
Clipping and Scan Conversion

Connelly Barnes

CS 4810: Graphics

Acknowledgment: slides by Jason Lawrence, Misha Kazhdan, Allison Klein, 
Tom Funkhouser, Adam Finkelstein and David Dobkin



Lighting

Camera
Transformation

3D Rendering Pipeline (for direct illumination)

3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Image

Viewport
Transformation

Scan
Conversion

2D Image Coordinates

3D Modeling Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

2D Screen Coordinates

3D Camera Coordinates

2D Image Coordinates

3D Model

2D Image



Transformations

Modeling
Transformation

Camera
Transformation

2D Image Coordinates

Projection
Transformation

Window-to-Viewport
Transformation

3D Object Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

p(x,y,z)

p’(x’,y’)

3D World
Coordinates

3D Object 
Coordinates



Transformations

Modeling
Transformation

Camera
Transformation

2D Image Coordinates

Projection
Transformation

Window-to-Viewport
Transformation

3D Object Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

p(x,y,z)

p’(x’,y’)

3D World
Coordinates

Transform=M
M := local to world transform



Transformations

Modeling
Transformation

Camera
Transformation

2D Image Coordinates

Projection
Transformation

Window-to-Viewport
Transformation

3D Object Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

p(x,y,z)

p’(x’,y’)

3D World
Coordinates

3D Camera 
Coordinates

Transform=M
M := local to world transform



Transformations

Modeling
Transformation

Camera
Transformation

2D Image Coordinates

Projection
Transformation

Window-to-Viewport
Transformation

3D Object Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

p(x,y,z)

p’(x’,y’)

Camera Right

Camera Up

x

y

z
Camera Back

Transform=C-1M
C := camera transform



Transformations

Modeling
Transformation

Camera
Transformation

2D Image Coordinates

Projection
Transformation

Window-to-Viewport
Transformation

3D Object Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

p(x,y,z)

p’(x’,y’)

Transform=PC-1M
P := projection transform



Transformations

Modeling
Transformation

Camera
Transformation

2D Image Coordinates

Projection
Transformation

Window-to-Viewport
Transformation

3D Object Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

p(x,y,z)

p’(x’,y’)

Transform=VPC-1M
V := viewport transform

ImageNormalized Coords

Viewport
Window



Transformations

Modeling
Transformation

Camera
Transformation

2D Image Coordinates

Projection
Transformation

Window-to-Viewport
Transformation

3D Object Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

p(x,y,z)

p’(x’,y’)

vx
1 vx

2
vy

1

vy
2

wx
1 wx

2
wy

1

wy
2 Window Viewport

Screen Coordinates Image Coordinates

(wx,wy) (vx,vy)

Transform=VPC-1M
V := viewport transform



3D Rendering Pipeline (for direct illumination)

3D Model

2D Viewport

2D Screen

Modeling
Transformation

Camera
Transformation

2D Image Coordinates

Projection
Transformation

Window-to-Viewport
Transformation

3D Object Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

p(x,y,z)

p’(x’,y’)



Lighting

Camera
Transformation

3D Rendering Pipeline (for direct illumination)

3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Image

Viewport
Transformation

Scan
Conversion

2D Image Coordinates

3D Modeling Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

2D Screen Coordinates

3D Camera Coordinates

2D Image Coordinates



Clipping
• Avoid drawing parts of primitives outside window
oWindow defines part of scene being viewed 
oMust draw geometric primitives only inside window

Screen Coordinates

Window



Clipping
• Avoid drawing parts of primitives outside window
oPoints 
oLine Segments
oPolygons

Screen Coordinates

Window



Point Clipping

Window
wx1 wx2

wy2

wy1

(x,y)

• Is point (x,y) inside the clip window?



Point Clipping

Window
wx1 wx2

wy2

wy1

(x,y)

• Is point (x,y) inside the clip window?

inside =  
  (x >= wx1) &&  
  (x <= wx2) && 
  (y >= wy1) && 
  (y <= wy2);



Clipping
• Avoid drawing parts of primitives outside window
oPoints
oLine Segments
oPolygons

Screen Coordinates

Window



Line Segment Clipping
• Find the part of a line inside the clip window

P1

P10

P9

P8

P7

P4P3

P6

P5

P2

Before Clipping



P’8

P’7

P4P3

P6

P’5

After Clipping

Line Segment Clipping
• Find the part of a line inside the clip window



Cohen-Sutherland Line Clipping
• Use simple tests to classify easy cases first

P1

P10

P9

P8

P7

P4P3

P6

P5

P2



Cohen-Sutherland Line Clipping
• If both outcodes are 0, line segment is inside
• If AND of outcodes not 0, line segment is outside
• Otherwise clip and test

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P1

P10

P9

P8

P7

P4P3

P6

P5

P2



Cohen-Sutherland Line Clipping
• If both outcodes are 0, line segment is inside
• If AND of outcodes not 0, line segment is outside
• Otherwise clip and test

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P10

P9

P8

P7

P4P3

P6

P5

P1

P2



Cohen-Sutherland Line Clipping
• If both outcodes are 0, line segment is inside
• If AND of outcodes not 0, line segment is outside
• Otherwise clip and test

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P1

P10

P9

P8

P7

P6

P5

P2

P4P3



Cohen-Sutherland Line Clipping
• If both outcodes are 0, line segment is inside
• If AND of outcodes not 0, line segment is outside
• Otherwise clip and test

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P10

P9

P8

P7

P6

P5

P4P3



Cohen-Sutherland Line Clipping
• If both outcodes are 0, line segment is inside
• If AND of outcodes not 0, line segment is outside
• Otherwise clip and test

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P10

P9

P8

P7

P4P3

P6

P5



Cohen-Sutherland Line Clipping
• If both outcodes are 0, line segment is inside
• If AND of outcodes not 0, line segment is outside
• Otherwise clip and test

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P10

P9

P8

P7

P4P3

P6

P5



Cohen-Sutherland Line Clipping
• If both outcodes are 0, line segment is inside
• If AND of outcodes not 0, line segment is outside
• Otherwise clip and test

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P10

P9

P8

P7

P4P3

P6

P’5



0000 01001000

0001 01011001

0010 01101010

Cohen-Sutherland Line Clipping
• If both outcodes are 0, line segment is inside
• If AND of outcodes not 0, line segment is outside
• Otherwise clip and test

Bit 1 Bit 2

Bit 3

Bit 4

P10

P9

P8

P7

P4P3

P6

P’5



0000 01001000

0001 01011001

0010 01101010

Cohen-Sutherland Line Clipping
• If both outcodes are 0, line segment is inside
• If AND of outcodes not 0, line segment is outside
• Otherwise clip and test

Bit 1 Bit 2

Bit 3

Bit 4

P10

P9

P8

P7

P4P3

P6

P’5



0000 01001000

0001 01011001

0010 01101010

Cohen-Sutherland Line Clipping
• If both outcodes are 0, line segment is inside
• If AND of outcodes not 0, line segment is outside
• Otherwise clip and test

Bit 1 Bit 2

Bit 3

Bit 4

P10

P9

P8

P7

P4P3

P6

P’5



0000 01001000

0001 01011001

0010 01101010

Cohen-Sutherland Line Clipping
• If both outcodes are 0, line segment is inside
• If AND of outcodes not 0, line segment is outside
• Otherwise clip and test

Bit 1 Bit 2

Bit 3

Bit 4

P10

P9

P8

P’7

P4P3

P6

P’5



0000 01001000

0001 01011001

0010 01101010

Cohen-Sutherland Line Clipping
• If both outcodes are 0, line segment is inside
• If AND of outcodes not 0, line segment is outside
• Otherwise clip and test

Bit 1 Bit 2

Bit 3

Bit 4

P10

P9

P8

P’7

P4P3

P6

P’5



0000 01001000

0001 01011001

0010 01101010

Cohen-Sutherland Line Clipping
• If both outcodes are 0, line segment is inside
• If AND of outcodes not 0, line segment is outside
• Otherwise clip and test

Bit 1 Bit 2

Bit 3

Bit 4

P10

P9

P’8

P’7

P4P3

P6

P’5



0000 01001000

0001 01011001

0010 01101010

Cohen-Sutherland Line Clipping
• If both outcodes are 0, line segment is inside
• If AND of outcodes not 0, line segment is outside
• Otherwise clip and test

Bit 1 Bit 2

Bit 3

Bit 4

P10

P9

P’8

P’7

P4P3

P6

P’5



0000 01001000

0001 01011001

0010 01101010

Cohen-Sutherland Line Clipping
• If both outcodes are 0, line segment is inside
• If AND of outcodes not 0, line segment is outside
• Otherwise clip and test

Bit 1 Bit 2

Bit 3

Bit 4

P10

P9

P’8

P’7

P4P3

P6

P’5



0000 01001000

0001 01011001

0010 01101010

Cohen-Sutherland Line Clipping
• If both outcodes are 0, line segment is inside
• If AND of outcodes not 0, line segment is outside
• Otherwise clip and test

Bit 1 Bit 2

Bit 3

Bit 4

P10

P9

P’8

P’7

P4P3

P6

P’5

Note: both 
lines have 
the same 
bit codes!



0000 01001000

0001 01011001

0010 01101010

Cohen-Sutherland Line Clipping
• If both outcodes are 0, line segment is inside
• If AND of outcodes not 0, line segment is outside
• Otherwise clip and test

Bit 1 Bit 2

Bit 3

Bit 4

P10

P9

P’8

P’7

P4P3

P6

P’5



0000 01001000

0001 01011001

0010 01101010

Cohen-Sutherland Line Clipping
• If both outcodes are 0, line segment is inside
• If AND of outcodes not 0, line segment is outside
• Otherwise clip and test

Bit 1 Bit 2

Bit 3

Bit 4

P10

P9

P’8

P’7

P4P3

P6

P’5



0000 01001000

0001 01011001

0010 01101010

Cohen-Sutherland Line Clipping
• If both outcodes are 0, line segment is inside
• If AND of outcodes not 0, line segment is outside
• Otherwise clip and test

Bit 1 Bit 2

Bit 3

Bit 4

P10’

P’8

P’7

P4P3

P6

P’5 P9



0000 01001000

0001 01011001

0010 01101010

Cohen-Sutherland Line Clipping
• If both outcodes are 0, line segment is inside
• If AND of outcodes not 0, line segment is outside
• Otherwise clip and test

Bit 1 Bit 2

Bit 3

Bit 4
P’8

P’7

P4P3

P6

P’5



0000 01001000

0001 01011001

0010 01101010

Cohen-Sutherland Line Clipping
• Before clipping

Bit 1 Bit 2

Bit 3

Bit 4
P1

P10

P9

P8

P7

P4P3

P6

P5

P2



Cohen-Sutherland Line Clipping
• After clipping

Bit 1 Bit 2

Bit 3

Bit 4

0000 01001000

0001 01011001

0010 01101010

P’8

P’7

P4P3

P6

P’5



Clipping
• Avoid drawing parts of primitives outside window
oPoints
oLine Segments
oPolygons

Screen Coordinates

Window



Polygon Clipping
• Find the part of a polygon inside the clip window

Before Clipping



Polygon Clipping
• Find the part of a polygon inside the clip window

After Clipping



Sutherland-Hodgeman Clipping
• Clip to each window boundary one at a time



Sutherland-Hodgeman Clipping
• Clip to each window boundary one at a time



Sutherland-Hodgeman Clipping
• Clip to each window boundary one at a time



Sutherland-Hodgeman Clipping
• Clip to each window boundary one at a time



Sutherland-Hodgeman Clipping
• Clip to each window boundary one at a time



Sutherland-Hodgeman Clipping
• How do we clip a polygon with respect to a line? 

Outside
Inside

Window
Boundary

P1

P2

P5

P4

P3



Sutherland-Hodgeman Clipping
• Do inside test for each point in sequence, 

Insert new points when cross window boundary, 
Remove points outside window boundary

Outside
Inside

Window
Boundary

P1

P2

P5

P4

P3



Sutherland-Hodgeman Clipping
• Do inside test for each point in sequence, 

Insert new points when cross window boundary, 
Remove points outside window boundary

Outside
Inside

Window
Boundary

P1

P2

P5

P4

P3



Sutherland-Hodgeman Clipping
• Do inside test for each point in sequence, 

Insert new points when cross window boundary, 
Remove points outside window boundary

Outside
Inside

Window
Boundary

P1

P2

P5

P4

P3



Sutherland-Hodgeman Clipping
• Do inside test for each point in sequence, 

Insert new points when cross window boundary, 
Remove points outside window boundary

Outside
Inside

Window
Boundary

P1

P2

P5

P4

P3



Sutherland-Hodgeman Clipping
• Do inside test for each point in sequence, 

Insert new points when cross window boundary, 
Remove points outside window boundary

Outside
Inside

Window
Boundary

P1

P2

P5

P4

P3

P’



Sutherland-Hodgeman Clipping
• Do inside test for each point in sequence, 

Insert new points when cross window boundary, 
Remove points outside window boundary

Outside
Inside

Window
Boundary

P1

P2

P5

P4

P3

P’



Sutherland-Hodgeman Clipping
• Do inside test for each point in sequence, 

Insert new points when cross window boundary, 
Remove points outside window boundary

Outside
Inside

Window
Boundary

P1

P2

P5

P4

P3

P’



Sutherland-Hodgeman Clipping
• Do inside test for each point in sequence, 

Insert new points when cross window boundary, 
Remove points outside window boundary

Outside
Inside

Window
Boundary

P1

P2

P5

P4

P3

P’ P’’



Sutherland-Hodgeman Clipping
• Do inside test for each point in sequence, 

Insert new points when cross window boundary, 
Remove points outside window boundary

Outside
Inside

Window
Boundary

P1

P2

P’ P’’



Lighting

Camera
Transformation

3D Rendering Pipeline (for direct illumination)

3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Image

Viewport
Transformation

Scan
Conversion

2D Image Coordinates

3D Modeling Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

2D Screen Coordinates

3D Camera Coordinates

2D Image Coordinates
3D Model

2D Window

2D Screen



2D Rendering Pipeline

Scan
Conversion

Clipping

2D Primitives

Image

Clip portions of geometric primitives
residing outside the window  

Fill pixels representing primitives 
in screen coordinates

3D Primitives



Overview
• Scan conversion
oFigure out which pixels to fill

• Shading
oDetermine a color for each filled pixel

• Depth test
oDetermine when the color of a pixel should be overwritten



Scan Conversion
• Render an image of a geometric primitive  

by setting pixel colors

• Example: Filling the inside of a triangle

P1

P2

P3

void SetPixel(int x, int y, Color rgba)

63



Scan Conversion
• Render an image of a geometric primitive  

by setting pixel colors

• Example: Filling the inside of a triangle

void SetPixel(int x, int y, Color rgba)

P1

P2

P3



Triangle Scan Conversion
• Properties of a good algorithm
oMUST BE FAST!
oNo cracks between adjacent primitives

P1

P2

P4



Simple Algorithm

void ScanTriangle(Triangle T, Color rgba){ 
 for each pixel P at (x,y){   
  if (Inside(T, P))       
   SetPixel(x, y, rgba);         
 }   
}

• Color all pixels inside triangle 

P1

P2

P3



P1

P2

Line defines two halfspaces
• Test: use implicit equation for a line
oOn line: ax + by + c = 0
oOn right: ax + by + c < 0    
oOn left: ax + by + c > 0 

L



Inside Triangle Test
• A point is inside a triangle if it is in the  

positive half-space of all three boundary lines
oTriangle vertices are ordered counter-clockwise
oPoint must be on the left side of every boundary line

P
L1

L2

L3



Inside Triangle Test
Boolean Inside(Triangle T, Point P) 
{ 
 for each boundary line L of T {   
  Scalar d = L.a*P.x + L.b*P.y + L.c;      
  if (d < 0.0) return FALSE;      
 }   
 return TRUE;   
}

L1

L2

L3



Simple Algorithm

void ScanTriangle(Triangle T, Color rgba){ 
 for each pixel P at (x,y){   
  if (Inside(T, P))       
   SetPixel(x, y, rgba);         
 }   
}

• What is bad about this algorithm? 

P1

P2

P3



Triangle Sweep-Line Algorithm
• Take advantage of spatial coherence
oCompute which pixels are inside using horizontal spans
oProcess horizontal spans in scan-line order

• Take advantage of edge linearity
oUse edge slopes to update coordinates incrementally

dxL
dyL



Triangle Sweep-Line Algorithm
void ScanTriangle(Triangle T, Color rgba){ 
 for both edge pairs {   
  initialize xL, xR;      
  compute dxL/dyL and dxR/dyR;      
  for each scanline at y          

for (int x = xL; x <= xR; x++)  
    SetPixel(x, y, rgba);            

  xL += dxL/dyL;    
  xR += dxR/dyR;    

 }   
}

xL xR

dxL
dyL

dxR
dyR



Polygon Scan Conversion
• Will this method work for convex polygons?



Polygon Scan Conversion
• Will this method work for convex polygons?
oYes, since each scan line will only intersect the polygon at 

two points.

74



Polygon Scan Conversion
• How about these polygons?



Polygon Scan Conversion
• How about these polygons?



Polygon Scan Conversion
• Fill pixels inside a polygon
oTriangle
oQuadrilateral
oConvex
oStar-shaped
oConcave
oSelf-intersecting
oHoles

What problems do we encounter with arbitrary polygons?



Polygon Scan Conversion
• Need better test for points inside polygon
oTriangle method works only for convex polygons

Convex Polygon

L1

L2

L3

L4
L5

L1

L2

L3A

L4
L5

Concave Polygon

L3B



Inside Polygon Rule
• What is a good rule for which pixels are inside?

Concave Self-Intersecting With Holes



Inside Polygon Rule

Concave Self-Intersecting With Holes

• Odd-parity rule
oAny ray from P to infinity crosses odd number of edges



Polygon Sweep-Line Algorithm
• Incremental algorithm to find spans,  

and determine “insideness” with odd parity rule
oTakes advantage of scan line coherence

xL xR

Triangle Polygon



Polygon Sweep-Line Algorithm
void ScanPolygon(Polygon P, Color rgba){ 
 sort edges by maxy   
 make empty “active edge list”   
 for each scanline (top-to-bottom) {               
     insert/remove edges from “active edge list” 
  update x coordinate of every active edge      
   sort active edges by x coordinate     
  for each pair of active edges (left-to-right)      
   SetPixels(xi, xi+1, y, rgba);         
  }      
}



Hardware Scan Conversion
• Convert everything into triangles
oScan convert the triangles



Scan Conversion
• What about pixels on edges?
oIf we set them either “on” or “off” we get aliasing or 

“jaggies”

P1

P2

P3



Scan Conversion
• What about pixels on edges?
oIf we set them either “on” or “off” we get aliasing or 

“jaggies”

P1

P2

P3

This amounts to using a “nearest” 
interpolation filter!



Antialiasing Techniques
• Display at higher resolution
oCorresponds to increasing sampling rate
oNot always possible (fixed size monitors, fixed refresh 

rates, etc.)

• Modify pixel intensities
oVary pixel intensities along primitive boundaries for 

antialiasing
oMust have more than bi-level display



Scan Conversion
• What about pixels on edges?
oIf we set them either “on” or “off” we get aliasing or 

“jaggies”
oVary pixel intensities along primitive boundaries for 

antialiasing

P1

P2

P3



Antialiasing
• Method 1: Area sampling (aka prefiltering)
oCalculate percent of pixel covered by primitive
oMultiply this percentage by desired intensity/color
oSet resulting pixel to closest available display level

P1

P2

P3



Antialiasing
• Method 2: Supersampling (aka postfiltering)
oSample as if screen were higher resolution
oAverage multiple samples to get final intensity

P1

P2

P3



Antialiasing
• Method 2: Supersampling (aka postfiltering)
oSample as if screen were higher resolution
oAverage multiple samples to get final intensity

P1

P2

P3

This amounts to using a “bilinear” 
interpolation filter!



Antialiasing
• Method 2: Supersampling (aka postfiltering)
oSample as if screen were higher resolution
oAverage multiple samples to get final intensity

P1

P2

P3

This amounts to using a “bilinear” 
interpolation filter!

Can use other filters (e.g. 
Gaussian for better interpolation)



Scan Conversion
• Example:

No Anti-Aliasing 4 x Anti-Aliasing

Images courtesy of NVIDIA


