

Simple Algorithm

» What is bad about this algorithm?

void ScanTriangle (Triangle T, Color rgba) {
for each pixel P at (x,y) {
i1f (Inside (T, P))
SetPixel (x, y, rgba);

/

Triangle Sweep-Line Algorithm

» Take advantage of spatial coherence
oCompute which pixels are inside using horizontal spans
oProcess horizontal spans in scan-line order

» Take advantage of edge linearity
oUse edge slopes to update coordinates incrementally

/

Triangle Sweep-Line Algorithm

void ScanTriangle (Triangle T, Color rgba) {
for both edge pairs ({
initialize x;, Xy’
compute dx,/dy,; and dx;/dyy;
for each scanline at y
for (int x = x;; x <= xX;; x++)
SetPixel (x, y, rgba);
x, += dx. /dy,;
X, += dx./dyg;

/

Polygon Scan Conversion

» Will this method work for convex polygons?

/

Polygon Scan Conversion

» Will this method work for convex polygons?
oYes, since each scan line will only intersect the polygon at

two points.

74

/

Polygon Scan Conversion

- How about these polygons?

/

Polygon Scan Conversion

- How about these polygons?

\

/ AN /
—

/

Polygon Scan Conversion

» Fill pixels inside a polygon
oTriangle
oQuadrilateral

oConvex
oStar-shaped

oConcave
oSelf-intersecting

= L4 @

What problems do we encounter with arbitrary polygons?

4)

Polygon Scan Conversion

* Need better test for points inside polygon
o Triangle method works only for convex polygons

Convex Polygon Concave Polygon

/

Inside Polygon Rule

» What is a good rule for which pixels are inside?

N

\

N

Concave Self-Intersecting

>

With Holes

/

Inside Polygon Rule

» Odd-parity rule
oAny ray from P to infinity crosses odd number of edges

~_
I\
\ &

Concave Self-Intersecting With Holes

/

Polygon Sweep-Line Algorithm

» Incremental algorithm to find spans,
and determine “insideness” with odd parity rule
o Takes advantage of scan line coherence

A\

Triangle Polygon

-

Polygon Sweep-Line Algorithm

void ScanPolygon (Polygon P, Color rgba) {

sort edges by maxy

make empty “active edge list”

for each scanline (top-to-bottom) {
insert/remove edges from “active edge list”
update x coordinate of every active edge
sort active edges by x coordinate
for each pair of active edges (left-to-right)

SetPixels (x;,, x;.,,, Y, rgba);

}

/

Hardware Scan Conversion

» Convert everything into triangles
oScan convert the triangles

7

-

Scan Conversion

- What about pixels on edges?

olf we set them either “on” or “off” we get aliasing or
“jaggies!!

/

Scan Conversion

- What about pixels on edges?

olf we set them either “on” or “off” we get aliasing or
“jaggiesﬂ

This amounts to using a “nearest”
interpolation filter!

/

Antialiasing Techniques

» Display at higher resolution
oCorresponds to increasing sampling rate

oNot always possible (fixed size monitors, fixed refresh
rates, etc.)

» Modify pixel intensities
oVary pixel intensities along primitive boundaries for
antialiasing
oMust have more than bi-level display

-

Scan Conversion

- What about pixels on edges?
olf we set them either “on” or “off” we get aliasing or
“laggies”
oVary pixel intensities along primitive boundaries for
antialiasing

-

Antialiasing

- Method 1: Area sampling (aka prefiltering)
oCalculate percent of pixel covered by primitive
oMultiply this percentage by desired intensity/color
oSet resulting pixel to closest available display level

-

Antialiasing

- Method 2: Supersampling (aka postfiltering)
oSample as if screen were higher resolution
oAverage multiple samples to get final intensity

/

Antialiasing

- Method 2: Supersampling (aka postfiltering)
oSample as if screen were higher resolution
oAverage multiple samples to get final intensity

This amounts to using a “bilinear”
interpolation filter!

/

Antialiasing

- Method 2: Supersampling (aka postfiltering)
oSample as if screen were higher resolution
oAverage multiple samples to get final intensity

This amounts to using a “bilinear”
interpolation filter!

pd

Can use other filters (e.g.
Gaussian for better interpolation)

——— |

/

Scan Conversion

No Anti-Aliasing

4 x Anti-Aliasing

Images courtesy of NVIDIA/

