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Overview
• Scan conversion
oFigure out which pixels to fill

• Shading
oDetermine a color for each filled pixel

• Depth test
oDetermine when the color of a pixel comes from the front-

most primitive



Polygon Shading
• Simplest shading approach is to perform independent 

lighting calculation for every pixel
oWhen is this unnecessary?



Polygon Shading
• Can take advantage of spatial coherence
oIllumination calculations for pixels covered by same 

primitive are related to each other



Polygon Shading Algorithms
• Flat Shading

• Gouraud Shading

• Phong Shading
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Flat Shading
• Can take advantage of spatial coherence
oMake the lighting equation constant  

over the surface of each primitive

N
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• If the normal is constant over the primitive, 
• if the light is directional, and 
• if the direction to the viewer is constant over the primitive 
the specular component is the same for all points on the primitive



Flat Shading
• Illuminate as though all light sources are directional, 

the polygon is flat, and is viewed from infinitely far 
away
oN·Li constant over polygon
oAttenuation function constant
   over polygon
oV·R constant over surface
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Flat Shading
• One lighting calculation per polygon 
oAssign all pixels inside each polygon the same color

N



Flat Shading
• Objects look like they are composed of polygons
oOK for polyhedral objects
oNot so good for smooth surfaces



Polygon Shading Algorithms
• Flat Shading

• Gouraud Shading

• Phong Shading



Gouraud Shading
• What if smooth surface is represented by   

polygonal mesh with a normal at each vertex?

Watt Plate 7



Gouraud Shading
• One lighting calculation per vertex
oAssign pixel colors inside polygon by interpolating colors 

computed at vertices



Gouraud Shading
• Bilinearly interpolate colors at vertices 

down and across scan lines



Gouraud Shading
• Bilinearly interpolate colors at vertices 

down and across scan lines

Note: The values of α and β only need to be updated as 
we move to the next scan-line.  The  value of ϕ needs to 

be updated as we advance along the scan-line.



Gouraud Shading
• Produces smoothly shaded polygonal mesh
oSmooth shading over adjacent polygons
oNeed fine mesh to capture subtle lighting effects
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Gouraud Shading
• Produces smoothly shaded polygonal mesh
oSmooth shading over adjacent polygons
oNeed fine mesh to capture subtle lighting effects

What happens with
large polygon & 
spotlight?



Polygon Shading Algorithms
• Flat Shading

• Gouraud Shading

• Phong Shading



Phong Shading
• One lighting calculation per pixel
oApproximate surface normals for points inside polygons 

by bilinear interpolation of normals from vertices



Phong Shading
• Bilinearly interpolate surface normals at vertices 

down and across scan lines



Polygon Shading Algorithms

Gouraud Phong

Wireframe Flat

Watt Plate 7
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Overview
• Scan conversion
oFigure out which pixels to fill

• Shading
oDetermine a color for each filled pixel

• Depth test
oDetermine when the color of a pixel comes from the front-

most primitive



Hidden Surface Removal
• Motivation

• Algorithms for HSR
oBack-face detection
oDepth sort
oRay casting
oZ-buffer



Motivation
In general, we don’t want to draw surfaces that are not 

visible to the viewer:

• Surfaces may be back-facing.

• Surfaces may intersect in 3D.

• Surfaces may intersect in the image plane.

back-facing  
polygon
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Somewhere in here we have to decide  
which objects are visible, and  
which objects are hidden.



Overview
• Motivation

• Algorithms for HSR
oBack-face detection
oBSP-Trees
oRay casting
oZ-buffer



Visibility algorithms

[Sutherland ‘74]



Back-face detection
Q: How do we test for back-facing polygons?

back-facing  
polygon



Back-face detection
Q: How do we test for back-facing polygons?

A: Dot product of the normal and view directions.

back-facing  
polygon

If V·N > 0, then polygon is back-facing



Back-face detection

Overlapping 
Objects

This method breaks down for:
• Overlapping primitives
• Non-solid models and/or models without a well defined 

orientation.

In general, back-face removal expected to remove ≈ half 
of polygon surfaces from further visibility tests

Non-Solid 
Objects
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3D Rendering Pipeline
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Note: When your graphics card does this, it does not use the 
normals you provide at the vertices.  
Instead it uses the cross-product of the triangle vertices, so make 
sure that the ordering of the vertices is consistent  (e.g. CCW)



Ideal Solution
Painter’s Algorithm:

• Sort primitives front to back and draw the back ones 
first, over-writing pixel values with information from 
the front primitives as they are processed.
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Ideal Solution
Painter’s Algorithm:

• Sort primitives front to back and draw the back ones 
first, over-writing pixel values with information from 
the front primitives as they are processed.

Problem:

• You can’t always 
sort the primitives.

However, in some cases you can sort the primitives – 
e.g. if all the vertices of one primitive are in front of 

all the vertices of the second.



BSP-Tree Rendering (Object Precision)

• BSP-Trees recursively partition space by planes
oGiven two primitives on either side  

of a plane, the one on the opposite  
side from the camera will always 
be further away.
oDraw the further side first, and  

then draw the closer one
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BSP-Tree Rendering (Object Precision)

• Draw further half first, then the closer one.
• Draw right side of 1
• Draw left side of 1
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Building BSP-Trees
• Choose polygon (arbitrary)

• Split its cell using plane on which polygon lies
oMay have to chop polygons in two (Clipping!)

• Continue until each cell contains only one polygon fragment

• Splitting planes could be chosen in other ways, but there is 
no efficient optimal algorithm for building BSP trees
oOptimal means minimum number of polygon fragments in a balanced 

tree

Slide courtesy UWisconsin CS559



Building Example
• We will build a BSP tree, in 

2D, for a 3 room building
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Building Example (1)
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Building Example (2)
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Building Example (3)
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Building Example (4)
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Building Example (5)
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Building Example (Done)
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Ray Casting
• Fire a ray for every pixel
oIf ray intersects multiple objects, take the closest



Ray Casting Pipeline

Ray casting comments
oO(p log n) for p pixels
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oSimple, but generally not used3D Modeling Coordinates

3D Primitives

Modeling
Transformation

Ray casting

Image

3D World Coordinates

Lighting

3D World Coordinates &
2D Image Coordinates

2D Image Coordinates



Z-Buffer
• Store color & depth of closest object at each pixel
oInitialize depth of each pixel to ∞
oUpdate only pixels whose depth is closer than in buffer

d=1

d=2



Z-Buffer
• Store color & depth of closest object at each pixel
oInitialize depth of each pixel to ∞
oUpdate only pixels whose depth is closer than in buffer

Case 1:  
Blue → (d=1)<(d=∞): 
         Set to (0, 0, 1), d=1 
Red → (d=2)>(d=1): 
          Don’t change pixel

d=1

d=2

Case 2:  
Red → (d=2)<(d=∞): 
              Set to (1, 0, 0), d=2 
Blue → (d=1)<(d=2): 
         Set to (0, 0, 1), d=1



Z-Buffer
• Store color & depth of closest object at each pixel
oInitialize depth of each pixel to ∞
oUpdate only pixels whose depth is closer than in buffer
oDepths are interpolated from vertices, just like colors



A-Buffer
• Alpha values can cause problems:
oZ-buffer can only find one visible surface at each pixel
oA-buffer supports linked list of surfaces at each pixel for 

better transparency support
oA-buffer also helps with anti-aliasing

d=1

d=2
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Scan Conversion
How do we average information from the three vertices 
of a triangle?
oInterpolate using weights determined by the screen space 

projection?
oInterpolate using weights determined by the 3D 

locations?

It’s easier to do the  
interpolation in 2D.

Is there a difference?

I1

I2

I3



Scan Conversion Example
A line segment in 2D projected onto a 1D screen.

How should we interpolate the information from 
vertices p1 and p2 at the pixel corresponding  
to ray R?

R

p2

p1

z=1z=0



Scan Conversion Example
A line segment in 2D projected onto a 1D screen.
•R intersects the projected line segment in the middle:
oWe should use equal contributions from p1 and p2.

R

p2

p1

z=1z=0



Scan Conversion Example
A line segment in 2D projected onto a 1D screen.
•R intersects the projected line segment in the middle:
oWe should use equal contributions from p1 and p2.

•R intersects the 2D line segment closer to p1:
oWe should use more information  

from p1 than from p2.

R

p2

p1

z=0 z=1



Scan Conversion Example
A line segment in 2D projected onto a 1D screen.
• How do we interpolate correctly?

R

p2

p1

z=0 z=1



Scan Conversion Example
A line segment in 2D projected onto a 1D screen.
• How do we interpolate correctly?

Recall: The 2D point (x, z) maps to the point (x/z) in 1D.
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p1

z=0 z=1



Scan Conversion Example
A line segment in 2D projected onto a 1D screen.
• How do we interpolate correctly?

Recall: The 2D point (x, z) maps to the point (x/z) in 1D.

If p1=(x1,z1) and p2=(x2,z2), to find the blending value for a 
pixel at position x in the screen we need to solve for α s. t.:

p2

p1

z=0 z=1

(1� ↵)(x1, z1) + ↵(x2, z2) ! (x, 1)



Scan Conversion Example
A line segment in 2D projected onto a 1D screen.
• How do we interpolate correctly?

Recall: The 2D point (x, z) maps to the point (x/z) in 1D.

If p1=(x1,z1) and p2=(x2,z2), to find the blending value for a 
pixel at position x in the screen we need to solve for α s. t.:
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Scan Conversion Example
A line segment in 2D projected onto a 1D screen.
• How do we interpolate correctly?

Recall: The 2D point (x, z) maps to the point (x/z) in 1D.

If p1=(x1,z1) and p2=(x2,z2), to find the blending value for a 
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Scan Conversion Example
A line segment in 2D projected onto a 1D screen.
• How do we interpolate correctly?

Recall: The 2D point (x, z) maps to the point (x/z) in 1D.

If p1=(x1,z1) and p2=(x2,z2), to find the blending value for a 
pixel at position x in the screen we need to solve for α s. t.:

p2

p1

z=0 z=1

To compute the interpolation weights correctly, we 
need to perform a perspective divide!

((1� ↵)x1 + ↵x2, (1� ↵)z1 + ↵z2) ! (x, 1)

(1� ↵)(x1, z1) + ↵(x2, z2) ! (x, 1)



Scan Conversion Example
A line segment in 2D projected onto a 1D screen.
• How do we interpolate correctly?

Recall: The 2D point (x, z) maps to the point (x/z) in 1D.

If p1=(x1,z1) and p2=(x2,z2), to find the blending value for a 
pixel at position x in the screen we need to solve for α s. t.:

p2

p1

z=0 z=1

To compute the interpolation weights correctly, we 
need to perform a perspective divide!

Note that this is not the same as solving for the 
blending value in the image plane:


