Shading and Visibility

Connelly Barnes

CS 4810: Graphics

Acknowledgment: slides by Jason Lawrence, Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin

3D Rendering Pipeline (for direct illumination)

Overview

- Scan conversion
oFigure out which pixels to fill
- Shading
oDetermine a color for each filled pixel
- Depth test
oDetermine when the color of a pixel comes from the frontmost primitive

Polygon Shading

- Simplest shading approach is to perform independent lighting calculation for every pixel oWhen is this unnecessary?

$$
I=I_{E}+K_{A} I_{A L}+\sum_{i}\left(K_{D}\left(N \bullet L_{i}\right) I_{i}+K_{S}\left(V \bullet R_{i}\right)^{n} I_{i}\right)
$$

Polygon Shading

- Can take advantage of spatial coherence ollumination calculations for pixels covered by same primitive are related to each other

$$
I=I_{E}+K_{A} I_{A L}+\sum_{i}\left(K_{D}\left(N \bullet L_{i}\right) I_{i}+K_{S}\left(V \bullet R_{i}\right)^{n} I_{i}\right)
$$

Polygon Shading Algorithms

- Flat Shading
- Gouraud Shading
- Phong Shading

Flat Shading

- Can take advantage of spatial coherence oMake the lighting equation constant over the surface of each primitive

$$
I=I_{E}+K_{A} I_{A L}+\sum_{i}\left(K_{D}\left(N \bullet L_{i}\right) I_{i}+K_{S}\left(V \bullet R_{i}\right)^{n} I_{i}\right)
$$

Flat Shading

- Can take advantage of spatial coherence oMake the lighting equation constant over the surface of each primitive
- If the normal is constant over the primitive, and
- if the light is directional,
the diffuse component is the same for all points on the primitive

$$
I=I_{E}+K_{A} I_{A L}+\sum_{i}\left(K_{D}\left(N \bullet L_{i}\right) I_{i}+K_{S}\left(V \bullet R_{i}\right)^{n} I_{i}\right)
$$

\otimes

Flat Shading

- Can take advantage of spatial coherence oMake the lighting equation constant over the surface of each primitive
- If the normal is constant over the primitive, and
- if the light is directional,
the diffuse component is the same for all points on the primitive

$$
I=I_{E}+K_{A} I_{A L}+\sum_{i}\left(K_{D}\left(N \bullet L_{i}\right) I_{i}+K_{S}\left(V \bullet R_{i}\right)^{n} I_{i}\right)
$$

Flat Shading

- Can take advantage of spatial coherence oMake the lighting equation constant over the surface of each primitive
- If the normal is constant over the primitive,
- if the light is directional, and
- if the direction to the viewer is constant over the primitive the specular component is the same for all points on the primitive

$$
I=I_{E}+K_{A} I_{A L}+\sum_{i}\left(K_{D}\left(N \bullet L_{i}\right) I_{i}+K_{S}\left(V \bullet R_{i}\right)^{n} I_{i}\right)
$$

Flat Shading

- Can take advantage of spatial coherence oMake the lighting equation constant over the surface of each primitive
- If the normal is constant over the primitive,
- if the light is directional, and
- if the direction to the viewer is constant over the primitive the specular component is the same for all points on the primitive

$$
I=I_{E}+K_{A} I_{A L}+\sum_{i}\left(K_{D}\left(N \bullet L_{i}\right) I_{i}+K_{S}\left(V \bullet R_{i}\right)^{n} I_{i}\right)
$$

Flat Shading

- Illuminate as though all light sources are directional, the polygon is flat, and is viewed from infinitely far away
oN• L_{i} constant over polygon oAttenuation function constant over polygon
$\mathrm{oV} \cdot \mathrm{R}$ constant over surface

$$
I=I_{E}+K_{A} I_{A L}+\sum_{i}\left(K_{D}\left(N \cdot L_{i}\right) I_{i}+K_{S}\left(V \cdot R_{i}\right)^{n} I_{i}\right)
$$

Flat Shading

- One lighting calculation per polygon oAssign all pixels inside each polygon the same color

Flat Shading

- Objects look like they are composed of polygons oOK for polyhedral objects
oNot so good for smooth surfaces

Polygon Shading Algorithms

- Flat Shading
- Gouraud Shading
- Phong Shading

Gouraud Shading

- What if smooth surface is represented by polygonal mesh with a normal at each vertex?

Watt Plate 7

$$
I=I_{E}+K_{A} I_{A L}+\sum_{i}\left(K_{D}\left(N \bullet L_{i}\right) I_{i}+K_{S}\left(V \bullet R_{i}\right)^{n} I_{i}\right)
$$

Gouraud Shading

- One lighting calculation per vertex
oAssign pixel colors inside polygon by interpolating colors computed at vertices

Gouraud Shading

- Bilinearly interpolate colors at vertices down and across scan lines

Gouraud Shading

- Bilinearly interpolate colors at vertices down and across scan lines

Note: The values of α and β only need to be updated as we move to the next scan-line. The value of φ needs to be updated as we advance along the scan-line.

Gouraud Shading

- Produces smoothly shaded polygonal mesh oSmooth shading over adjacent polygons oNeed fine mesh to capture subtle lighting effects

Flat Shading

Gouraud Shading

Gouraud Shading

- Produces smoothly shaded polygonal mesh oSmooth shading over adjacent polygons oNeed fine mesh to capture subtle lighting effects

What happens with large polygon \& spotlight?

Gouraud Shading

- Produces smoothly shaded polygonal mesh oSmooth shading over adjacent polygons oNeed fine mesh to capture subtle lighting effects

What happens with large polygon \& spotlight?

Polygon Shading Algorithms

- Flat Shading
- Gouraud Shading
- Phong Shading

Phong Shading

- One lighting calculation per pixel
oApproximate surface normals for points inside polygons by bilinear interpolation of normals from vertices

$$
I=I_{E}+K_{A} I_{A L}+\sum_{i}\left(K_{D}\left(N \bullet L_{i}\right) I_{i}+K_{S}\left(V \bullet R_{i}\right)^{n} I_{i}\right)
$$

Phong Shading

- Bilinearly interpolate surface normals at vertices down and across scan lines

Polygon Shading Algorithms

Wireframe

Gouraud

Flat

Phong

3D Rendering Pipeline (for direct illumination)

Overview

- Scan conversion
oFigure out which pixels to fill
- Shading
oDetermine a color for each filled pixel
- Depth test
oDetermine when the color of a pixel comes from the frontmost primitive

Hidden Surface Removal

- Motivation
- Algorithms for HSR
oBack-face detection
oDepth sort
oRay casting
oZ-buffer

Motivation

In general, we don't want to draw surfaces that are not visible to the viewer:

- Surfaces may be back-facing.
- Surfaces may intersect in 3D.
- Surfaces may intersect in the image plane.

3D Rendering Pipeline

Somewhere in here we have to decide which objects are visible, and which objects are hidden.

Overview

- Motivation
- Algorithms for HSR
oBack-face detection
oBSP-Trees
oRay casting
oZ-buffer

Visibility algorithms

[Sutherland '74]

Back-face detection

Q: How do we test for back-facing polygons?

Back-face detection

Q: How do we test for back-facing polygons?
A: Dot product of the normal and view directions.

If $\mathrm{V} \cdot \mathrm{N}>0$, then polygon is back-facing

Back-face detection

This method breaks down for:

- Overlapping primitives
- Non-solid models and/or models without a well defined orientation.

Overlapping Objects

Non-Solid
Objects

In general, back-face removal expected to remove \approx half of polygon surfaces from further visibility tests

3D Rendering Pipeline

Trivial Reject
A polygon is backfacing if
$\mathrm{V} \cdot \mathrm{N}>0$

3D Rendering Pipeline

Ideal Solution

Painter's Algorithm:

- Sort primitives front to back and draw the back ones first, over-writing pixel values with information from the front primitives as they are processed.

Ideal Solution

Painter's Algorithm:

- Sort primitives front to back and draw the back ones first, over-writing pixel values with information from the front primitives as they are processed.

Problem:

- You can’t always sort the primitives.

Ideal Solution

Painter's Algorithm:

- Sort primitives front to back and draw the back ones first, over-writing pixel values with information from the front primitives as they are processed.

Problem:

- You can’t always sort the primitives.

However, in some cases you can sort the primitives e.g. if all the vertices of one primitive are in front of all the vertices of the second.

BSP-Tree Rendering (object Precision)

- BSP-Trees recursively partition space by planes oGiven two primitives on either side of a plane, the one on the opposite side from the camera will always be further away.
oDraw the further side first, and then draw the closer one

BSP-Tree Rendering (object Precision)

- Draw further half first, then the closer one.
- Draw right side of 1
- Draw left side of 1

BSP-Tree Rendering (object Precision)

- Draw further half first, then the closer one.
- Draw right side of 1
- Draw left side of 3
- Draw right side of 3
- Draw left side of 1

BSP-Tree Rendering (object Precision)

- Draw further half first, then the closer one.
- Draw right side of 1
- Draw left side of 3
- Draw D
- Draw right side of 3
- Draw left side of 1

BSP-Tree Rendering (object Precision)

- Draw further half first, then the closer one.
- Draw right side of 1
- Draw left side of 3
- Draw D
- Draw right side of 3
- Draw left side of 5
- Draw right side of 5
- Draw left side of 1

BSP-Tree Rendering (object Precision)

- Draw further half first, then the closer one.
- Draw right side of 1
- Draw left side of 3
- Draw D
- Draw right side of 3
- Draw left side of 5
- Draw E
- Draw right side of 5
- Draw left side of 1

BSP-Tree Rendering (object Precision)

- Draw further half first, then the closer one.
- Draw right side of 1
- Draw left side of 3
- Draw D
- Draw right side of 3
- Draw left side of 5
- Draw E
- Draw right side of 5
- Draw F

- Draw left side of 1

BSP-Tree Rendering (object Precision)

- Draw further half first, then the closer one.
- Draw right side of 1
- Draw left side of 3
- Draw D
- Draw right side of 3
- Draw left side of 5
- Draw E
- Draw right side of 5
- Draw F

- Draw left side of 1
- Draw left side of 2
- Draw right side of 2

BSP-Tree Rendering (object Precision)

- Draw further half first, then the closer one.
- Draw right side of 1
- Draw left side of 3
- Draw D
- Draw right side of 3
- Draw left side of 5
- Draw E
- Draw right side of 5
- Draw F

- Draw left side of 1
- Draw left side of 2
- Draw left side of 4
- Draw right side of 4
- Draw right side of 2

BSP-Tree Rendering (object Precision)

- Draw further half first, then the closer one.
- Draw right side of 1
- Draw left side of 3
- Draw D
- Draw right side of 3
- Draw left side of 5
- Draw E
- Draw right side of 5
- Draw F

- Draw left side of 1
- Draw left side of 2
- Draw left side of 4
- Draw A
- Draw right side of 4
- Draw right side of 2

BSP-Tree Rendering (object Precision)

- Draw further half first, then the closer one.
- Draw right side of 1
- Draw left side of 3
- Draw D
- Draw right side of 3
- Draw left side of 5
- Draw E
- Draw right side of 5
- Draw F

- Draw left side of 1
- Draw left side of 2
- Draw left side of 4
- Draw A
- Draw right side of 4
- Draw B
- Draw right side of 2

BSP-Tree Rendering (object Precision)

- Draw further half first, then the closer one.
- Draw right side of 1
- Draw left side of 3
- Draw D
- Draw right side of 3
- Draw left side of 5
- Draw E
- Draw right side of 5
- Draw F

- Draw left side of 1
- Draw left side of 2
- Draw left side of 4
- Draw A
- Draw right side of 4
- Draw B
- Draw right side of 2
- Draw C

Building BSP-Trees

- Choose polygon (arbitrary)
- Split its cell using plane on which polygon lies oMay have to chop polygons in two (Clipping!)
- Continue until each cell contains only one polygon fragment
- Splitting planes could be chosen in other ways, but there is no efficient optimal algorithm for building BSP trees
oOptimal means minimum number of polygon fragments in a balanced tree

Building Example

- We will build a BSP tree, in 2D, for a 3 room building

Building Example (1)

Slide courtesy UWisconsin CS559

Building Example (2)

Building Example (3)

Slide courtesy UWisconsin CS559

Building Example (4)

Slide courtesy UWisconsin CS559

Building Example (5)

Slide courtesy UWisconsin CS559

Building Example (Done)

Slide courtesy UWisconsin CS559

3D Rendering Pipeline

Binary Space Partition:
 - View Independent
 - Linear-time depth sort

Ray Casting

- Fire a ray for every pixel olf ray intersects multiple objects, take the closest

Ray Casting Pipeline

Ray casting comments o O(p log n) for p pixels

o May (or not) use pixel coherence
o Simple, but generally not used

Z-Buffer

- Store color \& depth of closest object at each pixel olnitialize depth of each pixel to ∞ oUpdate only pixels whose depth is closer than in buffer

Z-Buffer

- Store color \& depth of closest object at each pixel olnitialize depth of each pixel to ∞ oUpdate only pixels whose depth is closer than in buffer

$$
\begin{aligned}
& \text { Case 1: } \\
& \text { Blue } \rightarrow(d=1)<(d=\infty) \text { : } \\
& \text { Set to }(0,0,1), d=1 \\
& \text { Red } \rightarrow(d=2)>(d=1) \text { : } \\
& \text { Don't change pixel } \\
& \text { Case 2: } \\
& \text { Red } \rightarrow(d=2)<(d=\infty) \text { : } \\
& \text { Set to (1, 0, 0), } d=2 \\
& \text { Blue } \rightarrow(d=1)<(d=2) \text { : } \\
& \text { Set to }(0,0,1), d=1
\end{aligned}
$$

Z-Buffer

- Store color \& depth of closest object at each pixel olnitialize depth of each pixel to ∞ oUpdate only pixels whose depth is closer than in buffer oDepths are interpolated from vertices, just like colors

A-Buffer

- Alpha values can cause problems:
oZ-buffer can only find one visible surface at each pixel oA-buffer supports linked list of surfaces at each pixel for better transparency support
oA-buffer also helps with anti-aliasing

0	0	0	0	0	0	0	0	0	0
		$d=1$		\bullet	\bullet	-	0	0	0
0	0	-	\bullet						
0	0	-	\bullet	\bullet	\bullet	\bullet		0	0
0	0	-	\bullet	\bullet	\bullet	\bullet		0	0
0	0	-	\bullet	\bullet	\bullet	\bullet			0
0	0	0	0		\bigcirc	\bigcirc			0

3D Rendering Pipeline

Z-buffer comments
oPolygons rasterized in any order
o Requires additional memory

- Z-buffer size \approx frame buffer
- Was expensive, cheap now
oHas problems with Alpha (A-buffer)
o Very common in hardware

3D Rendering Pipeline (for direct illumination)

Scan Conversion

How do we average information from the three vertices of a triangle?
olnterpolate using weights determined by the screen space projection?
olnterpolate using weights determined by the 3D locations?

It's easier to do the interpolation in 2D.

Is there a difference?

Scan Conversion Example

A line segment in 2D projected onto a 1D screen.
How should we interpolate the information from
vertices p_{1} and p_{2} at the pixel corresponding to ray R ?

Scan Conversion Example

A line segment in 2D projected onto a 1D screen.

- R intersects the projected line segment in the middle:
o We should use equal contributions from p_{1} and p_{2}.

Scan Conversion Example

A line segment in 2D projected onto a 1D screen.

- R intersects the projected line segment in the middle:
o We should use equal contributions from p_{1} and p_{2}.
- R intersects the 2D line segment closer to p_{1} :
o We should use more information from p_{1} than from p_{2}.

Scan Conversion Example

A line segment in 2D projected onto a 1D screen.
-How do we interpolate correctly?

Scan Conversion Example

A line segment in 2D projected onto a 1D screen.

- How do we interpolate correctly?

Recall: The 2D point (x, z) maps to the point (x / z) in 1D.

Scan Conversion Example

A line segment in 2D projected onto a 1D screen.

- How do we interpolate correctly?

Recall: The 2D point (x, z) maps to the point (x / z) in 1D.
If $p_{1}=\left(x_{1}, z_{1}\right)$ and $p_{2}=\left(x_{2}, z_{2}\right)$, to find the blending value for a pixel at position x in the screen we need to solve for $\alpha \mathrm{s}$. t.:
$(1-\alpha)\left(x_{1}, z_{1}\right)+\alpha\left(x_{2}, z_{2}\right) \rightarrow(x, 1)$

Scan Conversion Example

A line segment in 2D projected onto a 1D screen.

- How do we interpolate correctly?

Recall: The 2D point (x, z) maps to the point (x / z) in 1D.
If $p_{1}=\left(x_{1}, z_{1}\right)$ and $p_{2}=\left(x_{2}, z_{2}\right)$, to find the blending value for a pixel at position x in the screen we need to solve for $\alpha \mathrm{s}$. t.:

$$
(1-\alpha)\left(x_{1}, z_{1}\right)+\alpha\left(x_{2}, z_{2}\right) \rightarrow(x, 1)
$$

$$
\left((1-\alpha) x_{1}+\alpha x_{2},(1-\alpha) z_{1}+\alpha z_{2}\right) \rightarrow(x, 1)
$$

Scan Conversion Example

A line segment in 2D projected onto a 1D screen.

- How do we interpolate correctly?

Recall: The 2D point (x, z) maps to the point (x / z) in 1D.
If $p_{1}=\left(x_{1}, z_{1}\right)$ and $p_{2}=\left(x_{2}, z_{2}\right)$, to find the blending value for a pixel at position x in the screen we need to solve for $\alpha \mathrm{s}$. t.:

$$
\begin{gathered}
(1-\alpha)\left(x_{1}, z_{1}\right)+\alpha\left(x_{2}, z_{2}\right) \rightarrow(x, 1) \\
\left((1-\alpha) x_{1}+\alpha x_{2},(1-\alpha) z_{1}+\alpha z_{2}\right) \rightarrow(x, 1) \\
\frac{(1-\alpha) x_{1}+\alpha x_{2}}{(1-\alpha) z_{1}+\alpha z_{2}}=x
\end{gathered}
$$

Scan Conversion Example

A line segment in 2D projected onto a 1D screen.

- How do we interpolate correctly?

Reanll. Thn on noint (v \rightarrow) mano to thn noint (v/a) in 10
To compute the interpolation weights correctly, we If $p \quad$ need to perform a perspective divide! pixel at position x in the screen we need to solve for $\alpha \mathrm{s}$. t.:

$$
\begin{aligned}
& (1-\alpha)\left(x_{1}, z_{1}\right)+\alpha\left(x_{2}, z_{2}\right) \rightarrow(x, 1) \\
& \left((1-\alpha) x_{1}+\alpha x_{2},(1-\alpha) z_{1}+\alpha z_{2}\right) \rightarrow(x, 1) \\
& \frac{(1-\alpha) x_{1}+\alpha x_{2}}{(1-\alpha) z_{1}+\alpha z_{2}}=x
\end{aligned}
$$

Scan Conversion Example

A line segment in 2D projected onto a 1D screen.

- How do we interpolate correctly?

Refall. Tho on noint/y \rightarrow mancto tho moint ($/$ /a) in in
To compute the interpolation weights correctly, we If $p \quad$ need to perform a perspective divide! pixel at position x in the screen we need to solve for $\alpha \mathrm{s}$. t.:

Note that this is not the same as solving for the blending value in the image plane:

$$
\frac{(1-\alpha) x_{1}+\alpha x_{2}}{(1-\alpha) z_{1}+\alpha z_{2}}=x
$$

$$
(1-\alpha) \frac{x_{1}}{z_{1}}+\alpha \frac{x_{2}}{z_{2}}=x
$$

