Connelly Barnes CS4810: Introduction to Graphics

Acknowledgment: slides by Jason Lawrence, Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin

Parametric Curves and Surfaces

- Part 1: Curves
 - Part 2: Surfaces

Courtesy of C.K. Shene

Curves

- Splines: mathematical way to express curves
- Motivated by "loftsman's spline"
 oLong, narrow strip of wood/plastic
 oUsed to fit curves through specified data points
 oShaped by lead weights called "ducks"
 oGives curves that are "smooth" or "fair"
- Have been used to design:
 oAutomobiles
 oShip hulls
 oAircraft fuselage/wing

Goals

 Some attributes we might like to have: oPredictable/local control oSimple **o**Continuous • We'll satisfy these goals using: **o**Piecewise **o**Polynomials

Many applications in graphics

Animation paths

• Shape modeling

• etc...

Shell (Douglas Turnbull)

What is a Spline in CG?

A spline is a *piecewise polynomial function* whose derivatives satisfy some *continuity constraints* across curve boundaries.

So let's look at what this means...

What is a Spline in CG?

Piecewise: the spline is actually a collection of individual segments joined together.

Polynomial functions: each of these segments is expressed by a polynomial function.

A parametric curve in *d*-dimensions is defined by a collection of 1D functions of one variable that give the coordinates of points on the curve at each value of *u*:

$$\Phi(\mathbf{U}) = \left(\mathbf{X}_{1}(\mathbf{U}), \dots, \mathbf{X}_{d}(\mathbf{U})\right)$$

Note:

A parametric curve is **not** the graph of a function, it is the path traced out as the value of *t* is allowed to change.

Derivatives

If $\Phi(u)=(x(u),y(u))$ is the parametric equation of a curve, the parametric derivative of the curve at a point u_0 is the vector:

$$\Phi'(\mathsf{u}_0) = (\mathsf{x}'(\mathsf{u}_0), \mathsf{y}'(\mathsf{u}_0))$$

which points in a direction tangent to the curve.

Note:

The direction of the derivative is determined by the path that the curve traces out.

The magnitude of the parametric derivative is determined by the tracing speed.

Polynomials

A polynomial in the variable *u* is:

 "An algebraic expression written as a sum of constants multiplied by different powers of a variable."

$$P(u) = a_0 + a_1 u + a_2 u^2 + ... + a_n u^n = \sum_{k=0}^{n} a_k u^k$$

The constant a_k is referred to as the <u>k-th coefficient</u> of the polynomial *P*.

Polynomials (Degree)

$$P(u) = a_0 + a_1u + a_2u^2 + ... + a_nu^n = \sum_{k=0}^{n} a_ku^k$$

A polynomial *P* has <u>degree</u> *n* if when written in canonical form above, the highest exponent is *n* (and *a_n* is nonzero).

Polynomials (Degree)

$$P(u) = a_0 + a_1u + a_2u^2 + ... + a_nu^n = \sum_{k=0}^{n} a_ku^k$$

A polynomial *P* has <u>degree</u> *n* if when written in canonical form above, the highest exponent is *n* (and *a_n* is nonzero).

A polynomial of degree n has n+1 degrees of freedom

Knowing n+1 pieces of information about a polynomial of degree n gives enough information to reconstruct the coefficients

Polynomials (Matrices)

$$P(u) = a_0 + a_1u + a_2u^2 + ... + a_nu^n = \sum_{k=0}^n a_ku^k$$

The polynomial P can be expressed as the matrix multiplication of a column vector and a row vector:

$$P(u) = \begin{pmatrix} u^n & \cdots & u^0 \end{pmatrix} \begin{pmatrix} a_n \\ \vdots \\ a_0 \end{pmatrix}$$

Polynomials (Matrices)

Example:

$$P(\mathbf{u}) = \sum_{k=0}^{n} a_k \mathbf{u}^k$$

If we know the values of the polynomial *P* at *n+1* different values:

$$P(u_0) = p_0, ..., P(u_n) = p_n$$

We can compute the coefficients of *P* by inverting the appropriate matrix:

$$\begin{pmatrix} \mathsf{p}_{0} \\ \vdots \\ \vdots \\ \mathsf{p}_{n} \end{pmatrix}^{\mathsf{n}} \cdots \begin{pmatrix} \mathsf{u}_{0} \end{pmatrix}^{\mathsf{n}} \cdots \begin{pmatrix} \mathsf{u}_{0} \end{pmatrix}^{\mathsf{n}} \\ \vdots \\ \vdots \\ \mathsf{v}_{n} \end{pmatrix}^{\mathsf{n}} \cdots \begin{pmatrix} \mathsf{u}_{n} \end{pmatrix}^{\mathsf{n}} \\ \vdots \\ \mathsf{v}_{n} \end{pmatrix}^{\mathsf{n}} \cdots \begin{pmatrix} \mathsf{u}_{n} \end{pmatrix}^{\mathsf{n}} \\ \vdots \\ \mathsf{v}_{n} \end{pmatrix}^{\mathsf{n}} \cdots \begin{pmatrix} \mathsf{u}_{n} \end{pmatrix}^{\mathsf{n}} \\ \vdots \\ \mathsf{v}_{n} \end{pmatrix}^{\mathsf{n}} \cdots \begin{pmatrix} \mathsf{u}_{n} \end{pmatrix}^{\mathsf{n}} \\ \vdots \\ \mathsf{v}_{n} \end{pmatrix}^{\mathsf{n}} \cdots \begin{pmatrix} \mathsf{u}_{n} \end{pmatrix}^{\mathsf{n}} \\ \vdots \\ \mathsf{v}_{n} \end{pmatrix}^{\mathsf{n}} \cdots \begin{pmatrix} \mathsf{u}_{n} \end{pmatrix}^{\mathsf{n}} \\ \vdots \\ \mathsf{v}_{n} \end{pmatrix}^{\mathsf{n}} \cdots \begin{pmatrix} \mathsf{u}_{n} \end{pmatrix}^{\mathsf{n}} \\ \mathsf{v}_{n} \end{pmatrix}^{\mathsf{n}}$$

Polynomials (Matrices)

Example:

$$P(\mathbf{u}) = \sum_{k=0}^{n} a_{k} \mathbf{u}^{k}$$

So, if we are given the values of the polynomial *P* at the n+1 positions $u_0, ..., u_n$, we can compute the value of *P* at any position *u* by solving:

$$P(\mathbf{u}) = (\mathbf{u}^{n} \cdots \mathbf{u}^{0}) \begin{pmatrix} (\mathbf{u}_{0})^{n} \cdots (\mathbf{u}_{0})^{0} \\ \vdots & \ddots & \vdots & \vdots \\ (\mathbf{u}_{n})^{n} \cdots (\mathbf{u}_{n})^{0} \\ \vdots & \vdots \\ p_{n} \\ f \end{pmatrix}$$

Parametric Polynomial Curves

 A parametric polynomial curve of degree n in d dimensions is a collection of d polynomials, each of which is of degree no larger than n:

$$\Phi(\mathbf{u}) = \left(\mathbf{x}_{1}(\mathbf{u}) = \sum_{k=0}^{n} a_{1,k} \mathbf{u}^{k}, ..., \mathbf{x}_{d}(\mathbf{u}) = \sum_{k=0}^{n} a_{d,k} \mathbf{u}^{k} \frac{1}{2}\right)$$

Parametric Polynomial Curves

Examples:

- When x(u)=u, the curve is just the graph of y(u).
- Different parametric equations can trace out the same curve.
- As the degree gets larger, the complexity of the curve increases.

<u>Goal</u>:

Given a collection of *m* points in *d* dimensions: $\{p_1 = (x_{1,1}, ..., x_{1,d}), ..., p_m = (x_{m,1}, ..., x_{m,d})\}$ define a parametric curve that passes through (or near) the points

Direct Approach:

Solve for the *m* coefficients of a parametric polynomial curve of degree *m*-1, passing through the points.

Direct Approach:

Solve for the *m* coefficients of a parametric polynomial curve of degree *m-1*, passing through the points.

Limitations:

- No local control
- As the number of points increases, the dimension gets larger, and the curve oscillates more.

Approach:

Approach:

Approach:

Approach:

Approach:

Piecewise parametric polynomials

Approach:

Fit low-order polynomials to groups of points so that the combined curve passes through (or near) the points while providing:

- oLocal Control:
 - »Individual curve segments are defined using only local information

oSimplicity

»Curve segments are low-order polynomials

Piecewise parametric polynomials

Approach:

Fit low-order polynomials to groups of points so that the combined curve passes through (or near) the points while providing:

- oLocal Control:
 - »Individual curve segments are defined using only local information
- oSimplicity

»Curve segments are low-order polynomials

- oContinuity/Smoothness
 - »How do we guarantee smoothness at the joints?

Continuity/Smoothness

Continuity:

Within the parameterized domain, the polynomial functions are continuous and smooth.

The derivatives of our polynomial functions must satisfy continuity constraints across the curve boundaries.

Continuity/Smoothness

- Parametric continuity: derivatives of the two curves are *equal* where they meet.
- C⁰ means two curves just meet
- C¹ means 1st derivatives equal
- C² means both 1st and 2nd derivates equal

Continuity/Smoothness

Geometric continuity: derivatives of the two curves are proportional (i.e. point in the same direction) where they meet.

- G⁰ means two curves just meet
- G¹ means G⁰ and 1st derivatives proportional
- G² means G¹ and 2nd derivatives proportional
- Parametric continuity used more frequently than geometric.

What is a Spline in CG?

A spline is a *piecewise polynomial function* whose derivatives satisfy some *continuity constraints* across curve boundaries.

What is a Spline in CG?

A spline is a *piecewise polynomial function* whose derivatives satisfy some *continuity constraints* across curve boundaries.

Overview

- What is a Spline?
- Specific Examples:
 oHermite Splines
 oCardinal Splines

oUniform Cubic B-Splines

 Comparing Cardinal Splines to Uniform Cubic B-Splines

Specific Example: Hermite Splines

- Interpolating piecewise *cubic* polynomial
- Specified with:
 oA pair of control points
 oTangent at each control point
- Iteratively construct the curve between adjacent end points

 p_3

 p_2

Specific Example: Hermite Splines

- Interpolating piecewise *cubic* polynomial
- Specified with:
 oA pair of control points
 oTangent at each control point
- Iteratively construct the curve between adjacent end points

- Interpolating piecewise *cubic* polynomial
- Specified with:
 oA pair of control points
 oTangent at each control point
- Iteratively construct the curve between adjacent end points

- Interpolating piecewise *cubic* polynomial
- Specified with:
 oA pair of control points
 oTangent at each control point
- Iteratively construct the curve between adjacent end points

- Interpolating piecewise *cubic* polynomial
- Specified with:
 oA pair of control points
 oTangent at each control point
- Iteratively construct the curve between adjacent end points

- Interpolating piecewise *cubic* polynomial
- Specified with:
 oA pair of control points
 oTangent at each control point
- Iteratively construct the curve between adjacent end points

- Interpolating piecewise *cubic* polynomial
- Specified with:
 oA pair of control points
 oTangent at each control point
- Iteratively construct the curve between adjacent end points

Because the end-points of adjacent curves share the same position and derivatives, the Hermite spline has C^1 continuity.

- Let $P_k(u) = (P_{k,X}(u), P_{k,Y}(u))$ with $0 \le u \le 1$ be a parametric cubic point function for the curve section between control points p_k and p_{k+1}
- Boundary conditions are:

o $P_k(0) = p_k$ **o** $P_k(1) = p_{k+1}$ **o** $P_k'(0) = Dp_k$ **o** $P_k'(1) = Dp_{k+1}$

• Let $P_k(u) = (P_{k,X}(u), P_{k,Y}(u))$ with $0 \le u \le 1$ be a parametric cubic point function for the curve section between control points p_k and p_{k+1}

 $Dp_k \quad P_k \quad Dp_{k+1}$

 p_{k+1}

- Boundary conditions are: $oP_k(0) = p_k$ $oP_k(1) = p_{k+1}$ $oP_k'(0) = Dp_k$ $oP_k'(1) = Dp_{k+1}$
- Solve for the coefficients of the polynomials $P_{k,X}(u)$ and $P_{k,Y}(u)$ that satisfy the boundary condition

We can express the polynomials:

- $P(u) = au^3 + bu^2 + cu + d$
- $P'(u) = 3au^2 + 2bu + c$

using the matrix representations:

$$P(u) = \begin{bmatrix} u^{3}u^{2}u & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \qquad P'(u) = \begin{bmatrix} 3u^{2} 2u & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

We can express the polynomials:

- $P(u) = au^3 + bu^2 + cu + d$
- $P'(u) = 3au^2 + 2bu + c$

using the matrix representations:

$$P(u) = \begin{bmatrix} u^{3}u^{2}u & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \quad P'(u) = \begin{bmatrix} 3u^{2} 2u & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

By abuse of notation, we will think of the coefficients a, b, c, and d as 2-vectors rather than scalars so that P is a function taking values in 2D.

Given the matrix representations:

$$P(u) = \begin{bmatrix} u^{3}u^{2}u & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \qquad P'(u) = \begin{bmatrix} 3u^{2}2u & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

Given the matrix representations:

$$P(u) = \begin{bmatrix} u^{3}u^{2}u & 1 \\ c \\ d \end{bmatrix} \qquad P'(u) = \begin{bmatrix} 3u^{2}2u & 1 & 0 \\ c \\ d \end{bmatrix} \qquad \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

we can express the values at the end-points as:

$$p_{k} = P(0) = \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \qquad Dp_{k} = P'(0) = \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$
$$p_{k+1} = P(1) = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \qquad Dp_{k+1} = P'(1) = \begin{bmatrix} 3 & 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

We can combine the equations

into

$$p_{k} = P(0) = \begin{bmatrix} 0 & 0 & 0 & 1 \\ c \\ d \end{bmatrix} \qquad Dp_{k} = P'(0) = \begin{bmatrix} 0 & 0 & 1 & 0 \\ c \\ d \end{bmatrix}$$
$$p_{k+1} = P(1) = \begin{bmatrix} 1 & 1 & 1 & 1 \\ c \\ d \end{bmatrix} \qquad Dp_{k+1} = P'(1) = \begin{bmatrix} 3 & 2 & 1 & 0 \\ c \\ d \end{bmatrix}$$
$$Dp_{k+1} = P'(1) = \begin{bmatrix} 3 & 2 & 1 & 0 \\ c \\ d \end{bmatrix}$$
$$a \text{ single matrix expression:}$$

We can combine the equations

$$p_{k} = P(0) = \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \qquad Dp_{k} = P'(0) = \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$
$$p_{k+1} = P(1) = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \qquad Dp_{k+1} = P'(1) = \begin{bmatrix} 3 & 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$
into a single matrix expression:

$$\begin{bmatrix} p_k \\ p_{k+1} \\ Dp_k \\ Dp_{k+1} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

Inverting the matrix in the equation:

$$\begin{bmatrix} p_k \\ p_{k+1} \\ Dp_k \\ Dp_{k+1} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

Inverting the matrix in the equation:

$$\begin{bmatrix} p_k \\ p_{k+1} \\ Dp_k \\ Dp_{k+1} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

$$\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix}^{-1} \begin{bmatrix} p_k \\ p_{k+1} \\ Dp_k \\ Dp_{k+1} \end{bmatrix}$$

Inverting the matrix in the equation:

$$\begin{bmatrix} p_k \\ p_{k+1} \\ Dp_k \\ Dp_{k+1} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

$$\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix}^{-1} \begin{bmatrix} p_k \\ p_{k+1} \\ Dp_k \\ Dp_{k+1} \end{bmatrix} = \begin{bmatrix} 2 - 2 & 1 & 1 \\ -3 & 3 - 2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_k \\ p_{k+1} \\ Dp_k \\ Dp_{k+1} \end{bmatrix}$$

Using the facts that:

$$\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 2 - 2 & 1 & 1 \\ -3 & 3 - 2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_k \\ p_{k+1} \\ Dp_k \\ Dp_{k+1} \end{bmatrix}$$

and
$$P(u) = \begin{bmatrix} u^3 u^2 u & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

Using the facts that:

$$\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 2 - 2 & 1 & 1 \\ -3 & 3 - 2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_k \\ p_{k+1} \\ Dp_k \\ Dp_{k+1} \end{bmatrix} \text{ and } P(u) = \begin{bmatrix} u^3 u^2 u & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

$$P(u) = \begin{bmatrix} u^{3}u^{2}u & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_{k} \\ p_{k+1} \\ Dp_{k} \\ Dp_{k+1} \end{bmatrix}$$
parameters M_{Hermite} boundary info

and we can execute matrix multiplies below

$$P(\mathbf{u}) = \begin{bmatrix} \mathbf{u}^{3} \mathbf{u}^{2} \mathbf{u} & 1 \end{bmatrix} \begin{bmatrix} 2 - 2 & 1 & 1 \\ -3 & 3 - 2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{p}_{k} \\ \mathbf{p}_{k+1} \\ \mathbf{D}\mathbf{p}_{k} \\ \mathbf{D}\mathbf{p}_{k+1} \end{bmatrix}$$

to get

$$P(u) = p_{k} (2u^{3} - 3u^{2} + 1) + p_{k+1} (-2u^{3} + 3u^{2}) + Dp_{k} (u^{3} - 2u^{2} + u) + Dp_{k+1} (u^{3} - u^{2})$$

Setting: $oH_0(u) = 2u^3 - 3u^2 + 1$ $oH_1(u) = -2u^3 + 3u^2$ $oH_2(u) = u^3 - 2u^2 + u$ $oH_3(u) = u^3 - u^2$

we can re-write the equation:

P(u) =
$$p_k (2u^3 - 3u^2 + 1) + p_{k+1} (-2u^3 + 3u^2) +$$

Dp_k (u³ - 2u² + u) + Dp_{k+1} (u³ - u²)
as:

 $P(u) = p_k H_0(u) + p_{k+1} H_1(u) + D p_k H_2(u) + D p_{k+1} H_3(u)$

Setting: $oH_0(u) = 2u^3 - 3u^2 + 1$ $oH_1(u) = -2u^3 + 3u^2$ $oH_2(u) = u^3 - 2u^2 + u$ $oH_3(u) = u^3 - u^2$

 $P(u) = p_k H_0(u) + p_{k+1} H_1(u) + D p_k H_2(u) + D p_{k+1} H_3(u)$

 $P(u) = p_k H_0(u) + p_{k+1} H_1(u) + D p_k H_2(u) + D p_{k+1} H_3(u)$

 $P'(u) = p_k H_0'(u) + p_{k+1} H_1'(u) + Dp_k H_2'(u) + Dp_{k+1} H_3'(u)$

- Interpolating piecewise *cubic* polynomial
- Specified with:
 oSet of control points
 oTangent at each control point
- Iteratively construct the curve between adjacent end points

Overview

- What is a Spline?
- Specific Examples:
 oHermite Splines
 oCardinal Splines
 oUniform Cubic B-Splines
- Comparing Cardinal Splines to Uniform Cubic B-Splines

- Interpolating piecewise *cubic* polynomial
- Specified with four control points

 p_{2}

 \mathbf{p}_1

 p_0

 Iteratively construct the curve between middle two points using adjacent points to define tangents

 p_3

 \mathbf{p}_6

 $\mathbf{D}p_{\mathbf{A}}$

 p_5

- Interpolating piecewise cubic polynomial
- Specified with four control points
- Iteratively construct the curve between middle two points using adjacent points to define tangents

- Interpolating piecewise cubic polynomial
- Specified with four control points
- Iteratively construct the curve between middle two points using adjacent points to define tangents

- Interpolating piecewise cubic polynomial
- Specified with four control points
- Iteratively construct the curve between middle two points using adjacent points to define tangents

- Interpolating piecewise *cubic* polynomial
- Specified with four control points
- Iteratively construct the curve between middle two points using adjacent points to define tangents

- Interpolating piecewise *cubic* polynomial
- Specified with four control points
- Iteratively construct the curve between middle two points using adjacent points to define tangents

 \mathbf{D}_{p_7}

- Interpolating piecewise *cubic* polynomial
- Specified with four control points
- Iteratively construct the curve between middle two points using adjacent points to define tangents

- Interpolating piecewise *cubic* polynomial
- Specified with four control points
- Iteratively construct the curve between middle two points using adjacent points to define tangents

- Interpolating piecewise *cubic* polynomial
- Specified with four control points
- Iteratively construct the curve between middle two points using adjacent points to define tangents

- Interpolating piecewise *cubic* polynomial
- Specified with four control points
- Iteratively construct the curve between middle two points using adjacent points to define tangents

- Interpolating piecewise cubic polynomial
- Specified with four control points

 \mathbf{p}_1

 p_0

 Iteratively construct the curve between middle two points using adjacent points to define tangents

 p_3

 p_6

 p_{A}

 p_7

- Interpolating piecewise cubic polynomial
- Specified with four control points
- Iteratively construct the curve between middle two points using adjacent points to define tangents

- Interpolating piecewise *cubic* polynomial
- Specified with four control points
- Iteratively construct the curve between middle two points using adjacent points to define tangents

 \mathbf{D}_{p_7}

- Interpolating piecewise cubic polynomial
- Specified with four control points

 p_0

 Iteratively construct the curve between middle two points using adjacent points to define tangents

 \mathbf{D}_{p_7}

- Let $P_k(u) = (P_{k,X}(u), P_{k,Y}(u))$ with $0 \le u \le 1$ be a parametric cubic point function for the curve section between control points p_k and p_{k+1}
- Boundary conditions are: $oP(0) = p_k$ $oP(1) = p_{k+1}$ $oP'(0) = \frac{1}{2}(1-t)(p_{k+1} - p_{k-1})$ $oP'(1) = \frac{1}{2}(1-t)(p_{k+2} - p_k)$
- Solve for the coefficients of the polynomials $P_{k,X}(u)$ and $P_{k,Y}(u)$ that satisfy the boundary condition

Recall:

The Hermite matrix determines the coefficients of the polynomial from the positions and the derivatives of the end-points

$$P(u) = \begin{bmatrix} u^{3} u^{2} u & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_{k} \\ p_{k+1} \\ Dp_{k} \\ Dp_{k+1} \end{bmatrix}$$
parameters M_{Hermite} boundary info

Using same methods as with Hermite spline, from boundary conditions on previous slide we can get

$$P(u) = \begin{bmatrix} u^{3}u^{2}u & 1 \end{bmatrix} \begin{bmatrix} 2 - 2 & 1 & 1 \\ -3 & 3 - 2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_{k} \\ p_{k+1} \\ s(p_{k+1} - p_{k-1}) \\ s(p_{k+2} - p_{k}) \end{bmatrix}$$

where $s = (1 - t)/2$
 M_{Hermite}

The parameter *t* is called the <u>tension parameter</u>.

• Controls looseness versus tightness of curve

We can express the boundary conditions as a matrix applied to the points p_{k-1} , p_k , p_{k+1} , and p_{k+2} :

$$\begin{vmatrix} p_k \\ p_{k+1} \\ s(p_{k+1} - p_{k-1}) \\ s(p_{k+2} - p_k) \end{vmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -s & 0 & s & 0 \\ 0 & -s & 0 & s \end{bmatrix} \begin{bmatrix} p_{k-1} \\ p_k \\ p_{k+1} \\ p_{k+2} \end{bmatrix}$$

to get

We can express the boundary conditions as a matrix applied to the points p_{k-1} , p_k , p_{k+1} , and p_{k+2} :

$$\begin{vmatrix} p_k \\ p_{k+1} \\ s(p_{k+1} - p_{k-1}) \\ s(p_{k+2} - p_k) \end{vmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -s & 0 & s & 0 \\ 0 & -s & 0 & s \end{bmatrix} \begin{bmatrix} p_{k-1} \\ p_k \\ p_{k+1} \\ p_{k+2} \end{bmatrix}$$

to get

$$P(u) = \begin{bmatrix} u^{3}u^{2}u & 1 \end{bmatrix} \begin{bmatrix} 2 - 2 & 1 & 1 \\ -3 & 3 - 2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -s & 0 & s & 0 \\ 0 - s & 0 & s \end{bmatrix} \begin{bmatrix} p_{k-1} \\ p_{k} \\ p_{k+1} \\ p_{k+2} \end{bmatrix}$$

Multiplying the interior matrices in:

$$P(\mathbf{u}) = \begin{bmatrix} \mathbf{u}^{3} \mathbf{u}^{2} \mathbf{u} & 1 \end{bmatrix} \begin{bmatrix} 2 - 2 & 1 & 1 \\ -3 & 3 - 2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -\mathbf{s} & 0 & \mathbf{s} & 0 \\ 0 & -\mathbf{s} & 0 & \mathbf{s} \end{bmatrix} \begin{bmatrix} \mathbf{p}_{k-1} \\ \mathbf{p}_{k} \\ \mathbf{p}_{k+1} \\ \mathbf{p}_{k+2} \end{bmatrix}$$

we get the Cardinal matrix representation

Combining the matrices in:

$$P(\mathbf{u}) = \begin{bmatrix} \mathbf{u}^{3} \mathbf{u}^{2} \mathbf{u} & 1 \end{bmatrix} \begin{bmatrix} 2 - 2 & 1 & 1 \\ -3 & 3 - 2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -\mathbf{s} & 0 & \mathbf{s} & 0 \\ 0 - \mathbf{s} & 0 & \mathbf{s} \end{bmatrix} \begin{bmatrix} \mathbf{p}_{k-1} \\ \mathbf{p}_{k} \\ \mathbf{p}_{k+1} \\ \mathbf{p}_{k+2} \end{bmatrix}$$

we get the Cardinal matrix representation

$$P(\mathbf{u}) = \begin{bmatrix} \mathbf{u}^{3} \mathbf{u}^{2} \mathbf{u} & 1 \end{bmatrix} \begin{bmatrix} -\mathbf{s} & 2-\mathbf{s} & \mathbf{s}-2 & \mathbf{s} \\ 2\mathbf{s} & \mathbf{s}-3 & 3-2\mathbf{s} & -\mathbf{s} \\ -\mathbf{s} & 0 & \mathbf{s} & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{p}_{k-1} \\ \mathbf{p}_{k} \\ \mathbf{p}_{k+1} \\ \mathbf{p}_{k+2} \end{bmatrix}$$
$$M_{Cardinal}$$

Setting:

o $C_0(u) = -su^3 + 2su^2 - su$ **o** $C_1(u) = (2 - s)u^3 + (s - 3)u^2 + 1$ **o** $C_2(u) = (s - 2)u^3 + (3 - 2s)u^2 + su$ **o** $C_3(u) = su^3 - su^2$

Blending Functions

For *s*=0:

Setting: $oC_0(u) = -su^3 + 2su^2 - su$ $oC_1(u) = (2-s)u^3 + (s-3)u^2 + 1$ $oC_2(u) = (s-2)u^3 + (3-2s)u^2 + su$ $oC_3(u) = su^3 - su^2$

Properties:

- $C_0(u) + C_1(u) + C_2(u) + C_3(u) = 1$
- $C_j(u) = C_{3-j}(1-u)$
- $C_0(1) = C_3(0) = 0$

 $P(u) = C_0(u)p_{k-1} + C_1(u)p_k + C_2(u)p_{k+1} + C_3(u)p_{k+2}$

- Interpolating piecewise *cubic* polynomial
- Specified with four control points
- Iteratively construct the curve between middle two points using adjacent points to define tangents

 \mathbf{D}_{p_7}

- Interpolating piecewise cubic polynomial
- Specified with four control points
- Iteratively construct the curve between middle two points using adjacent points to define tangents

Overview

- What is a Spline?
- Specific Examples:
 oHermite Splines
 oCardinal Splines
 oUniform Cubic B-Splines
- Comparing Cardinal Splines to Uniform Cubic B-Splines

- Approximating piecewise *cubic* polynomial
- Specified with four control points

 p_{2}

 \mathbf{p}_1

 p_0

 Iteratively construct the curve around middle two points using adjacent points to define tangents

 p_3

 \mathbf{p}_6

 $\bullet p_4$

 p_5

- Approximating piecewise *cubic* polynomial
- Specified with four control points
- Iteratively construct the curve around middle two points using adjacent points to define tangents

- Approximating piecewise *cubic* polynomial
- Specified with four control points
- Iteratively construct the curve around middle two points using adjacent points to define tangents

- Approximating piecewise *cubic* polynomial
- Specified with four control points
- Iteratively construct the curve around middle two points using adjacent points to define tangents

- Approximating piecewise *cubic* polynomial
- Specified with four control points
- Iteratively construct the curve around middle two points using adjacent points to define tangents

- Approximating piecewise *cubic* polynomial
- Specified with four control points
- Iteratively construct the curve around middle two points using adjacent points to define tangents

- Approximating piecewise *cubic* polynomial
- Specified with four control points
- Iteratively construct the curve around middle two points using adjacent points to define tangents

- Approximating piecewise *cubic* polynomial
- Specified with four control points
- Iteratively construct the curve around middle two points using adjacent points to define tangents

- Approximating piecewise *cubic* polynomial
- Specified with four control points
- Iteratively construct the curve around middle two points using adjacent points to define tangents

- Approximating piecewise *cubic* polynomial
- Specified with four control points
- Iteratively construct the curve around middle two points using adjacent points to define tangents

- Approximating piecewise *cubic* polynomial
- Specified with four control points
- Iteratively construct the curve around middle two points using adjacent points to define tangents

 \mathbf{D}_{p_7}

- Approximating piecewise *cubic* polynomial
- Specified with four control points

 \mathbf{p}_1

 p_0

 Iteratively construct the curve around middle two points using adjacent points to define tangents

 p_3

 p_7

 p_{A}

- Approximating piecewise *cubic* polynomial
- Specified with four control points
- Iteratively construct the curve around middle two points using adjacent points to define tangents

 \mathbf{D}_{p_7}

- Let $P_k(u) = (P_{k,X}(u), P_{k,Y}(u))$ with $0 \le u \le 1$ be a parametric cubic point function for the curve section around the control points p_k and p_{k+1}
- Boundary conditions are: $oP(0) = 1/6(p_{k-1}+4p_k+p_{k+1})$ $oP(1) = 1/6(p_k+4p_{k+1}+p_{k+2})$ $oP'(0) = 1/2(1-t)(p_{k+1}-p_{k-1})$ P_{k-1} $oP'(1) = 1/2(1-t)(p_{k+2}-p_k)$

• Solve for the coefficients of the polynomials $P_{k,X}(u)$ and $P_{k,Y}(u)$ that satisfy the boundary condition

Using same methods as with Hermite spline, from boundary conditions on previous slide we can get

$$P(u) = \begin{bmatrix} u^{3}u^{2}u & 1 \end{bmatrix} \begin{bmatrix} 2 - 2 & 1 & 1 \\ -3 & 3 - 2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \frac{1}{6} \begin{bmatrix} p_{k-1} + 4p_{k} + p_{k+1} \\ p_{k} + 4p_{k+1} + p_{k+2} \\ 3p_{k+1} - 3p_{k-1} \\ 3p_{k+2} - 3p_{k} \end{bmatrix}$$

We can express the boundary conditions as a matrix applied to the points p_{k-1} , p_k , p_{k+1} , and p_{k+2} :

$$p_{k-1} + 4p_k + p_{k+1} p_k + 4p_{k+1} + p_{k+2} 3p_{k+1} - 3p_{k-1} 3p_{k+2} - 3p_k$$

$$= \begin{bmatrix} 1 & 4 & 1 & 0 \\ 0 & 1 & 4 & 1 \\ -3 & 0 & 3 & 0 \\ 0 & -3 & 0 & 3 \end{bmatrix} \begin{bmatrix} p_{k-1} \\ p_k \\ p_{k+1} \\ p_{k+2} \end{bmatrix}$$

to get

$$\mathsf{P}(\mathsf{u}) = \frac{1}{6} \left[\mathsf{u}^{3} \mathsf{u}^{2} \mathsf{u} \right] 1 \begin{bmatrix} 2 - 2 & 1 & 1 \\ -3 & 3 - 2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 4 & 1 & 0 \\ 0 & 1 & 4 & 1 \\ -3 & 0 & 3 & 0 \\ 0 - 3 & 0 & 3 \end{bmatrix} \begin{bmatrix} \mathsf{p}_{\mathsf{k}-1} \\ \mathsf{p}_{\mathsf{k}} \\ \mathsf{p}_{\mathsf{k}+1} \\ \mathsf{p}_{\mathsf{k}+2} \end{bmatrix}$$

Multiplying the interior matrices in:

$$P(\mathbf{u}) = \frac{1}{6} \begin{bmatrix} \mathbf{u}^{3} \mathbf{u}^{2} \mathbf{u} & 1 \end{bmatrix} \begin{bmatrix} 2 - 2 & 1 & 1 \\ -3 & 3 - 2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 4 & 1 & 0 \\ 0 & 1 & 4 & 1 \\ -3 & 0 & 3 & 0 \\ 0 - 3 & 0 & 3 \end{bmatrix} \begin{bmatrix} \mathbf{p}_{k-1} \\ \mathbf{p}_{k} \\ \mathbf{p}_{k+1} \\ \mathbf{p}_{k+2} \end{bmatrix}$$

we get the cubic B-spline matrix representation

Combining the matrices in:

$$P(\mathbf{u}) = \frac{1}{6} \begin{bmatrix} \mathbf{u}^{3} \mathbf{u}^{2} \mathbf{u} & 1 \end{bmatrix} \begin{bmatrix} 2 - 2 & 1 & 1 \\ -3 & 3 - 2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 4 & 1 & 0 \\ 0 & 1 & 4 & 1 \\ -3 & 0 & 3 & 0 \\ 0 - 3 & 0 & 3 \end{bmatrix} \begin{bmatrix} \mathbf{p}_{k-1} \\ \mathbf{p}_{k} \\ \mathbf{p}_{k+1} \\ \mathbf{p}_{k+2} \end{bmatrix}$$

we get the cubic B-spline matrix representation

$$P(\mathbf{u}) = \frac{1}{6} \begin{bmatrix} \mathbf{u}^{3} \mathbf{u}^{2} \mathbf{u} & 1 \end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{p}_{k-1} \\ \mathbf{p}_{k} \\ \mathbf{p}_{k+1} \\ \mathbf{p}_{k+2} \end{bmatrix}$$

$$M_{BSpline}$$

 $P(u) = B_{0,3}(u)p_{k-1} + B_{1,3}(u)p_k + B_{2,3}(u)p_{k+1} + B_{3,3}(u)p_{k+2}$
Specific Example: Uniform Cubic B-Splines

Setting:

$$oB_{0,3}(u) = 1/6(1-u)^3$$

 $oB_{1,3}(u) = 1/6(3u^3-6u^2+4)$
 $oB_{2,3}(u) = 1/6(-3u^3+3u^2+3u+1)$
 $oB_{3,3}(u) = 1/6(u^3)$

- $B_{0,3}(u) + B_{1,3}(u) + B_{2,3}(u) + B_{3,3}(u) = 1$
- $B_j(u) = B_{3-j}(1-u)$
- $B_{0,3}(1) = B_{3,3}(0) = 0$
- $B_{j,3}(u) \ge 0$

Specific Example: Uniform Cubic B-Splines

- Approximating piecewise *cubic* polynomial
- Specified with four control points
- Iteratively construct the curve around middle two points using adjacent points to define tangents

 \mathbf{D}_{p_7}

Specific Example: Uniform Cubic B-Splines

- Approximating piecewise *cubic* polynomial
- Specified with four control points
- Iteratively construct the curve around middle two points using adjacent points to define tangents

 \mathbf{D}_{p_7}

Overview

- What is a Spline?
- Specific Examples:
 oHermite Splines
 oCardinal Splines
 oUniform Cubic B-Splines
- Comparing Cardinal Splines to Uniform Cubic B-Splines

Blending functions provide a way for expressing the functions $P_k(u)$ as a weighted sum of the four control points p_{k-1} , p_k , p_{k+1} , and p_{k+2} :

- Translation Commutativity:
 - **o** $BF_0(u)$ + $BF_1(u)$ + $BF_2(u)$ + $BF_3(u)$ =1, for all 0≤*u*≤1.

Properties:

- Translation Commutativity:
 - **o** $BF_0(u)$ + $BF_1(u)$ + $BF_2(u)$ + $BF_3(u)$ =1, for all 0≤*u*≤1.

If we translate all the control points by the same vector *q*, the position of the new point at the value *u* will just be the position of the old value at *u*, translated by *q*:

Properties:

Translation Commutativity:

o $BF_0(u)$ + $BF_1(u)$ + $BF_2(u)$ + $BF_3(u)$ =1, for all 0≤*u*≤1.

If we translate all the control points by the same vector *q*, the position of the new point at the value *u* will just be the position of the old value at *u*, translated by *q*:

 $Q_{k}(u) = BF_{0}(u)(q + p_{k-1}) + BF_{1}(u)(q + p_{k}) + BF_{2}(u)(q + p_{k+1}) + BF_{3}(u)(q + p_{k+2})$

Properties:

Translation Commutativity:

o $BF_0(u)$ + $BF_1(u)$ + $BF_2(u)$ + $BF_3(u)$ =1, for all 0≤*u*≤1.

If we translate all the control points by the same vector q, the position of the new point at the value u will just be the position of the old value at u, translated by q:

 $Q_{k}(u) = BF_{0}(u)(q + p_{k-1}) + BF_{1}(u)(q + p_{k}) + BF_{2}(u)(q + p_{k+1}) + BF_{3}(u)(q + p_{k+2})$ = $(BF_{0}(u) + BF_{1}(u) + BF_{1}(u) + BF_{1}(u))(q + P_{k}(u))$

Properties:

Translation Commutativity:

o $BF_0(u)$ + $BF_1(u)$ + $BF_2(u)$ + $BF_3(u)$ =1, for all 0≤*u*≤1.

If we translate all the control points by the same vector *q*, the position of the new point at the value *u* will just be the position of the old value at *u*, translated by *q*:

 $\begin{aligned} Q_{k}(u) &= \mathsf{BF}_{0}(u)(q + p_{k-1}) + \mathsf{BF}_{1}(u)(q + p_{k}) + \mathsf{BF}_{2}(u)(q + p_{k+1}) + \mathsf{BF}_{3}(u)(q + p_{k+2}) \\ &= (\mathsf{BF}_{0}(u) + \mathsf{BF}_{1}(u) + \mathsf{BF}_{1}(u) + \mathsf{BF}_{1}(u))(q + P_{k}(u)) \\ &= q + \mathsf{P}_{k}(u) \end{aligned}$

- Translation Commutativity: • $BF_0(u) + BF_1(u) + BF_2(u) + BF_3(u) = 1$, for all $0 \le u \le 1$.
- Continuity:

```
o BF_0(1)=BF_3(0)=0
```

```
o BF_1(1) = BF_0(0)
```

```
o BF_2(1) = BF_1(0)
```

```
o BF_3(1) = BF_2(0)
```

Properties:

- Translation Commutativity: • $BF_0(u) + BF_1(u) + BF_2(u) + BF_3(u) = 1$, for all $0 \le u \le 1$.
- Continuity:
 - **o** $BF_0(1)=BF_3(0)=0$
 - **o** $BF_1(1)=BF_0(0)$
 - **o** $BF_2(1) = BF_1(0)$
 - **o** $BF_3(1)=BF_2(0)$

We need to have the curve $P_{k+1}(u)$ begin where the curve $P_k(u)$ ended:

 $0 = \mathsf{P}_{k+1}(0) - \mathsf{P}_{k}(1)$

Properties:

- Translation Commutativity: • $BF_0(u) + BF_1(u) + BF_2(u) + BF_3(u) = 1$, for all $0 \le u \le 1$.
- Continuity:
 - **o** $BF_0(1)=BF_3(0)=0$
 - **o** $BF_1(1) = BF_0(0)$
 - **o** $BF_2(1) = BF_1(0)$
 - **o** $BF_3(1) = BF_2(0)$

Since this equation has to hold true regardless of the values of p_k , the conditions on the left have to be true

We need to have the curve $P_{k+1}(u)$ begin where the curve $P_k(u)$ ended:

 $P_{k}(u) = BF_{0}(u)p_{k-1} + BF_{1}(u)p_{k} + BF_{2}(u)p_{k+1} + BF_{3}(u)p_{k+2}$

- Translation Commutativity: • $BF_0(u) + BF_1(u) + BF_2(u) + BF_3(u) = 1$, for all $0 \le u \le 1$.
- Continuity:

```
o BF_0(1)=BF_3(0)=0
```

```
o BF_1(1) = BF_0(0)
```

```
o BF_2(1) = BF_1(0)
```

```
o BF_3(1) = BF_2(0)
```

Properties:

- Translation Commutativity: • $BF_0(u) + BF_1(u) + BF_2(u) + BF_3(u) = 1$, for all $0 \le u \le 1$.
- Continuity:
 - **o** $BF_0(1)=BF_3(0)=0$
 - **o** $BF_1(1) = BF_0(0)$
 - **o** $BF_2(1) = BF_1(0)$
 - **o** $BF_3(1) = BF_2(0)$
- Convex Hull Containment: • $BF_0(u)$, $BF_1(u)$, $BF_2(u)$, $BF_3(u) \ge 0$, for all $0 \le u \le 1$.

This is because a point is inside the convex hull of a collection of points if and only if it can be expressed as the weighted average of the points, where all the weights are non-negative.

- Translation Commutativity:
- **o** $BF_0(u)$ + $BF_1(u)$ + $BF_2(u)$ + $BF_3(u)$ =1, for all 0≤*u*≤1.
- Continuity:
- **o** $BF_0(1) = BF_3(0) = 0$
- **o** $BF_1(1) = BF_0(0)$
- **o** $BF_2(1) = BF_1(0)$
- **o** $BF_3(1) = BF_2(0)$
- Convex Hull Containment:
- **o** $BF_0(u)$, $BF_1(u)$, $BF_2(u)$, $BF_3(u)$ ≥0, for all 0≤*u*≤1.
- Interpolation:
- **o** $BF_0(0) = BF_2(0) = BF_3(0) = 0$
- **o** $BF_0(1) = BF_1(1) = BF_3(1) = 0$
- **o** $BF_1(0)=1$
- **o** *BF*₂(1)=1

Properties:

- Translation Commutativity:
- **o** $BF_0(u)$ + $BF_1(u)$ + $BF_2(u)$ + $BF_3(u)$ =1, for all 0≤*u*≤1.
- Continuity:
- **o** $BF_0(1) = BF_3(0) = 0$
- **o** $BF_1(1) = BF_0(0)$
- **o** $BF_2(1) = BF_1(0)$
- **o** $BF_3(1) = BF_2(0)$
- Convex Hull Containment:
- **o** $BF_0(u)$, $BF_1(u)$, $BF_2(u)$, $BF_3(u)$ ≥0, for all 0≤*u*≤1.
- Interpolation:
- **o** $BF_0(0) = BF_2(0) = BF_3(0) = 0$
- **o** $BF_0(1) = BF_1(1) = BF_3(1) = 0$
- **o** $BF_1(0)=1$
- o *BF*₂(1)=1

Because we want the spline segments to satisfy:

•
$$P_k(0) = p_{k+1}$$

•
$$P_k(1) = p_{k+2}$$

Summary

 A spline is a *piecewise polynomial function* whose derivatives satisfy some *continuity constraints* across curve junctions.

- Looked at specification for 3 splines:
 - **o** Hermite
 - Cardinal \succ Interpolating, cubic, C^1
 - o Uniform Cubic B-Spline

Approximating, convex-hull containment, cubic, C^2