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Introduction 
You Only Look Once, as known as YOLO, is a state-of-the-art, real-time object detection 
system. Especially, YOLO focuses on improving the speed and simplicity of detection tasks. 
Inspired by its imitation of human’s instant perception of visual elements, we want to 
reimplement a YOLO model on devices with limited computing resources, such as mobile 
phones. We would further like to explore the architecture of YOLO and figure out means to 
optimize its performances, which may help build practical applications regarding this technique. 
In this project, we adopted the compact, Tiny YOLO as our initial model as it is much faster than 
the normal one.  

 
The above figure is the Tiny YOLO architecture we used. 
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Components and Architecture 

 
 
The above figure shows the general architecture of our project. We partially utilized an iOS 
based deep learning framework, which is written in swift, together with Metal to manipulate 
GPU computation resource. We also used OpenCV as an auxiliary method to smooth the 
detection experience. 
 
However, the original framework was too weak to satisfy our requirements and we added and 
modified many parts of it to made the neural network work. 
 
At the very first part, we created a new file format called binary json  to load model 
configurations and weights. Because the training process is extremely time consuming somehow 
unrealistic to do so (pretrain using ImageNet and fine train using VOC 2007 + 2012) and the 
training process itself was somehow tedious,  we wanted to use the presented Darknet trained 
model rather than repeat it from scratch. However, if we converted the original weights into a 
json format, the storage consumption can be extremely high. Thus, we decided to serialize the 
weights and architecture information into a binary json file. This saved a big amount of memory 
on iOS (from 1.5GB to 600MB), and it also reduced the time of loading all the weights from the 
file at the beginning. 
 



As to the model part, we also added a new type of layer called fully connected layer, which was 
not included in the original framework. What’s more, we replaced the original convolutional 
layer with a newly written fast convolutional layer, which proved to be about 30% faster than the 
original layer testing on iPhone. This was realized by excluding redundant data processing 
procedure like flattening matrix and optimizing the logic flow. In addition, we provided support 
for more layer configurations such as negative slope. All these improvements were written using 
Metal shading language. 
 
After adding the above components, we made it possible to run YOLO on an iPhone. Now we 
can integrate it into our workflow. 
 
By using bson utility, we can load the model efficiently. After that, we captured the video 
(stream of frames) from iPhone’s back camera and get each frame of the video. We dispatched 
the image to the YOLO classifier and let it to detect the objects and their locations using 
iPhone’s GPU. We could achieve about 2 fps using purely YOLO neural network to detect 
objects. To get a better performance, we proposed a new method to track the motion between 
sequential frames as an auxiliary way to increase fps. 
 
As the graph shows, we ran two threads. One was responsible for calculating the optical flow 
between pairwise sequential frames. The other one was to send frames to GPU, calculating by 
YOLO. Once the result of GPU had been received and processed, it will send the next request. 
The objective for the former thread was to keep a fps while tracking the bounding box as 
accurate as possible. The target for the latter thread, which communicates with GPU, was to 
correct the bias generated by optical flow as it can not run in real time on iPhone. 

Experiments 
We made experiments on both the ordinary PC server and iPhone. We do experiments on 
ordinary PC server using default configuration the paper provided as a baseline. We compiled 
the YOLO network using darknet (the one that the author of that paper developed) without 
CUDA (we cannot compile with GPU on the server since the server lacked some libraries that 
darknet required). By using the standard YOLO architecture (30 layers) and common CPU, it 
took 7.41 seconds to detect a single image. While using the Tiny YOLO architecture (15 layers) 
and common CPU, it took around 1.55 seconds to finish detecting one image. 
 
On the iPhone device, we adopted a deep learning kit for iOS, leveraging the computational 
power of iPhone GPU (using Metal framework). With the help of that framework, we rebuilt the 
entire Tiny YOLO architecture, using the trained weights provided by the author of the paper. 
Without any optimization of the original code, we made it around 0.75 seconds to detect an 



image. However, this is far too slow than our expectation. We then optimized the original 
framework by rewriting the convolutional layer and the low-level Metal interface. After that, we 
reached the performance at around 0.5 seconds per frame. 

Results 

 
The above three photos were screenshots from iPhone using the application we developed. As 
shown in the pictures, we can use the back camera of iPhone to capture videos and detect object 
in near real time. The detection is quite accurate and robust. 

Conclusion and Future Works 
We mixed deep learning network with openCV optical flow method, to achieve a high 
performance, real-time image classification solution on iOS. We believe this will be extremely 
useful since similar Apps on market still rely on servers to compute and broadcast results, which 
enormously increases servers’ loads and pressure. Meanwhile, it requires fast net speed to 
maintain the strong connection stability and real-time effects. When it comes to videos, this is 
hardly possible. Instead, our work is done entirely on client side and is not limited by different 
network situations.  
 
In the future, we are going to simplify the Tiny YOLO model further to make it more efficient, 
utilizing methods such as deep compression. In addition, we’d like to optimize the GPU part 
codes to get a better performance when running on GPU.  
 


