Clipping and Scan Conversion
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Clipping

 Avoid drawing parts of primitives outside window
oWindow defines part of scene being viewed
oMust draw geometric primitives only inside window
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Clipping

 Avoid drawing parts of primitives outside window
oPoints
oLine Segments
oPolygons
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Point Clipping
» Is point (Xx,y) inside the clip window?
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Point Clipping
» Is point (Xx,y) inside the clip window?
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Clipping

 Avoid drawing parts of primitives outside window
oPoints
oLine Segments
oPolygons
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Line Segment Clipping

* Find the part of a line inside the clip window
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Before Clipping
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Line Segment Clipping

* Find the part of a line inside the clip window

After Clipping
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Cohen-Sutherland Line Clipping

» Use simple tests to classifty easy cases first
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Cohen-Sutherland Line Clipping

» If both outcodes are 0, line segment is inside
» If AND of outcodes not 0O, line segment is outside
 Otherwise clip and test

Bit 4
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Cohen-Sutherland Line Clipping

» If both outcodes are 0, line segment is inside
» If AND of outcodes not 0O, line segment is outside
» Otherwise clip and test
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Cohen-Sutherland Line Clipping

\ Bit 4
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Cohen-Sutherland Line Clipping
» After clipping

Bit 1 Bit 2

Bit 4
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Clipping

 Avoid drawing parts of primitives outside window
oPoints
oLine Segments
oPolygons
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Polygon Clipping

» Find the part of a polygon inside the clip window

A

Before Clipping
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Polygon Clipping

» Find the part of a polygon inside the clip window

VAN
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Sutherland-Hodgeman Clipping

- Clip to each window boundary one at a time

A
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Sutherland-Hodgeman Clipping
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Sutherland-Hodgeman Clipping

* How do we clip a polygon with respect to a line?

Window
Boundary
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Sutherland-Hodgeman Clipping

* Do inside test for each point in sequence,
Insert new points when cross window boundary,
Remove points outside window boundary

P,
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Window
Boundary
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Overview

« Scan conversion
oFigure out which pixels to fill

» Shading
oDetermine a color for each filled pixel

* Depth test
oDetermine when the color of a pixel should be overwritten




/

Scan Conversion

* Render an image of a geometric primitive
by setting pixel colors

void SetPixel (int x, int y, Color rgba)

- Example: Filling the inside of a triangle

P

63
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Scan Conversion

* Render an image of a geometric primitive
by setting pixel colors

void SetPixel (int x, int y, Color rgba)

- Example: Filling the inside of a triangle
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Triangle Scan Conversion

* Properties of a good algorithm

oMUST BE FAST!
oNo cracks between adjacent primitives
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Simple Algorithm

» Color all pixels inside triangle

void ScanTriangle (Triangle T, Color rgba) {
for each pixel P at (x,y) {
i1f (Inside (T, P))
SetPixel (x, y, rgba);
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Line defines two halfspaces

» Test: use implicit equation for a line

o0
o0
o0

nline: ax+by+c=0
nright: ax+by+c<0

N left: ax+by+c>0
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Inside Triangle Test

» Apoint is inside a triangle if it is in the
positive half-space of all three boundary lines
o Triangle vertices are ordered counter-clockwise
oPoint must be on the left side of every boundary line
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Inside Triangle Test

Boolean Inside(Triangle T, Point P)
{
for each boundary line L of T {
Scalar d = L.a*P.x + L.b*P.y + L.c;
if (d < 0.0) return FALSE;

}
return TRUE;

) O
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Simple Algorithm

» What is bad about this algorithm?

void ScanTriangle (Triangle T, Color rgba) {
for each pixel P at (x,y) {
i1f (Inside (T, P))
SetPixel (x, y, rgba);
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Triangle Sweep-Line Algorithm

» Take advantage of spatial coherence
oCompute which pixels are inside using horizontal spans
oProcess horizontal spans in scan-line order

» Take advantage of edge linearity
oUse edge slopes to update coordinates incrementally
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Triangle Sweep-Line Algorithm

void ScanTriangle (Triangle T, Color rgba) {
for both edge pairs ({
initialize x;, Xy’
compute dx,/dy,; and dx;/dyy;
for each scanline at y
for (int x = x;; x <= xX;; x++)
SetPixel (x, y, rgba);
x, += dx. /dy,;
X, += dx./dyg;
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Polygon Scan Conversion

» Will this method work for convex polygons?
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Polygon Scan Conversion

» Will this method work for convex polygons?
oYes, since each scan line will only intersect the polygon at

two points.

74




/

Polygon Scan Conversion

- How about these polygons?
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Polygon Scan Conversion

- How about these polygons?

\
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Polygon Scan Conversion

» Fill pixels inside a polygon
oTriangle
oQuadrilateral

oConvex
oStar-shaped

oConcave
oSelf-intersecting

= L4 @

What problems do we encounter with arbitrary polygons?
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Polygon Scan Conversion

* Need better test for points inside polygon
o Triangle method works only for convex polygons

Convex Polygon Concave Polygon
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Inside Polygon Rule

» What is a good rule for which pixels are inside?
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Inside Polygon Rule

» Odd-parity rule
oAny ray from P to infinity crosses odd number of edges

~_
I\
\ &

Concave Self-Intersecting With Holes
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Polygon Sweep-Line Algorithm

» Incremental algorithm to find spans,
and determine “insideness” with odd parity rule
o Takes advantage of scan line coherence

A\

Triangle Polygon
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Polygon Sweep-Line Algorithm

void ScanPolygon (Polygon P, Color rgba) {

sort edges by maxy

make empty “active edge list”

for each scanline (top-to-bottom) {
insert/remove edges from “active edge list”
update x coordinate of every active edge
sort active edges by x coordinate
for each pair of active edges (left-to-right)

SetPixels (x;,, x;.,,, Y, rgba);

}
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Hardware Scan Conversion

» Convert everything into triangles
oScan convert the triangles

7
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Scan Conversion

- What about pixels on edges?

olf we set them either “on” or “off” we get aliasing or
“jaggies!!
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Scan Conversion

- What about pixels on edges?

olf we set them either “on” or “off” we get aliasing or
“jaggiesﬂ

This amounts to using a “nearest”
interpolation filter!
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Antialiasing Techniques

» Display at higher resolution
oCorresponds to increasing sampling rate

oNot always possible (fixed size monitors, fixed refresh
rates, etc.)

» Modify pixel intensities
oVary pixel intensities along primitive boundaries for
antialiasing
oMust have more than bi-level display
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Scan Conversion

- What about pixels on edges?
olf we set them either “on” or “off” we get aliasing or
“laggies”
oVary pixel intensities along primitive boundaries for
antialiasing
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Antialiasing

- Method 1: Area sampling (aka prefiltering)
oCalculate percent of pixel covered by primitive
oMultiply this percentage by desired intensity/color
oSet resulting pixel to closest available display level
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Antialiasing

- Method 2: Supersampling (aka postfiltering)
oSample as if screen were higher resolution
oAverage multiple samples to get final intensity
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Antialiasing

- Method 2: Supersampling (aka postfiltering)
oSample as if screen were higher resolution
oAverage multiple samples to get final intensity

This amounts to using a “bilinear”
interpolation filter!

pd

Can use other filters (e.g.
Gaussian for better interpolation)

——— |
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Scan Conversion

No Anti-Aliasing

4 x Anti-Aliasing

Images courtesy of NVIDIA/




