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Parametric Curves and Surfaces
Part 1: Curves

Part 2: Surfaces

Courtesy of C.K. Shene



Curves
• Splines: mathematical way to express curves

• Motivated by “loftsman’s spline”
oLong, narrow strip of wood/plastic
oUsed to fit curves through specified data points
oShaped by lead weights called “ducks”
oGives curves that are “smooth” or “fair”

• Have been used to design:
oAutomobiles
oShip hulls
oAircraft fuselage/wing



Goals
• Some attributes we might like to have:
oPredictable/local control
oSimple
oContinuous

• We’ll satisfy these goals using:
oPiecewise
oPolynomials



Many applications in graphics
• Animation paths

• Shape modeling

• etc…

Animation 
(Angel, Plate 1)

Shell 
(Douglas Turnbull) 



What is a Spline in CG?
A spline is a piecewise polynomial function whose 

derivatives satisfy some continuity constraints across 
curve boundaries.

So let’s look at what this means…



What is a Spline in CG?
Piecewise: the spline is actually a 

collection of individual segments 
joined together.

Polynomial functions: each of these 
segments is expressed by a 
polynomial function. 



Parametric Curves
A parametric curve in d-dimensions is defined by a 

collection of 1D functions of one variable that give 
the coordinates of points on the curve at each value 
of u:

Courtesy of C.K. Shene

Note: 
A parametric curve is not the graph of a 
function, it is the path traced out as the 
value of t is allowed to change.



Derivatives
If Φ(u)=(x(u),y(u)) is the parametric equation of a 

curve, the parametric derivative of the curve at a 
point u0 is the vector: 
 
which points in a direction tangent to the curve.

Φ(u)

Φ’(u0)

Note: 
The direction of the derivative is 
determined by the path that the 
curve traces out. 

The magnitude of the parametric 
derivative is determined by the 
tracing speed.



Polynomials
A polynomial in the variable u is:

• “An algebraic expression written as a sum of 
constants multiplied by different powers of a 
variable.”

The constant ak is referred to as the k-th coefficient of 
the polynomial P.



Polynomials (Degree)

A polynomial P has degree n if when written in 
canonical form above, the highest exponent is n (and 
an is nonzero).



Polynomials (Degree)

A polynomial P has degree n if when written in 
canonical form above, the highest exponent is n (and 
an is nonzero).

A polynomial of degree n has n
+1 degrees of freedom

Knowing n+1 pieces of information about a polynomial of degree 
n gives enough information to reconstruct the coefficients



Polynomials (Matrices)

The polynomial P can be expressed as the matrix 
multiplication of a column vector and a row vector:

P (u) =
�
un · · ·u0
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Polynomials (Matrices)
Example:

If we know the values of the polynomial P at n+1 
different values:

We can compute the coefficients of P by inverting the 
appropriate matrix:



Polynomials (Matrices)
Example:

So, if we are given the values of the polynomial P at 
the n+1 positions u0,…,un, we can compute the value 
of P at any position u by solving:



Parametric Polynomial Curves
• A parametric polynomial curve of degree n in d 

dimensions is a collection of d polynomials, each of 
which is of degree no larger than n:



Parametric Polynomial Curves
Examples:

• When x(u)=u, the curve  
 is just the graph of y(u).

• Different parametric 
equations can trace  
out the same curve.

• As the degree gets 
larger, the complexity 
of the curve increases.

x(u)=u

x(u)=u2/2-2

x(u)=u3/2-2u

y(u)=u y(u)=u2/2-2 y(u)=u3/2-2u



Parametric Curves
Goal:

Given a collection of m points in d dimensions: 
 
define a parametric curve that passes through (or 
near) the points

p0

p1

p2

p3
p0

p1

p2

p3



Parametric Curves
Direct Approach:

Solve for the m coefficients of a parametric polynomial 
curve of degree m-1, passing through the points.



Parametric Curves
Direct Approach:

Solve for the m coefficients of a parametric polynomial 
curve of degree m-1, passing through the points.

Limitations:

• No local control

• As the number of points increases, the dimension 
gets larger, and the curve oscillates more.



Splines
Approach:

Fit low-order polynomials to groups of points so that 
the combined curve passes through (or near) the 
points while providing:
oLocal Control
oSimplicity
oContinuity/Smoothness
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p3 p5
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the combined curve passes through (or near) the 
points while providing:
oLocal Control
oSimplicity
oContinuity/Smoothness

p0

p1

p2

p3 p5

p4 p0

p1

p2

p3 p1

p2

p3

p4

+



Splines
Approach:
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Splines
Approach:

Fit low-order polynomials to groups of points so that 
the combined curve passes through (or near) the 
points while providing:
oLocal Control
oSimplicity
oContinuity/Smoothness
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Piecewise parametric polynomials
Approach:

Fit low-order polynomials to groups of points so that 
the combined curve passes through (or near) the 
points while providing:
oLocal Control:

»Individual curve segments are defined using only local 
information

oSimplicity
»Curve segments are low-order polynomials



Piecewise parametric polynomials
Approach:

Fit low-order polynomials to groups of points so that 
the combined curve passes through (or near) the 
points while providing:
oLocal Control:

»Individual curve segments are defined using only local 
information

oSimplicity
»Curve segments are low-order polynomials

oContinuity/Smoothness
»How do we guarantee  
smoothness at the joints?



Continuity/Smoothness
Continuity: 

Within the parameterized domain, 
the polynomial functions are  
continuous and smooth.

The derivatives of our polynomial 
functions must satisfy 
continuity constraints 
across the curve  
boundaries.



Continuity/Smoothness
Parametric continuity: derivatives of 

the two curves are equal where 
they meet.

• C0 means two curves just meet

• C1 means 1st derivatives equal

• C2 means both 1st and 2nd derivates 
equal



Continuity/Smoothness
Geometric continuity: derivatives of 

the two curves are proportional (i.e. 
point in the same direction) where 
they meet.

• G0 means two curves just meet
• G1 means G0 and 1st derivatives 

proportional
• G2 means G1 and 2nd derivatives 

proportional
• Parametric continuity used more 

frequently than geometric.



What is a Spline in CG?
A spline is a piecewise polynomial function whose 

derivatives satisfy some continuity constraints across 
curve boundaries.

P1(x)   x∈[0,1)

P2(x)   x∈[0,1)

P3(x)   x∈[0,1)



What is a Spline in CG?
A spline is a piecewise polynomial function whose 

derivatives satisfy some continuity constraints across 
curve boundaries.

P1(1)=P2(0)  
P1’(1)=P2’(0) 

…

P2(1)=P3(0)  
P2’(1)=P3’(0) 

…



Overview
• What is a Spline?

• Specific Examples:
oHermite Splines
oCardinal Splines
oUniform Cubic B-Splines

• Comparing Cardinal Splines to Uniform Cubic B-
Splines



Specific Example: Hermite Splines
• Interpolating piecewise cubic polynomial

• Specified with:
oA pair of control points
oTangent at each control point

• Iteratively construct the curve between adjacent end 
points
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Specific Example: Hermite Splines
• Interpolating piecewise cubic polynomial

• Specified with:
oA pair of control points
oTangent at each control point 

• Iteratively construct the curve between adjacent end 
points

p0

p1

p2

p3

p4

p5

Because the end-points of adjacent curves 
share the same position and derivatives, the 

Hermite spline has C1 continuity.



• Let Pk(u)=(Pk,X(u),Pk,Y(u)) with 0≤u≤1 be a 
parametric cubic point function for the curve 
section between control points pk and pk+1

• Boundary conditions are:
oPk(0)  = pk

oPk(1)  = pk+1

oPk’(0) = Dpk

oPk’(1) = Dpk+1

Specific Example: Hermite Splines

pk

pk+1

Dpk Dpk+1



• Let Pk(u)=(Pk,X(u),Pk,Y(u)) with 0≤u≤1 be a parametric 
cubic point function for the curve section between 
control points pk and pk+1

• Boundary conditions are:
oPk(0)  = pk

oPk(1)  = pk+1

oPk’(0) = Dpk

oPk’(1) = Dpk+1

• Solve for the coefficients of the polynomials Pk,X(u) 
and Pk,Y(u) that satisfy the boundary condition

Specific Example: Hermite Splines

pk

pk+1

Dpk Dpk+1



Specific Example: Hermite Splines
We can express the polynomials:
• P(u) = au3 + bu2 +cu +d
• P’(u) = 3au2 + 2bu +c
using the matrix representations:



Specific Example: Hermite Splines
We can express the polynomials:
• P(u) = au3 + bu2 +cu +d
• P’(u) = 3au2 + 2bu +c
using the matrix representations:

By abuse of notation, we will think of the coefficients a, 
b, c, and d as 2-vectors rather than scalars so that P is a 

function taking values in 2D.



Specific Example: Hermite Splines
Given the matrix representations:



Specific Example: Hermite Splines
Given the matrix representations:

we can express the values at the end-points as:



Specific Example: Hermite Splines
We can combine the equations

into a single matrix expression:



Specific Example: Hermite Splines
We can combine the equations

into a single matrix expression:



Specific Example: Hermite Splines
Inverting the matrix in the equation:

we get:



Specific Example: Hermite Splines
Inverting the matrix in the equation:

we get:



Specific Example: Hermite Splines
Inverting the matrix in the equation:

we get:



Specific Example: Hermite Splines
Using the facts that:

 

we get:

and



Specific Example: Hermite Splines
Using the facts that:

 

we get:

MHermite

and

parameters boundary info



Specific Example: Hermite Splines
and we can execute matrix multiplies below

to get

 



Specific Example: Hermite Splines
Setting:
oH0(u)= 2u3-3u2+1
oH1(u)=-2u3+3u2

oH2(u)=  u3-2u2+u
oH3(u)=  u3-u2

we can re-write the equation:

as:



Specific Example: Hermite Splines
Setting:
oH0(u)= 2u3-3u2+1
oH1(u)=-2u3+3u2

oH2(u)=  u3-2u2+u
oH3(u)=  u3-u2

Blending Functions

1

1

1

1

1

1

1

1 H0(u) H1(u) H2(u) H3(u)



Specific Example: Hermite Splines
Setting:
oH0(u)= 2u3-3u2+1
oH1(u)=-2u3+3u2
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oH3(u)=  u3-u2

1

1

1

1

1

1

1

1 H0(u) H1(u) H2(u) H3(u)

When u=0: 
• H0(u)=1 
• H1(u)=0 
• H2(u)=0 
• H3(u)=0 
So P(0)=pk
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Specific Example: Hermite Splines
Setting:
oH0(u)= 2u3-3u2+1
oH1(u)=-2u3+3u2

oH2(u)=  u3-2u2+u
oH3(u)=  u3-u2

1

1

1

1

1

1
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1 H0(u) H1(u) H2(u) H3(u)

When u=0: 
• H0

’(u)=0 
• H1’(u)=0 
• H2’(u)=1 
• H3’(u)=0 
So P’(0)=Dpk



Specific Example: Hermite Splines
Setting:
oH0(u)= 2u3-3u2+1
oH1(u)=-2u3+3u2

oH2(u)=  u3-2u2+u
oH3(u)=  u3-u2

1

1

1

1

1

1

1

1 H0(u) H1(u) H2(u) H3(u)

When u=1: 
• H0

’(u)=0 
• H1’(u)=0 
• H2’(u)=0 
• H3’(u)=1 
So P’(1)=Dpk+1



Specific Example: Hermite Splines
• Interpolating piecewise cubic polynomial

• Specified with:
oSet of control points
oTangent at each control point 

• Iteratively construct the curve between adjacent end 
points

p0

p1

p2

p3

p4

p5

Given the control points, how do we define 
the value of the tangents/derivatives?



Overview
• What is a Spline?

• Specific Examples:
oHermite Splines
oCardinal Splines
oUniform Cubic B-Splines

• Comparing Cardinal Splines to Uniform Cubic B-
Splines



• Interpolating piecewise cubic polynomial

• Specified with four control points

• Iteratively construct the curve between middle two 
points using adjacent points to define tangents

Specific Example: Cardinal Splines
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• Interpolating piecewise cubic polynomial

• Specified with four control points

• Iteratively construct the curve between middle two 
points using adjacent points to define tangents

Specific Example: Cardinal Splines
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• Interpolating piecewise cubic polynomial

• Specified with four control points

• Iteratively construct the curve between middle two 
points using adjacent points to define tangents
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• Interpolating piecewise cubic polynomial

• Specified with four control points

• Iteratively construct the curve between middle two 
points using adjacent points to define tangents
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• Interpolating piecewise cubic polynomial

• Specified with four control points

• Iteratively construct the curve between middle two 
points using adjacent points to define tangents
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• Interpolating piecewise cubic polynomial

• Specified with four control points

• Iteratively construct the curve between middle two 
points using adjacent points to define tangents
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• Iteratively construct the curve between middle two 
points using adjacent points to define tangents
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• Interpolating piecewise cubic polynomial
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• Iteratively construct the curve between middle two 
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• Interpolating piecewise cubic polynomial

• Specified with four control points

• Iteratively construct the curve between middle two 
points using adjacent points to define tangents
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• Interpolating piecewise cubic polynomial

• Specified with four control points

• Iteratively construct the curve between middle two 
points using adjacent points to define tangents

Specific Example: Cardinal Splines
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Because the end-points of adjacent curves 
share the same position and derivatives, the 

Cardinal spline has C1 continuity.



• Let Pk(u)=(Pk,X(u),Pk,Y(u)) with 0≤u≤1 be a parametric 
cubic point function for the curve section between 
control points pk and pk+1

• Boundary conditions are:
oP(0)  = pk

oP(1)  = pk+1

oP’(0) = ½(1 – t)(pk+1 – pk-1)
oP’(1) = ½(1 – t)(pk+2 – pk)

• Solve for the coefficients of the polynomials Pk,X(u) 
and Pk,Y(u) that satisfy the boundary condition

Specific Example: Cardinal Splines

pk
pk+1

pk-1 pk+2



Specific Example: Cardinal Splines
Recall: 

The Hermite matrix determines the coefficients of the 
polynomial from the positions and the derivatives of 
the end-points

MHermiteparameters boundary info



Specific Example: Cardinal Splines
Using same methods as with Hermite spline, from 

boundary conditions on previous slide we can get

where s = (1 – t)/2
MHermite

The parameter t is called the tension parameter.  
• Controls looseness versus tightness of curve



Specific Example: Cardinal Splines
We can express the boundary conditions as a matrix 

applied to the points pk-1, pk, pk+1, and pk+2:

to get



Specific Example: Cardinal Splines
We can express the boundary conditions as a matrix 

applied to the points pk-1, pk, pk+1, and pk+2:

to get



Specific Example: Cardinal Splines
Multiplying the interior matrices in:

we get the Cardinal matrix representation



Specific Example: Cardinal Splines
Combining the matrices in:

we get the Cardinal matrix representation

MCardinal



Specific Example: Cardinal Splines
Setting:
oC0(u)= -su3+2su2-su
oC1(u)= (2-s)u3+(s-3)u2+1
oC2(u)= (s-2)u3+(3-2s)u2+su
oC3(u)= su3-su2

For s=0:

Blending Functions

1

1

1

1

1

1

1

1 C0(u) C1(u) C2(u) C3(u)



Specific Example: Cardinal Splines
Setting:
oC0(u)= -su3+2su2-su
oC1(u)= (2-s)u3+(s-3)u2+1
oC2(u)= (s-2)u3+(3-2s)u2+su
oC3(u)= su3-su2

For s=0:

1

1

1

1

1

1

1

1 C0(u) C1(u) C2(u) C3(u)

Properties: 
• C0(u)+C1(u)+C2(u)+C3(u)=1 
• Cj(u)=C3-j(1-u) 
• C0(1)=C3(0)=0
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• Interpolating piecewise cubic polynomial

• Specified with four control points

• Iteratively construct the curve between middle two 
points using adjacent points to define tangents

Specific Example: Cardinal Splines



• Interpolating piecewise cubic polynomial

• Specified with four control points

• Iteratively construct the curve between middle two 
points using adjacent points to define tangents

Specific Example: Cardinal Splines
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At the first and last end-points, you can: 
• Not draw the final segments 
• Double up end points 
• Loop the spline around



Overview
• What is a Spline?

• Specific Examples:
oHermite Splines
oCardinal Splines
oUniform Cubic B-Splines

• Comparing Cardinal Splines to Uniform Cubic B-
Splines



• Approximating piecewise cubic polynomial

• Specified with four control points

• Iteratively construct the curve around middle two 
points using adjacent points to define tangents

Specific Example: Uniform Cubic B-Splines
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Specific Example: Uniform Cubic B-Splines

p0

p1 p2

p3

p4

p5

p6

p7



• Let Pk(u)=(Pk,X(u),Pk,Y(u)) with 0≤u≤1 be a parametric 
cubic point function for the curve section around the 
control points pk and pk+1

• Boundary conditions are:
oP(0)  = 1/6(pk-1+4pk+pk+1)
oP(1)  = 1/6(pk+4pk+1+pk+2)
oP’(0) = 1/2(1 – t)(pk+1 – pk-1)
oP’(1) = 1/2(1 – t)(pk+2 – pk)

• Solve for the coefficients of the polynomials Pk,X(u) 
and Pk,Y(u) that satisfy the boundary condition

Specific Example: Uniform Cubic B-Splines

pk pk+1

pk-1 pk+2



Specific Example: Uniform Cubic B-Splines

Using same methods as with Hermite spline, from 
boundary conditions on previous slide we can get

MHermite



Specific Example: Uniform Cubic B-Splines

We can express the boundary conditions as a matrix 
applied to the points pk-1, pk, pk+1, and pk+2:

to get



Specific Example: Uniform Cubic B-Splines

Multiplying the interior matrices in:

we get the cubic B-spline matrix representation



Specific Example: Uniform Cubic B-Splines

Combining the matrices in:

we get the cubic B-spline matrix representation

MBSpline



Specific Example: Uniform Cubic B-Splines

Setting:
oB0,3(u)= 1/6(1-u)3

oB1,3(u)= 1/6(3u3-6u2+4)
oB2,3(u)= 1/6(-3u3+3u2+3u+1)
oB3,3(u)= 1/6(u3)

Blending Functions

1

1

1

1

1

1

1

1 B0,3(u) B1,3(u) B2,3(u) B3,3(u)



Specific Example: Uniform Cubic B-Splines

Setting:
oB0,3(u)= 1/6(1-u)3

oB1,3(u)= 1/6(3u3-6u2+4)
oB2,3(u)= 1/6(-3u3+3u2+3u+1)
oB3,3(u)= 1/6(u3)

1

1

1

1

1

1

1

1 B0,3(u) B1,3(u) B2,3(u) B3,3(u)

Properties: 
• B0,3(u)+B1,3(u)+B2,3(u)+B3,3(u)=1 
• Bj(u)=B3-j(1-u) 
• B0,3(1)=B3,3(0)=0 
• Bj,3(u)≥0



• Approximating piecewise cubic polynomial

• Specified with four control points

• Iteratively construct the curve around middle two 
points using adjacent points to define tangents

Specific Example: Uniform Cubic B-Splines
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• Approximating piecewise cubic polynomial

• Specified with four control points

• Iteratively construct the curve around middle two 
points using adjacent points to define tangents

Specific Example: Uniform Cubic B-Splines

p0

p1 p2

p3

p4

p5

p6

p7

At the first and last end-points, you can: 
• Not draw the final segments 
• Double up end points 
• Loop the spline around



Overview
• What is a Spline?

• Specific Examples:
oHermite Splines
oCardinal Splines
oUniform Cubic B-Splines

• Comparing Cardinal Splines to Uniform Cubic B-
Splines



Blending Functions
Blending functions provide a way for expressing the 

functions Pk(u) as a weighted sum of the four control 
points pk-1, pk, pk+1, and pk+2:

1

1

1

1

1

1

1

1 BF0(u) BF1(u) BF2(u) BF3(u)

1

1

1

1

1

1

1

1 BF0 (u) BF1 (u) BF2 (u) BF3 (u)

Cardinal Blending Functions (t=0)

Uniform Cubic B-Spline Blending Functions



Blending Functions
Properties:

• Translation Commutativity:
o BF0(u)+ BF1(u)+ BF2(u)+ BF3(u)=1, for all 0≤u≤1.

• Continuity:
o BF0(1)=BF3(0)=0
o BF1(1)=BF0(0)
o BF2(1)=BF1(0)
o BF3(1)=BF2(0)

• Convex Hull Containment:
o BF0(u), BF1(u), BF2(u), BF3(u)≥1, for all 0≤u≤1.

• Interpolation:
o BF0(0)=BF2(0)=BF3(0)=0
o BF0(1)=BF1(1)=BF3(1)=0
o BF1(0)=1
o BF2(1)=1



Blending Functions
Properties:

• Translation Commutativity:
o BF0(u)+ BF1(u)+ BF2(u)+ BF3(u)=1, for all 0≤u≤1.

• Continuity:
o BF0(1)=BF3(0)=0
o BF1(1)=BF0(0)
o BF2(1)=BF1(0)
o BF3(1)=BF2(0)

• Convex Hull Containment:
o BF0(u), BF1(u), BF2(u), BF3(u)≥1, for all 0≤u≤1.

• Interpolation:
o BF0(0)=BF2(0)=BF3(0)=0
o BF0(1)=BF1(1)=BF3(1)=0
o BF1(0)=1
o BF2(1)=1

If we translate all the control points by the same vector q, the 
position of the new point at the value u will just be the position 
of the old value at u, translated by q:



Blending Functions
Properties:

• Translation Commutativity:
o BF0(u)+ BF1(u)+ BF2(u)+ BF3(u)=1, for all 0≤u≤1.

• Continuity:
o BF0(1)=BF3(0)=0
o BF1(1)=BF0(0)
o BF2(1)=BF1(0)
o BF3(1)=BF2(0)

• Convex Hull Containment:
o BF0(u), BF1(u), BF2(u), BF3(u)≥1, for all 0≤u≤1.

• Interpolation:
o BF0(0)=BF2(0)=BF3(0)=0
o BF0(1)=BF1(1)=BF3(1)=0
o BF1(0)=1
o BF2(1)=1

 

If we translate all the control points by the same vector q, the 
position of the new point at the value u will just be the position 
of the old value at u, translated by q:



Blending Functions
Properties:

• Translation Commutativity:
o BF0(u)+ BF1(u)+ BF2(u)+ BF3(u)=1, for all 0≤u≤1.

• Continuity:
o BF0(1)=BF3(0)=0
o BF1(1)=BF0(0)
o BF2(1)=BF1(0)
o BF3(1)=BF2(0)

• Convex Hull Containment:
o BF0(u), BF1(u), BF2(u), BF3(u)≥1, for all 0≤u≤1.

• Interpolation:
o BF0(0)=BF2(0)=BF3(0)=0
o BF0(1)=BF1(1)=BF3(1)=0
o BF1(0)=1
o BF2(1)=1

 

If we translate all the control points by the same vector q, the 
position of the new point at the value u will just be the position 
of the old value at u, translated by q:



Blending Functions
Properties:

• Translation Commutativity:
o BF0(u)+ BF1(u)+ BF2(u)+ BF3(u)=1, for all 0≤u≤1.

• Continuity:
o BF0(1)=BF3(0)=0
o BF1(1)=BF0(0)
o BF2(1)=BF1(0)
o BF3(1)=BF2(0)

• Convex Hull Containment:
o BF0(u), BF1(u), BF2(u), BF3(u)≥1, for all 0≤u≤1.

• Interpolation:
o BF0(0)=BF2(0)=BF3(0)=0
o BF0(1)=BF1(1)=BF3(1)=0
o BF1(0)=1
o BF2(1)=1

 

If we translate all the control points by the same vector q, the 
position of the new point at the value u will just be the position 
of the old value at u, translated by q:



Comparison: Cardinal vs. Cubic B
Cardinal Splines (t=0) Cubic B-Splines



Blending Functions
Properties:

• Translation Commutativity:
o BF0(u)+ BF1(u)+ BF2(u)+ BF3(u)=1, for all 0≤u≤1.

• Continuity:
o BF0(1)=BF3(0)=0
o BF1(1)=BF0(0)
o BF2(1)=BF1(0)
o BF3(1)=BF2(0)

• Convex Hull Containment:
o BF0(u), BF1(u), BF2(u), BF3(u)≥1, for all 0≤u≤1.

• Interpolation:
o BF0(0)=BF2(0)=BF3(0)=0
o BF0(1)=BF1(1)=BF3(1)=0
o BF1(0)=1
o BF2(1)=1



Blending Functions
Properties:

• Translation Commutativity:
o BF0(u)+ BF1(u)+ BF2(u)+ BF3(u)=1, for all 0≤u≤1.

• Continuity:
o BF0(1)=BF3(0)=0
o BF1(1)=BF0(0)
o BF2(1)=BF1(0)
o BF3(1)=BF2(0)

• Convex Hull Containment:
o BF0(u), BF1(u), BF2(u), BF3(u)≥1, for all 0≤u≤1.

• Interpolation:
o BF0(0)=BF2(0)=BF3(0)=0
o BF0(1)=BF1(1)=BF3(1)=0
o BF1(0)=1

We need to have the curve Pk+1(u) begin where the curve Pk(u) 
ended:



Blending Functions
Properties:

• Translation Commutativity:
o BF0(u)+ BF1(u)+ BF2(u)+ BF3(u)=1, for all 0≤u≤1.

• Continuity:
o BF0(1)=BF3(0)=0
o BF1(1)=BF0(0)
o BF2(1)=BF1(0)
o BF3(1)=BF2(0)

• Convex Hull Containment:
o BF0(u), BF1(u), BF2(u), BF3(u)≥1, for all 0≤u≤1.

• Interpolation:
o BF0(0)=BF2(0)=BF3(0)=0
o BF0(1)=BF1(1)=BF3(1)=0
o BF1(0)=1

We need to have the curve Pk+1(u) begin where the curve Pk(u) 
ended:

Since this equation has to hold true 
regardless of the values of pk, the 
conditions on the left have to be true



Comparison: Cardinal vs. Cubic B
Cardinal Splines (t=0) Cubic B-Splines



Comparison: Cardinal vs. Cubic B
Cardinal Splines (t=0) Cubic B-Splines



Comparison: Cardinal vs. Cubic B
Cardinal Splines (t=0) Cubic B-Splines



Blending Functions
Properties:

• Translation Commutativity:
o BF0(u)+ BF1(u)+ BF2(u)+ BF3(u)=1, for all 0≤u≤1.

• Continuity:
o BF0(1)=BF3(0)=0
o BF1(1)=BF0(0)
o BF2(1)=BF1(0)
o BF3(1)=BF2(0)

• Convex Hull Containment:
o BF0(u), BF1(u), BF2(u), BF3(u)≥0, for all 0≤u≤1.

• Interpolation:
o BF0(0)=BF2(0)=BF3(0)=0
o BF0(1)=BF1(1)=BF3(1)=0
o BF1(0)=1



Blending Functions
Properties:

• Translation Commutativity:
o BF0(u)+ BF1(u)+ BF2(u)+ BF3(u)=1, for all 0≤u≤1.

• Continuity:
o BF0(1)=BF3(0)=0
o BF1(1)=BF0(0)
o BF2(1)=BF1(0)
o BF3(1)=BF2(0)

• Convex Hull Containment:
o BF0(u), BF1(u), BF2(u), BF3(u)≥0, for all 0≤u≤1.

• Interpolation:
o BF0(0)=BF2(0)=BF3(0)=0
o BF0(1)=BF1(1)=BF3(1)=0
o BF1(0)=1

This is because a point is inside the convex hull of a collection 
of points if and only if it can be expressed as the weighted 
average of the points, where all the weights are non-negative.



Comparison: Cardinal vs. Cubic B
Cardinal Splines (t=0) Cubic B-Splines
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Comparison: Cardinal vs. Cubic B
Cardinal Splines (t=0) Cubic B-Splines



Blending Functions
Properties:

• Translation Commutativity:
o BF0(u)+ BF1(u)+ BF2(u)+ BF3(u)=1, for all 0≤u≤1.

• Continuity:
o BF0(1)=BF3(0)=0
o BF1(1)=BF0(0)
o BF2(1)=BF1(0)
o BF3(1)=BF2(0)

• Convex Hull Containment:
o BF0(u), BF1(u), BF2(u), BF3(u)≥0, for all 0≤u≤1.

• Interpolation:
o BF0(0)=BF2(0)=BF3(0)=0
o BF0(1)=BF1(1)=BF3(1)=0
o BF1(0)=1
o BF2(1)=1

 



Blending Functions
Properties:

• Translation Commutativity:
o BF0(u)+ BF1(u)+ BF2(u)+ BF3(u)=1, for all 0≤u≤1.

• Continuity:
o BF0(1)=BF3(0)=0
o BF1(1)=BF0(0)
o BF2(1)=BF1(0)
o BF3(1)=BF2(0)

• Convex Hull Containment:
o BF0(u), BF1(u), BF2(u), BF3(u)≥0, for all 0≤u≤1.

• Interpolation:
o BF0(0)=BF2(0)=BF3(0)=0
o BF0(1)=BF1(1)=BF3(1)=0
o BF1(0)=1
o BF2(1)=1

 

Because we want the spline segments 
to satisfy:

• Pk(0)=pk+1

• Pk(1)=pk+2



Comparison: Cardinal vs. Cubic B
Cardinal Splines (t=0) Cubic B-Splines



Summary
• A spline is a piecewise polynomial function whose 

derivatives satisfy some continuity constraints 
across curve junctions.

• Looked at specification for 3 splines:
o Hermite
o Cardinal
o Uniform Cubic B-Spline

   Interpolating, cubic, C1

   Approximating, convex-hull containment,  
   cubic, C2


