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1 PROJECT GOAL

The goal of this project was to attempt to implement the deep reinforcement pipeline utilized
in “Playing Atari with Deep Reinforcement Learning"1, proposed in 2013 by Mnih et. al., in
order to teach a reinforcement-learning actor how to play Ms. Pac-Man on an Atari emulator.
Ultimately, our purpose in undertaking this project was to learn both the technical details
outlined in the paper, and the general process of implementing an agent which can play video
games using deep learning techniques.

2 GROUP + CONTRIBUTIONS

Our project group consisted of Prabhat Rayapati (pr2sn), and Zack Verham (zdv8rb). While
ultimately both group members were involved in all aspects of the project, especially when it
came to understanding and implementing the underlying details of the learning agent, Prab-
hat focused on implementing many of the visualization tools used to understand the learning
and decision-making process utilized by the agent, and Zack focused on interfacing the agent
with the OpenAI Gym2 codebase. However, writing the actual code wasn’t the primary hurdle
for this project; rather, understanding the underlying algorithm took the most time, and our
personal contributions on that front were equally split, since comprehension mostly came
about through inter-group discussion and consistent team meetings.

1https://arxiv.org/pdf/1312.5602.pdf
2https://gym.openai.com/
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3 ACHIEVED MILESTONES

1. Connect a decision-making agent with an Atari emulator

2. Implement the essentials of the deep learning architecture proposed in the “Atari Deep
Learning" paper using Keras

3. Incorporate additional learning facilitators utilized in the “Atari Deep Learning" paper
(experience replay, decaying epsilon value, temporally stacked input frames, etc.)

4. Implement a baseline random decision-making agent, compare reward-per-game to
validate that our learner improves over random

4 CHALLENGES

The biggest challenge for us was wrestling with the training time necessary for our deep re-
inforcement learning agents to learn effective policies. Some documents on deep reinforce-
ment learning describe this process taking several days to complete3. This time investment
made it challenging to (a) debug our implementation, since there were certain memory con-
straints which only appeared after thousands of episodes of training, and (b) to tune the
setting of our hyperparameters. The memory bugs in particular constrained the number of
episodes run in our final results. However, we believe that these challenges could be over-
come quite easily if the time constraints of an end-of-semester project were removed.

5 RESULTS

In our final training runs, our deep learning agent and random agent played 2099 and 699
games of Ms. Pac-Man, respectively. Our primary result is that, on average, our learning agent
attains an increasing average reward-per-game over time, while a naive baseline agent which
only makes random decisions generates a non-increasing average reward-per-game. The re-
sults from our random agent are illustrated in Figure 5.1, and the results from our learned
agent are provided in Figure 5.2. While the plots themselves are quite noisy, if the lines of
best fit are magnified, it is clear that our system shows a general increase in reward attained
over time, while a random agent actually shows a decreasing average reward over time (in all
test runs, the random agent showed a non-increasing average reward).
The number of timesteps survived increased slightly for both our random and learned agents.
However, the increase was trivial (on the scale of an additional 10 frames survived at the end
of training) and was likely due to the stochasticity of the simulation. The lack of increased
survival time, coupled with the increase in reward collection, indicates that our learner has
attained some notion of efficiency in reward collection, but has not yet learned ghost eva-
sion. Qualitatively, we were able to confirm this by identifying that our learned model would
consistently learn to try to reach the corners of the game space, where the large invincibility

3http://karpathy.github.io/2016/05/31/rl/
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pellets are located. Upon reaching this pellet, the agent would often stay in the same cor-
ner, allowing vulnerable ghosts to attack it, generating more reward as it defeated the ghosts.
However, in our current results, the agent has not learned the correct policy after its invinci-
bility wears off, meaning that it continues to stay in the corner and quickly loses after reaching
the first invincibility pellet.
Additionally, similar to other deep reinforcement learning projects, we implemented a script
which live-plots our network outputs as video which aligns with recordings of the output
from the emulator. These videos confirm that our q-value is representative of expected accu-
mulated reward (i.e. the q-values jump up when the agent is about to collect a large reward),
and the maximum network output aligns with the action which the agent is about to take. An
example of these videos is included in our final submission4.

Figure 5.1: Random Agent Results

6 ARCHITECTURAL IMPLEMENTATION DETAILS

We followed the implementation details proposed in the original (Mnih et. al., 2013) paper,
with some minor hyperparameter modifications. The specifics of our implementation are
provided below:

• Data Preprocessing: Before being passed into our network, each input frame is con-
verted to grayscale and cropped to an 84x84 image. Four consecutive preprocessed im-
ages are stacked on top of each other to build a single representation of the game state

4Example videos are located in the visualizations directory in our submission
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Figure 5.2: Learning Agent Results

which is subsequently passed into the network. An example of this process is provided
in Figure 6.1.

• Deep Learning Architecture: The implementation utilized in the paper has three hid-
den layers and one output layer. Utilizing the architectural description from the pa-
per, “The first hidden layer convolves 16 8x8 filters with stride 4 with the input image
and applies a rectifier nonlinearity. The second hidden layer convolves 32 4x4 filters
with stride 2, again followed by a rectifier nonlinearity. The final hidden layer is fully-
connected and consists of 256 rectifier units. The output layer is a fully-connected lin-
ear layer with a single output for each valid action." It is important to note that, in
the implementation utilized by the paper, the deep learning architecture actually si-
multaneously outputs Q-Values for every possible action the actor can take, given the
input state. This differs slightly from the classical Q-Learning model, which generates
Q-Values for (state, action) tuples.

• Loss: Algorithm 1 in the original paper describes the details of the loss function utilized,
which will be omitted here for brevity. However, it is important to note that this loss
function is applied only to the output of the taken action, an important caveat which
caused us some difficulty. In our multi-output Q-Network, this implies that the ground-
truth for non-taken actions utilized during backpropagation is actually the predicted
value itself, making the loss zero and preventing the backpropagation of any error.

• Hyperparameters: We utilized an epsilon value which started at 1.0 and decreased to
a final value of 0.1 uniformly over a period of 100000 frames. Our experience replay
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capacity was set to 1000000, we utilized a minibatch size of 32, and a learning rate of 0.1.
The original paper describes a frame-skipping process to increase the number of games
played by the agent; we implemented this feature and set our frame-skip parameter to
4 (the value used in the paper).

Figure 6.1: Example of our network input (before and after preprocessing)

7 MISCELLANEOUS OBSERVATIONS

In future deep learning projects, we highly recommend the utilization of the OpenAI gym.
The interface is clean and easy to use, and it includes many diverse reinforcement learning
problems which would make for very interesting projects. In our case, it simplified emulator
setup dramatically.

8 CONCLUSION

In our project, we implemented the core ideas proposed in the “Playing Atari with Deep Rein-
forcement Learning" paper, and saw that our learner performs better than a random baseline.
This result in and of itself is significant: given nothing but the input pixels from the screen, we
have constructed a reinforcement learning agent which can learn something about playing
Ms. Pac-Man. However, in our current results, our agent still performs worse than a human
would. We propose that, with continued work on hyperparameter tuning and the utilization
of longer training times on gpu-equipped machines, we should continue to see improvement
in our agent’s decision-making policy, with the hope that our implementation may eventu-
ally perform as well as humans.

We would allow our final writeup to appear on the course website.
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