
Subdivision Surfaces

Connelly Barnes

CS 4810: Graphics

Acknowledgment: slides by Jason Lawrence, Misha Kazhdan, Allison Klein, Tom
Funkhouser, Adam Finkelstein and David Dobkin

Subdivision
• How do you make a smooth curve?

Zorin & Schroeder
SIGGRAPH 99
Course Notes

We want to “smooth out” severe angles

Subdivision
• How do you make a smooth curve?

Zorin & Schroeder
SIGGRAPH 99
Course Notes

We want to “smooth out” severe angles

Subdivision
• How do you make a smooth curve?

Zorin & Schroeder
SIGGRAPH 99
Course Notes

We want to “smooth out” severe angles

Subdivision Surfaces
• Coarse mesh & subdivision rule
oDefine smooth surface as limit of  

sequence of refinements

Zorin & Schroeder
SIGGRAPH 99
Course Notes

Key Questions
• How to subdivide the mesh?
oAim for properties like smoothness

• How to store the mesh?
oAim for efficiency of implementing subdivision rules

Zorin & Schroeder
SIGGRAPH 99
Course Notes

General Subdivision Scheme
• How to subdivide the mesh?

Two parts:
»Refinement:

–Add new vertices and connect (topological)
»Smoothing:

–Move vertex positions (geometric)

Loop Subdivision Scheme
• How to subdivide the mesh?

Refinement:
»Subdivide each triangle into 4 triangles by  
splitting each edge and connecting new vertices

Zorin & Schroeder
SIGGRAPH 99
Course Notes

Loop Subdivision Scheme

Zorin & Schroeder
SIGGRAPH 99
Course Notes

Existing vertex being moved
from one level to the next

• How to subdivide the mesh:
Refinement
Smoothing:
»Existing Vertices: Choose new location as weighted
average of original vertex and its neighbors

Loop Subdivision Scheme
• General rule for moving existing interior vertices:

Zorin & Schroeder
SIGGRAPH 99
Course Notes

What about vertices that have more
Or less than 6 neighboring faces?

new_position = (1-kβ)original_position + sum(β*each_original_vertex)

What about vertices that have more
or less than 6 neighboring faces?

Loop Subdivision Scheme
• General rule for moving existing interior vertices:

Zorin & Schroeder
SIGGRAPH 99
Course Notes

What about vertices that have more
Or less than 6 neighboring faces?

new_position = (1-kβ)original_position + sum(β*each_original_vertex)

What about vertices that have more
or less than 6 neighboring faces?

0≤ β ≤1/k:

• As β increases, the contribution from adjacent
vertices plays a more important role.

Where do existing vertices move?
• How to choose β?
oAnalyze properties of limit surface
oInterested in continuity of surface and smoothness
oInvolves calculating eigenvalues of matrices

»Original Loop

»Warren

Loop Subdivision Scheme
• How to subdivide the mesh:

Refinement
Smoothing:
»Inserted Vertices: Choose location as weighted average
of original vertices in local neighborhood

New vertex being inserted

Zorin & Schroeder
SIGGRAPH 99
Course Notes

Boundary Cases?
• What about extraordinary vertices and boundary

edges?:
oExisting vertex adjacent to a missing triangle
oNew vertex bordered by only one triangle

Zorin & Schroeder
SIGGRAPH 99
Course Notes

Boundary Cases?
• Rules for extraordinary vertices and boundaries:

Zorin & Schroeder
SIGGRAPH 99
Course Notes

1/2 1/2 1/8 1/83/4

Loop Subdivision Scheme

Pixar

Loop Subdivision Scheme

PixarZorin & Schroeder
SIGGRAPH 99
Course Notes

Loop Subdivision Scheme

Geri’s Game, Pixar

Subdivision Schemes
• There are different subdivision schemes
oDifferent methods for refining topology
oDifferent rules for positioning vertices

»Interpolating versus approximating

Zorin & Schroeder, SIGGRAPH 99 , Course Notes

Subdivision Schemes

Zorin & Schroeder
SIGGRAPH 99
Course Notes

21

Key Questions
• How to refine the mesh?
oAim for properties like smoothness

• How to store the mesh?
oAim for efficiency for implementing subdivision rules

Zorin & Schroeder
SIGGRAPH 99
Course Notes

Subdivision Smoothness
To determine the smoothness of the subdivision:

• Repeatedly apply the subdivision scheme

• Look at the neighborhood in the limit.

Subdivision Smoothness
To determine the smoothness of the subdivision:

• Repeatedly apply the subdivision scheme

• Look at the neighborhood in the limit.

Subdivision Smoothness
To determine the smoothness of the subdivision:

• Repeatedly apply the subdivision scheme

• Look at the neighborhood in the limit.

Subdivision Smoothness
To determine the smoothness of the subdivision:

• Repeatedly apply the subdivision scheme

• Look at the neighborhood in the limit.

Subdivision Smoothness
To determine the smoothness of the subdivision:

• Repeatedly apply the subdivision scheme

• Look at the neighborhood in the limit.

Subdivision Smoothness
To determine the smoothness of the subdivision:

• Repeatedly apply the subdivision scheme

• Look at the neighborhood in the limit.

Subdivision Smoothness
To determine the smoothness of the subdivision:

• Repeatedly apply the subdivision scheme

• Look at the neighborhood in the limit.

Subdivision Smoothness
To determine the smoothness of the subdivision:

• Repeatedly apply the subdivision scheme

• Look at the neighborhood in the limit.

Subdivision Smoothness
To determine the smoothness of the subdivision:

• Repeatedly apply the subdivision scheme

• Look at the neighborhood in the limit.

Subdivision Smoothness
To determine the smoothness of the subdivision:

• Repeatedly apply the subdivision scheme

• Look at the neighborhood in the limit.

Subdivision Smoothness
To determine the smoothness of the subdivision:

• Repeatedly apply the subdivision scheme

• Look at the neighborhood in the limit.

…

Computing infinitely many iterations is
computationally prohibitive!!!

Subdivision Matrix
• Compute the new positions/vertices as a linear

combination of previous ones.

p0

p1p6

p5

p4 p3

p2 p0’p5’

p4’ p3’

p2’

p1’p6’

Subdivision Matrix
• Compute the new positions/vertices as a linear

combination of previous ones.

p0

p1p6

p5

p4 p3

p2 p0’p5’

p4’ p3’

p2’

p1’p6’

Subdivision Matrix
0

BBBBBBBB@

p0
0

p0
1

p0
2

p0
3

p0
4

p0
5

p0
6

1

CCCCCCCCA

=
1
16

0

BBBBBBBB@

10 1 1 1 1 1 1
6 6 2 0 0 0 2
6 2 6 2 0 0 0
6 0 2 6 2 0 0
6 0 0 2 6 2 0
6 0 0 0 2 6 2
6 2 0 0 2 2 6

1

CCCCCCCCA

0

BBBBBBBB@

p0

p1

p2

p3

p4

p5

p6

1

CCCCCCCCA

Subdivision Matrix
• Compute the new positions/vertices as a linear

combination of previous ones.

• To find the limit position of p0, repeatedly apply the
subdivision matrix.

0

BBBBBBBBBB@

p(n)
0

p(n)
1

p(n)
2

p(n)
3

p(n)
4

p(n)
5

p(n)
6

1

CCCCCCCCCCA

=
1
16

0

BBBBBBBB@

10 1 1 1 1 1 1
6 6 2 0 0 0 2
6 2 6 2 0 0 0
6 0 2 6 2 0 0
6 0 0 2 6 2 0
6 0 0 0 2 6 2
6 2 0 0 2 2 6

1

CCCCCCCCA

n 0

BBBBBBBB@

p0

p1

p2

p3

p4

p5

p6

1

CCCCCCCCA

Subdivision Matrix
• Compute the new positions/vertices as a linear

combination of previous ones.

• To find the limit position of p0, repeatedly apply the
subdivision matrix.

0

BBBBBBBBBB@

p(n)
0

p(n)
1

p(n)
2

p(n)
3

p(n)
4

p(n)
5

p(n)
6

1

CCCCCCCCCCA

=
1
16

0

BBBBBBBB@

10 1 1 1 1 1 1
6 6 2 0 0 0 2
6 2 6 2 0 0 0
6 0 2 6 2 0 0
6 0 0 2 6 2 0
6 0 0 0 2 6 2
6 2 0 0 2 2 6

1

CCCCCCCCA

n 0

BBBBBBBB@

p0

p1

p2

p3

p4

p5

p6

1

CCCCCCCCA

If, after a change of basis we have M=A-1DA, where D is a
diagonal matrix, then:

Mn=A-1DnA,

Since D is diagonal, raising D to the n-th power just amounts to
raising each of the diagonal entries of D to the n-th power.

Subdivision Modeling
• ZBrush Modeling Session

38

https://www.youtube.com/watch?v=iz4Gf-qlNbM

Key Questions
• How to refine the mesh?
oAim for properties like smoothness

• How to store the mesh?
oAim for efficiency for implementing subdivision rules

Zorin & Schroeder
SIGGRAPH 99
Course Notes

Polygon Meshes
• Mesh Representations
oIndependent faces
oVertex and face tables
oAdjacency lists
oWinged-Edge

Independent Faces
• Each face lists vertex coordinates

Independent Faces
• Each face lists vertex coordinates

ûRedundant vertices
ûNo topology information

Vertex and Face Tables
• Each face lists vertex references

Vertex and Face Tables
• Each face lists vertex references

üShared vertices

Vertex and Face Tables
• Each face lists vertex references

üShared vertices
ûStill no topology information

Adjacency Lists
• Store all vertex, edge, and face adjacencies

Adjacency Lists
• Store all vertex, edge, and face adjacencies

üEfficient topology traversal

Adjacency Lists
• Store all vertex, edge, and face adjacencies

üEfficient topology traversal
ûExtra storage
ûVariable size arrays

