Subdivision Surfaces

Connelly Barnes

CS 4810: Graphics

Acknowledgment: slides by Jason Lawrence, Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin

Subdivision

- How do you make a smooth curve?

We want to "smooth out" severe angles
Zorin \& Schroeder
SIGGRAPH 99
Course Notes

Subdivision

- How do you make a smooth curve?

We want to "smooth out" severe angles
Zorin \& Schroeder
SIGGRAPH 99
Course Notes

Subdivision

- How do you make a smooth curve?

We want to "smooth out" severe angles
Zorin \& Schroeder
SIGGRAPH 99
Course Notes

Subdivision Surfaces

- Coarse mesh \& subdivision rule oDefine smooth surface as limit of sequence of refinements

(a)

(b)

(c)

(d)

Key Questions

- How to subdivide the mesh?
oAim for properties like smoothness
- How to store the mesh?
oAim for efficiency of implementing subdivision rules

General Subdivision Scheme

- How to subdivide the mesh?

Two parts:
"Refinement:
-Add new vertices and connect (topological)
"Smoothing:
-Move vertex positions (geometric)

Loop Subdivision Scheme

- How to subdivide the mesh?

Refinement:
"Subdivide each triangle into 4 triangles by splitting each edge and connecting new vertices

Zorin \& Schroeder

Loop Subdivision Scheme

- How to subdivide the mesh:

Refinement
Smoothing:
»Existing Vertices: Choose new location as weighted average of original vertex and its neighbors

Zorin \& Schroeder
SIGGRAPH 99 SIGGRAPH 99

Loop Subdivision Scheme

- General rule for moving existing interior vertices:

What about vertices that have more or less than 6 neighboring faces?

new_position = (1-k β)original_position + sum(β^{*} each_original_vertex)

Loop Subdivision Scheme

- General rule for moving existing interior vertices:

What about vertices that have more or less than 6 neighboring faces?

Where do existing vertices move?

- How to choose β ?
oAnalyze properties of limit surface
olnterested in continuity of surface and smoothness
olnvolves calculating eigenvalues of matrices
"Original Loop

$$
\beta=\frac{1}{k}\left(\frac{5}{8}-\left(\frac{3}{8}+\frac{1}{4} \cos \frac{2 \pi}{k}\right)^{2}\right)
$$

»Warren

$$
\beta=\left\{\begin{array}{l}
\frac{3}{8 k} n>3 \\
\frac{3}{16} n=3
\end{array}\right.
$$

Loop Subdivision Scheme

- How to subdivide the mesh:

Refinement
Smoothing:
"Inserted Vertices: Choose location as weighted average of original vertices in local neighborhood

Zorin \& Schroeder SIGGRAPH 99
Course Notes

Boundary Cases?

- What about extraordinary vertices and boundary edges?:
oExisting vertex adjacent to a missing triangle
oNew vertex bordered by only one triangle

Boundary Cases?

- Rules for extraordinary vertices and boundaries:

Zorin \& Schroeder
SIGGRAPH 99
Course Notes

Loop Subdivision Scheme

Pixar

Loop Subdivision Scheme

Zorin \& Schroeder
SIGGRAPH 99
Course Notes

Loop Subdivision Scheme

Geri's Game, Pixar

Subdivision Schemes

- There are different subdivision schemes oDifferent methods for refining topology oDifferent rules for positioning vertices
»Interpolating versus approximating

Face split for triangles

Subdivision Schemes

Loop
Butterffy

Catmull-Clark

SIGGRAPH 99 Course Notes

Key Questions

- How to refine the mesh?
oAim for properties like smoothness
- How to store the mesh?
oAim for efficiency for implementing subdivision rules

Zorin \& Schroeder SIGGRAPH 99
Course Notes

Subdivision Smoothness

To determine the smoothness of the subdivision:

- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit.

Subdivision Smoothness

To determine the smoothness of the subdivision:

- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit.

Subdivision Smoothness

To determine the smoothness of the subdivision:

- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit.

Subdivision Smoothness

To determine the smoothness of the subdivision:

- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit.

Subdivision Smoothness

To determine the smoothness of the subdivision:

- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit.

Subdivision Smoothness

To determine the smoothness of the subdivision:

- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit.

Subdivision Smoothness

To determine the smoothness of the subdivision:

- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit.

Subdivision Smoothness

To determine the smoothness of the subdivision:

- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit.

Subdivision Smoothness

To determine the smoothness of the subdivision:

- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit.

Subdivision Smoothness

To determine the smoothness of the subdivision:

- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit.

©

Subdivision Smoothness

To determine the smoothness of the subdivision:

- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit.

Subdivision Matrix

- Compute the new positions/vertices as a linear combination of previous ones.

Subdivision Matrix

- Compute the new positions/vertices as a linear combination of previous ones.

Subdivision Matrix

- Compute the new positions/vertices as a linear combination of previous ones.
- To find the limit position of p_{0}, repeatedly apply the subdivision matrix.

$$
\left(\begin{array}{l}
p_{0}^{(n)} \\
p_{1}^{(n)} \\
p_{2}^{(n)} \\
p_{3}^{(n)} \\
p_{4}^{(n)} \\
p_{5}^{(n)} \\
p_{6}^{(n)}
\end{array}\right)=\frac{1}{16}\left(\begin{array}{ccccccc}
10 & 1 & 1 & 1 & 1 & 1 & 1 \\
6 & 6 & 2 & 0 & 0 & 0 & 2 \\
6 & 2 & 6 & 2 & 0 & 0 & 0 \\
6 & 0 & 2 & 6 & 2 & 0 & 0 \\
6 & 0 & 0 & 2 & 6 & 2 & 0 \\
6 & 0 & 0 & 0 & 2 & 6 & 2 \\
6 & 2 & 0 & 0 & 2 & 2 & 6
\end{array}\right)^{n}\left(\begin{array}{c}
p_{0} \\
p_{1} \\
p_{2} \\
p_{3} \\
p_{4} \\
p_{5} \\
p_{6}
\end{array}\right)
$$

Subdivision Matrix

- Compute the new positions/vertices as a linear combination of previous ones.
- To find the limit position of p_{0}, repeatedly apply the subdivision matrix.

$$
\binom{p_{0}^{(n)}}{p_{1}^{(n)}} \quad\left(\begin{array}{ccccccc}
10 & 1 & 1 & 1 & 1 & 1 & 1 \\
6 & 6 & 2 & 0 & 0 & 0 & 2
\end{array}\right)^{n}\left(\begin{array}{l}
p_{0} \\
p_{1}
\end{array}\right.
$$

If, after a change of basis we have $M=A^{-l} D A$, where D is a diagonal matrix, then:

$$
M^{n}=A^{-l} D^{n} A,
$$

Since D is diagonal, raising D to the n-th power just amounts to raising each of the diagonal entries of D to the n-th power.

Subdivision Modeling

- ZBrush Modeling Session

Key Questions

- How to refine the mesh?
o Aim for properties like smoothness
- How to store the mesh?
oAim for efficiency for implementing subdivision rules

Zorin \& Schroeder SIGGRAPH 99
Course Notes

Polygon Meshes

- Mesh Representations
olndependent faces
oVertex and face tables oAdjacency lists oWinged-Edge

Independent Faces

- Each face lists vertex coordinates

Independent Faces

- Each face lists vertex coordinates \times Redundant vertices \times No topology information

FACE TABLE	
F_{1}	$\left(x_{1}, y_{1}, z_{1}\right)\left(x_{2}, y_{2}, z_{2}\right)\left(x_{3}, y_{3}, z_{3}\right)$
F_{2}	$\left(x_{2}, y_{2}, z_{2}\right)\left(x_{4}, y_{4}, z_{4}\right)\left(x_{3}, y_{3}, z_{3}\right)$
F_{3}	$\left(x_{2}, y_{2}, z_{2}\right)\left(x_{5}, y_{5}, z_{5}\right)\left(x_{4}, y_{4}, z_{4}\right)$

Vertex and Face Tables

- Each face lists vertex references

Vertex and Face Tables

- Each face lists vertex references \checkmark Shared vertices

VERTEXTABLE			
x_{1}		r_{1}	z_{1}
v_{2}	x_{2}	r_{2}	z_{2}
v_{3}	x_{3}	r_{3}	z_{3}
v_{4}	x_{4}	r_{4}	z_{4}
v_{5}	x_{5}	r_{5}	z_{5}

FACE TABLE

F_{1}	V_{1}	V_{2}	v_{3}
F_{2}	V_{2}	V_{4}	v_{3}
F_{3}	V_{2}	v_{5}	v_{4}

Vertex and Face Tables

- Each face lists vertex references \checkmark Shared vertices \times Still no topology information $\quad\left(x_{3}, y_{3}, z_{3}\right)$

VERTEX TABLE			
v_{1}	x_{1}	γ_{1}	z_{1}
v_{2}	x_{2}	γ_{2}	z_{2}
v_{3}	x_{3}	r_{3}	z_{3}
v_{4}	x_{4}	y_{4}	z_{4}
v_{5}	x_{5}	γ_{5}	z_{5}

FACE TABLE

$$
\begin{array}{|l|lll}
\hline F_{1} & v_{1} & v_{2} & v_{3} \\
F_{2} & v_{2} & v_{4} & v_{3} \\
F_{3} & v_{2} & v_{5} & v_{4} \\
\hline
\end{array}
$$

Adjacency Lists

- Store all vertex, edge, and face adjacencies

Adjacency Lists

- Store all vertex, edge, and face adjacencies \checkmark Efficient topology traversal

Adjacency Lists

- Store all vertex, edge, and face adjacencies
\checkmark Efficient topology traversal
\times Extra storage
\times Variable size arrays

