Subdivision Surfaces

Connelly Barnes CS 4810: Graphics

Acknowledgment: slides by Jason Lawrence, Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin

Subdivision

How do you make a smooth curve?

We want to "smooth out" severe angles

Subdivision

How do you make a smooth curve?

We want to "smooth out" severe angles

Subdivision

How do you make a smooth curve?

Subdivision Surfaces

 Coarse mesh & subdivision rule
 Define smooth surface as limit of sequence of refinements

Key Questions

- How to subdivide the mesh?
 oAim for properties like smoothness
- How to store the mesh?
 oAim for efficiency of implementing subdivision rules

General Subdivision Scheme

- How to subdivide the mesh?
 - Two parts:
 - »Refinement:
 - -Add new vertices and connect (topological)
 - »Smoothing:
 - -Move vertex positions (geometric)

- How to subdivide the mesh?
 Refinement:
 - »Subdivide each triangle into 4 triangles by splitting each edge and connecting new vertices

• How to subdivide the mesh:

Refinement

Smoothing:

»Existing Vertices: Choose new location as weighted average of original vertex and its neighbors

• General rule for moving existing interior vertices:

new_position = $(1-k\beta)$ *original_position* + *sum*(β **each_original_vertex*)

• General rule for moving existing interior vertices:

Where do existing vertices move?

• How to choose β ?

oAnalyze properties of limit surface
oInterested in continuity of surface and smoothness
oInvolves calculating eigenvalues of matrices

»Original Loop

$$\beta = \frac{1}{k} \left(\frac{5}{8} - \left(\frac{3}{8} + \frac{1}{4} \cos \frac{2\pi}{k} \right)^2 \right)$$

»Warren

$$\beta = \begin{cases} \frac{3}{8k}n > 3\\ \frac{3}{16}n = 3 \end{cases}$$

• How to subdivide the mesh:

- Refinement
- Smoothing:

»Inserted Vertices: Choose location as weighted average of *original* vertices in local neighborhood

Boundary Cases?

• What about *extraordinary vertices* and *boundary edges*?:

oExisting vertex adjacent to a missing triangleoNew vertex bordered by only one triangle

Boundary Cases?

• Rules for *extraordinary vertices* and *boundaries*:

Pixar

Geri's Game, Pixar

Subdivision Schemes

There are different subdivision schemes

 oDifferent methods for refining topology
 oDifferent rules for positioning vertices
 »Interpolating versus approximating

Face split for triangles

Face split for quads

Face split					
	Triangular meshes	Quad. meshes			
Approximating	Loop (C^2)	Catmull-Clark (C^2)			
Interpolating	Mod. Butterfly (C^1)	Kobbelt (C1)			

Vertex split			
Doo-Sabin, Midedge (C^1)			
Biquartic (C^2)			

Subdivision Schemes

Loop

Key Questions

- How to refine the mesh?
 oAim for properties like smoothness
- How to store the mesh?
 oAim for efficiency for implementing subdivision rules

- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit.

- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit.

- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit.

- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit.

- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit.

- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit.

- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit.

- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit.

- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit.

- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit.

- Repeatedly apply the subdivision scheme
- Look at the neighborhood in the limit.

 Compute the new positions/vertices as a linear combination of previous ones.

 Compute the new positions/vertices as a linear combination of previous ones.

- Compute the new positions/vertices as a linear combination of previous ones.
- To find the limit position of p_0 , repeatedly apply the subdivision matrix.

- Compute the new positions/vertices as a linear combination of previous ones.
- To find the limit position of p_0 , repeatedly apply the subdivision matrix.

 $\begin{pmatrix} p_0^{(n)} \\ p_1^{(n)} \end{pmatrix} \begin{pmatrix} 10 & 1 & 1 & 1 & 1 & 1 & 1 \\ 6 & 6 & 2 & 0 & 0 & 2 \end{pmatrix}^n \begin{pmatrix} p_0 \\ p_1 \end{pmatrix}$ If, after a change of basis we have $M=A^{-1}DA$, where D is a diagonal matrix, then:

 $M^n = A^{-1}D^n A$,

Since *D* is diagonal, raising *D* to the *n*-th power just amounts to raising each of the diagonal entries of *D* to the *n*-th power.

Subdivision Modeling

ZBrush Modeling Session

Key Questions

- How to refine the mesh?
 oAim for properties like smoothness
- How to store the mesh?

oAim for efficiency for implementing subdivision rules

Polygon Meshes

Mesh Representations

 oIndependent faces
 oVertex and face tables
 oAdjacency lists
 oWinged-Edge

Independent Faces

Each face lists vertex coordinates

$$(x_{3}, y_{3}, z_{3}) \qquad (x_{4}, y_{4}, z_{4})$$

$$(x_{1}, y_{1}, z_{1}) \qquad (x_{2}, y_{2}, z_{2}) \qquad (x_{5}, y_{5}, z_{5})$$

FACE TABLE

Independent Faces

Each face lists vertex coordinates
 *Redundant vertices
 *No topology information (x₃, y

FACE TABLE

Vertex and Face Tables

Each face lists vertex references

F₁

 $[F_2]$

F₃

 V_2

V₂ V₅ V₄

V₃

V₃

V٦

٧₂

V3

٧5

 $X_1 Y_1$

 X_5

¥2

Υ₃

Y₅

Z1

Z2

Z3

 Z_4

 Z_5

Vertex and Face Tables

Each face lists vertex references
 ✓ Shared vertices

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
5 6 6 6

FACE TABLE				
F ₁	V ₁	V ₂	V3	
F ₂	V ₂	V ₄	V3	
F ₃	V ₂	V ₅	V4	

Vertex and Face Tables

Each face lists vertex references
 ✓ Shared vertices
 × Still no topology information (x₃,

VERTEX TABLE				
V_1	X ₁	Y ₁	Z ₁	
V_2	X ₂	Y ₂	Z ₂	
V_3	X ₃	Y ₃	Z3	
٧4	X ₄	Y ₄	Z ₄	
V_5	X ₅	Y_5	Z5	

FACE TABLE				
F ₁	V ₁	V ₂	V ₃	
F ₂	V ₂	V ₄	V ₃	
F ₃	V ₂	V ₅	V ₄	

Adjacency Lists

Store all vertex, edge, and face adjacencies

Adjacency Lists

Store all vertex, edge, and face adjacencies
 ✓ Efficient topology traversal

Adjacency Lists

- Store all vertex, edge, and face adjacencies
 ✓ Efficient topology traversal
 - **×**Extra storage
 - *Variable size arrays

