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Figure 1: A multiscale tapestry represents an input video as a seamless and zoomable summary image which can be used to navigate through the video. This visualization
eliminates hard borders between frames, providing spatial continuity and also continuous zooms to finer temporal resolutions. This figure depicts three discrete scale levels for
the film Elephants Dream (Courtesy of the Blender Foundation). The lines between each scale level indicate the corresponding domains between scales. See the video to view the
continuous zoom animation between the scales. For Copyright reasons, the print and electronic versions of this paper contain different imagery in Figures 1, 4, 6, and 7.

Abstract

We present a novel approach for summarizing video in the form
of a multiscale image that is continuous in both the spatial do-
main and across the scale dimension: There are no hard borders
between discrete moments in time, and a user can zoom smoothly
into the image to reveal additional temporal details. We call these
artifacts tapestries because their continuous nature is akin to me-
dieval tapestries and other narrative depictions predating the advent
of motion pictures. We propose a set of criteria for such a sum-
marization, and a series of optimizations motivated by these crite-
ria. These can be performed as an entirely offline computation to
produce high quality renderings, or by adjusting some optimiza-
tion parameters the later stages can be solved in real time, enabling
an interactive interface for video navigation. Our video tapestries
combine the best aspects of two common visualizations, providing
the visual clarity of DVD chapter menus with the information den-
sity and multiple scales of a video editing timeline representation.
In addition, they provide continuous transitions between zoom lev-
els. In a user study, participants preferred both the aesthetics and
efficiency of tapestries over other interfaces for visual browsing.

CR Categories: I.3.6 [Computing Methodologies]: Computer
Graphics—Methodology and Techniques

Keywords: Patch-based synthesis, video summarization

1 Introduction

In recent years, the number of videos available in digital form
has increased dramatically. However, due to the large volumes of
data involved, it is difficult for a user to locate a scene in even
a single video, or quickly comprehend the content of a video by
looking at an overview. For example, a DVD film typically contains
200,000 frames, and there may even be 20 times more raw footage
before it is edited into its final form [Bernstein 1994]. To help
people efficiently browse, comprehend, and navigate video, both
commercial software and research systems have explored how to
best summarize video in the form of static images.

In the commercial domain, video navigation tools include simple
scene selection interfaces, such as are found in DVD menus, and
timelines that contain a sequence of images, as found in video
editing software such as Adobe Premiere. In the case of DVD
menus, a selection of thumbnails representing pre-selected scenes
are shown to the user. In the case of timelines, one thumbnail
may be shown for every shot of the video, or a sequence of
thumbnails may be shown at spatial intervals corresponding linearly
to the times of each scene. Each of these representations incurs
a tradeoff: DVD menus are easily comprehensible, but they may
be incomplete, omitting important temporal details. Video editing
timelines are more complete because they contain more of the
details – every shot is represented as a separate block – and they
support zooming in to view more temporal detail, but they usually
lack coherent transitions between zoom levels, and can be visually
confusing when viewed at coarser zoom levels.

In this paper, we present a novel approach to visualize timelines
and browse through scenes of a video that attempts to provide
the comprehensibility of a DVD menu with the completeness and
ease of navigation of a video editing timeline. Previous work in
video summarization has mostly focused on selecting important
frames – called “keyframes” – and arranging them in layouts with
hard borders. However, such systems generally ignore one or
more critical aspects of the user experience in browsing through
video. First, the use of hard borders between rectangular frames



(a) Grail tapestry (b) Bayeux tapestry
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Figure 2: Our method is inspired by artistic techniques depicting
action without hard borders, such as medieval tapestries (a-b),
Roman friezes (c), and color scripts for cinematography (d).

is an artifact of how film has historically been represented, and
is not necessarily an optimal visual representation of video. The
hard borders between frames introduce additional distracting and
dominant image content, making discrete representations harder
to visually parse. In contrast, our approach is inspired by the
techniques that artists have historically used to depict action in
a continuous manner without hard borders, in art forms such
as medieval tapestries, architectural friezes, and color scripts for
cinematography (Figure 2). Second, for applications like video
editing, it should be possible to present a summary online, in real-
time. Third, we believe users should be able to zoom in to a
summary to expose fine-scale temporal details. As we have argued
that abrupt discontinuities in the spatial layout are objectionable,
we also believe that abrupt discontinuities in temporal zooming are
also undesirable, because they can be disorienting to the viewer.
Animating the transitions between scales helps the user assimilate
the context and orientation of the transition [Cockburn et al. 2008].
While some previous systems satisfy some of our goals, no system
satisfies all of them.

We present a unified framework for creating seamless summaries of
video that allow the user to continuously zoom in to expose more
temporal detail. We call these summaries multiscale tapestries. An
example tapestry is shown in Figure 1.

Our contributions are: A set of criteria for evaluating the qualities
of an optimal summary; summaries seamlessly blended across their
width with implicit region-of-interest preservation; a multiscale
representation with continuous zoom across temporal scales, and;
rendering of tapestries in real-time with limited precomputation.

1.1 Criteria

To construct our multiscale video tapestries, we propose four
important qualities that are desirable in a visual summary of video,
in rough priority order:

(a) Chiu et al. [2004]

(b) Uchihashi et al. [1999]

(c) Wang et al. [2007]

Figure 3: Example arrangements in previous work: (a) Voronoi
layout of keyframes, (b) rectangular layout, (c) soft-border collage.

First, it should be coherent, depicting only visual entities that
appear in the source video. This criterion motivates our desire to
eliminate frame boundaries, since such structures do not exist in
the source contents.

Second, it should be roughly chronological, presenting events in a
spatial order that corresponds to their temporal order in the film.
In our work as in most other such interfaces, we use a left-to-right
ordering corresponding to Roman language reading order, but top-
to-bottom and right-to-left orderings are trivially feasible. Although
our horizontal layout doesn’t fit all window shapes, it streamlines
navigation by naturally mapping “left” and “right” to “before” and
“after.”

Third, it should be continuous in scale space, with visually smooth
transitions from coarse to fine temporal scales.

Fourth, it should be complete, containing as much of the unique
visual content in the source video as possible given the available
pixel budget. Since our tapestries have vastly fewer pixels than the
source video, we prioritize the most unique content over repeated
content.

We observe that two of these desiderata for tapestries, coherence
and completeness, have been previously formalized using the no-
tion of bidirectional similarity (BDS), and successfully applied to
the related problems of image collage and video skims [Simakov
et al. 2008]. Furthermore, recent methods for approximating bidi-
rectional similarity have made such image synthesis algorithms
practical for high-quality interactive use [Barnes et al. 2009]. Thus,
our system builds upon the synthesis algorithm of Simakov et al.
and search algorithm of Barnes et al. as its foundations, applying
additional constraints and energy terms to impose the remaining
criteria of chronological ordering and scale-space continuity.

1.2 Overview

After discussing related work (Section 2), we first review the
concept of bidirectional similarity in the context of a single-scale
tapestry (Section 3). Our multi-scale approach is then divided into
three stages, for tractability. In the first stage (Section 4.1), our
system selects a set of representative keyframes at each zoom scale.
In the second stage (Section 4.2), static tapestries are constructed
at each scale. In the third and final stage (Section 4.3), our system
interpolates zoom animations between the discrete scales. We then
present implementation details and results (Section 5), and the
findings of our user study (Section 6). Finally, we will revisit how
our criteria are resolved in each stage, limitations, and future work
(Section 7).

2 Related work

There is a large body of work on the problems of video summariza-
tion and navigation. A recent survey paper [Truong and Venkatesh
2007] comprehensively reviews these techniques, which can be
broadly divided into two classes: video skims, and image sum-
maries. Video skims [Smith and Kanade 1995; Smith and Kanade
1997; Ma and Zhang 2002; Kang et al. 2006] summarize a longer
video with a shorter summary video. These skims can be useful
for navigation, but they potentially require that the user observe the
video for a long time, and do not naturally exploit wide screen real
estate as do the timelines or scene selection interfaces that we en-
vision. Therefore, we restrict further discussion to methods that
create static image summaries.

An important early work on visualizing video is [Davis 1995]. This
work used hierarchies of summarization and annotation icons to
represent collections of video, and like our work was inspired by
comic art and paintings. The work also introduced new video



representations, such as the videogram, a summary image showing
only the center vertical line from each frame, and time line icons:
3D stacks visualizing the spacetime volume.

Other early work on summarizing video as images focused on
methods for selecting the important keyframes to be shown in the
summary. For example, Dementhon et al. [1998] used curve split-
ting in a feature space to determine keyframes, and allowed users to
subdivide finer to expose more temporal detail. Subsequent work
detected keyframes by greedy and global methods that consider
how much change has occurred in various feature spaces, and used
clustering and coverage methods that try to ensure that the summary
represents the same set of content as the original video [Truong and
Venkatesh 2007]. Work on selection of keyframes also often re-
lied on detecting shot boundaries, which is now considered a ma-
ture research area [Kraaij et al. 2004]. In the context of skeletal
animation, Assa et al. [2005] utilized motion capture data to pro-
duce effective visual summaries of human actions. Our approach
does use keyframes to limit computation, but employs a consistent
energy function for keyframe selection and static tapestry compo-
sition. Previous methods such as [Shipman et al. 2003; Wang et al.
2007] have explored using multiple scales of temporal detail, how-
ever, our method is the first to offer continuous zooming between
scales.

Other research has emphasized the importance of the composition
of a static summary, examples of which are seen in Figure 3. For
panoramic videos, Taniguchi et al. [1997] automatically detected
panoramas and key frames, and used an adaptive method to pack
the resulting images to make effective use of space. Comic-
book style layouts [Uchihashi et al. 1999; Boreczky et al. 2000]
employed variation in sizes and tiling patterns of rectangular frames
to create more appealing summaries. For news video, collages
have been used to create more interesting layouts [Christel et al.
2002]. By detecting important regions and using Voronoi diagrams,
Chiu et al. [2004] created non-rectangular, arbitrary layouts which
effectively pack the salient information into a limited space. For
browsing into large numbers of video clips, [Kim et al. 2006]
explored a mosaic representation, where each video is visualized
as a small tile.

In each of these layout approaches, discrete moments in time have
been separated by hard borders. Wang et al. [2007] found that users
prefer video summaries with soft blending between adjacent frames
over hard boundaries. In later work, the soft blending was also ex-
tended to use arbitrary shapes for the layout of the summary [Yang
et al. 2008; Mei et al. 2009]. However, these methods still con-
struct the summary by a sequence of independently motivated steps:
selecting regions of interest within keyframes based on saliency
maps, shot detection, and camera motion detection, extracting and
resizing these keyframes, computing optimal seams, and applying
blending. In contrast, we formulate the optimal summary image
using just three stages with tightly related optimizations. More-
over, our method supports coherent and continuous zoom and can
be computed quickly enough for interactive synthesis.

A number of tools are available for making collages and creating
soft blendings for summaries. Previous work has demonstrated
collage construction using graph cut and gradient domain tech-
niques [Agarwala et al. 2004; Rother et al. 2005; Rother et al.
2006]. Optimal boundaries between collage regions can be de-
tected by graph cuts [Kwatra et al. 2003], minimum cuts, or simply
pasted in the gradient domain without optimization. More recently,
Sivic et al. [2008] showed that by using a large database of images,
photorealistic transitions can be made between abutting images.

Concurrently, [Correa and Ma 2010] have developed a technique for
interactively creating seamless summaries of video. They extract
a panoramic background plate, and compose matted foreground

objects on the background. Unlike our system, their work focuses
more on videos that convey specific actions, and they focus on
interactive authoring and animation facilities. Our work in contrast
focuses on summarizing long films with a fully automatic method,
and we allow for continuous zoom.

We draw inspiration for our tapestries not only from ancient art
but also from the “color scripts” used in animation production.
These sketches, intended to depict the color palette of a film from
beginning to end, are sometimes composed as semi-continuous
strips representing multiple scenes [Hauser 2008]. See Figure 2
for one example.

Our multiscale tapestries are based on the bidirectional similar-
ity summarization approach [Simakov et al. 2008], as it provides
us with a theoretical framework for how to optimally compute a
tapestry of any input video. When employed for image summariza-
tion, this method can merge repetitive or redundant structures and
implicitly defines saliency via uniqueness.

3 Single-scale tapestries

For simplicity, we begin by considering an objective for tapestries at
a single zoom scale. The objective function for the optimal single-
scale tapestry is inspired by the work of Simakov et al. [2008],
which defined an objective function to be minimized for image
retargeting. This objective contains two complementary error
terms, dcomplete and dcohere, which ensure that every patch in the
source image is found in the target image and vice versa. The
complete objective is

dBDS(S,T ) =

dcomplete(S,T )︷ ︸︸ ︷
1

NS
∑
s⊂S

min
t⊂T

D(s, t)+

dcohere(S,T )︷ ︸︸ ︷
1

NT
∑

t⊂T
min
s⊂S

D(s, t) (1)

where S is the source, or original image, T is the target image,
small rectangular image patches s and t are sampled from the
source and target images, and the number of source and target
patches are NS and NT , respectively. The patches are of fixed
size: we use 7x7 patches in our implementation. The distance
D(s, t) is the distance in color space between these square patches:
we use L2 distance in RGB space. When retargeting, the source
image S will have different dimensions than the retargeted image T .
Simakov et al. [2008] also used the same energy function to shorten
videos, by letting S and T represent video volumes of different
dimensions, and s and t represent small space-time patches (boxes).

Our single-scale tapestry approach uses the same definition of op-
timality given by Equation 1, with the following changes to the
defined terms: We start with an input video S with dimensionality
three, to produce a summary image (tapestry) T with dimensional-
ity two. We take image patches s and t, so the sum in dcohere is taken
over all p × p image patches in the target image T , and the sum in
dcomplete is taken over all p × p image patches in every frame of
the source video S. We wish to enforce at least a loose time order-
ing in the final summary, with time advancing approximately from
left to right. This is effected by introducing an additional term to
our distance function D(s, t) between two patches s and t that maps
the time dimension of the video S to the x-axis of the summary T :

D(s, t) = Dcolor(s, t)+α(τs−βxt)
2 (2)

where τs denotes time in the input video, xt denotes horizontal
position in the output tapestry, α is a user parameter that controls
how strictly time must increase linearly from left to right, and β

is a space-time proportionality factor chosen so the right side of
the tapestry T coincides with the last frame of the input video S.
Note that Dcolor is the color space distances between the patches as
described above.



In principle, given an input video S, the best summary T of
a user-specified resolution could be found by optimizing Equa-
tion (1). However, this is in general an NP-hard problem, so ef-
ficient approximations must be introduced to solve it effectively.
Simakov et al. [2008] proposed an iterative, guided algorithm that
starts with an initial guess and iteratively refines T to produce a tar-
get image with minimal error. This iterative algorithm was recently
accelerated by Barnes et al. [2009] to perform image synthesis at
interactive rates. Our implementation relies on these approaches,
but naı̈ve application alone would still be intractable. It would be
inefficient to perform the optimization on the entire input video S,
because in most cases this video cannot even fit in core memory.
Even with sufficient memory, the optimization would be far too
slow even for a preprocessing step, much less a real-time interface.

For this reason, we split the optimization into two stages, starting at
the level of entire frames and then proceeding to the finer level of
image patches within frames. First, we find a subset of keyframes
from the input video that optimizes a frame-level approximation of
the objective (1) over the set of all input frames. This can also be
viewed as clustering over the set of frames. Second, using only
these keyframes as a restricted domain S we optimize Equation 1 at
the level of small image patches. Since the clustering stage is the
bottleneck computation, it can optionally be replaced by a simple
constant-rate sampling of the input frames, or even using manual
frame selection.

4 Multi-scale tapestries

Unfortunately, the formulation of single-scale tapestries described
in the previous section does not incorporate our criterion of conti-
nuity between scales. Indeed, at two different scales, the subsets
of keyframes chosen in the first stage may not even intersect. And
even if they do, we are still faced with the challenge of interpolat-
ing smoothly between two images of different size and significantly
differing content.

Thus, we must modify our objectives to handle multi-scale tapestries,
and add a third stage for synthesizing intermediate tapestries be-
tween scales. In the subsections that follow we describe in detail
each stage of multi-scale tapestry generation. Single-scale tapestry
generation is essentially identical to the first two stages, but without
the subset constraint ensuring that keyframes from each zoom level
are present in the finer zoom levels.

4.1 Keyframe clustering

In our automatic clustering process, we wish to find a fixed number
of key frames n1 for the coarsest level (we use n1 = 24). For finer
levels i = 2,3, . . . ,d, where d is the number of levels to reach a
maximum temporal sampling rate (e.g., 2 fps), we increase the
number of keyframes ni geometrically (ni = ni−1 ∗ρ , where ρ = 2
in our implementation).

Given the objective of Equation (1), we perform our clustering as
an offline precomputation. Suppose we wish to choose the set of
keyframes K at zoom level 1 that minimizes the objective function.
To perform this clustering efficiently we need to be able to evaluate
Equation (1) quickly. Let f1, . . . , fn represent discrete frames from
the input video. We precompute an n × n asymmetric affinity
matrix A, where Ai j is one direction in our objective function (1):

Ai j =
1

N fi

(
∑

s⊂ fi

min
t⊂ f j

Dcolor(s, t)+α(τ fi − τ f j )
2

)
(3)

Dcolor represents the color distance between s and t, and τ fi and
τ f j denote the times associated with the frames i and j. Note
that the key frames in K have known time values, so we use their

Figure 4: The brickwork layout used as an initial guess for the
optimization. Courtesy of the Blender Foundation.

associated times directly instead of the spatial time mapping βxt in
Equation (2). Moreover, where (τ fi −τ f j )

2 exceeds some threshold
it will always dominate the patch color differences and therefore we
can speed up the preprocessing step by omitting the computation of
the affinity matrix outside a central diagonal band.

Given the affinity matrix A and a set of key frames K = {K1, . . . ,Km},
we approximate Equation (1) as follows:

dBDS(K) =

dcomplete(K)︷ ︸︸ ︷
1
n

n

∑
i=1

min
j=1...m

Ai,K j +

dcohere(K)︷ ︸︸ ︷
1
m

m

∑
i=1

min
j=1...n

AKi, j (4)

The second term dcohere(K) is zero, as the diagonal elements of A
are zero: each of the chosen key frames also exists in the set of
input frames. Note that this is only an upper bound on the true
objective, as for dcomplete the min operator in Equation 3 is taken
only over the domain of a single keyframe rather than the collection
of keyframes.

We employ the k-medoids clustering algorithm [Berkhin 2002] to
minimize this objective. The key frames at each level are found by
taking the known key frames at the previous level, and solving for
the best new key frames to add to the layout, while existing frames
are not removed or changed. Thus the key frames at each level are
a subset of the frames at the next level.

This automated keyframe selection process is usually effective at
highlighting salient information, but it can optionally be replaced
with simple sub-sampling in time (e.g. 2 fps), or the user can
manually choose key frames to tell the story better. Uniform sub-
sampling offers the advantage that the final tapestry proceeds ap-
proximately linearly with time, which may be desirable for video
editing applications where the duration of events is important.
Moreover, it requires no special processing. Manual selection has
the benefit of human higher-level comprehension of characters,
plot, and story arc. We have found the some combination of these
works best: In our highest-quality results, we perform automatic
clustering, but then a user manually adjusts the key frames slightly
to create a tapestry with improved composition and more semanti-
cally meaningful contents. Figure 8 compares the results from these
three approaches.

4.2 Discrete tapestries

Given the key frames, we solve for the optimized tapestry indepen-
dently at each scale by minimizing the objective in equation (1) us-
ing the method of Simakov et al. [2008], which takes downhill steps
in the objective function (this time at the patch level, as opposed to
the frame level as in the previous section). We use a brickwork lay-
out as our initial guess: the key frames are arranged in two rows, in
increasing temporal order, as shown in Figure 4. Then we retarget
this input image by a factor of 75% in the y direction, encouraging
repetitive structures to merge and seamless blending to occur. This
process was found through experimentation; we tried scaling in x
and even more in y, and found that this process makes the best com-
promise between saving space and preserving important structures.
Note that although we use a particular layout as our initial guess,
only patches from the keyframes themselves are used in the S term,



so the regions of the initial guess which overlap multiple keyframes
will be blended or compressed away by the retargeting process.

This method successfully condenses the tapestry, eliminating re-
dundant image features, condensing repeating elements, and blend-
ing image regions seamlessly. However, it can sometimes destroy
high-level semantic information such as faces, so we introduce a
weighting factor for each patch [Simakov et al. 2008] and increase
the weight of patches that overlap faces, as detected by the method
of Bourdev and Brandt [2005].

For efficiency, we compute tapestries in discrete tiles of about
500 pixels wide. Although this could in principle affect the
output, we find it has little impact in practice, because the time
component of the distance function in Equation 2 limits interaction
between regions of the tapestry that are very far apart. We avoid
seams between tiles by overlapping the output tiles, and in the
retargeting process we introduce a hard constraint that the colors
in the overlap region must match the previously computed tiles.
The implementation of these hard constraints is similar to those
of Barnes et al. [2009], except that here after each iteration of the
retargeting algorithm, we composite feathered copies of the known
tiles using alpha-blending to avoid abrupt visual discontinuities.

When rendering tapestries in high quality mode, all tiles for all
zoom levels are precomputed. When rendering tapestries as a lower
resolution interactive process, we calculate tiles on-demand as the
user visits each part of the zoom hierarchy. Even when running in
the lower resolution interactive mode, the retargeting process takes
about 0.5 second to run on each tile, so we cache the tiles, and
to avoid pauses in the user interface, we use a background thread
to pre-cache tiles in a small neighborhood of the user’s current
position in the x direction and in scale space.

4.3 Continuous zoom

At this point we have computed discrete tapestries at a fixed set
of zoom levels. To satisfy our desideratum of continuity in the
animation between discrete levels, we now wish to fill in the
space-time volume between each pair of the discrete tapestries in
a temporally coherent way. Let us label a small tapestry at zoom
level i as A and a larger tapestry at level i+ 1 as B: Our goal is to
complete the space-time region between A and B.

The algorithm for filling this region proceeds as follows: First, our
system identifies corresponding regions between the two discrete
tapestries A and B. These regions are animated linearly across
the gap between A and B. Finally, remaining regions are filled in
using bidirectional similarity synthesis [Barnes et al. 2009]. The
paragraphs that follow provide additional details.

Finding correspondences. In Section 4.1 we guaranteed that
the frames in A are a subset of the frames in B. Thus we
can find correspondences between A and B, again using the fast
correspondence algorithm of Barnes et al. [2009]. This establishes
dense correspondences between small square patches of size p × p.

Identifying coherent corresponding regions. Next we wish to
find corresponding regions between the two tapestries that are
above some threshold size. We create an edge graph E and choose
large connected components of at least size R. The edge graph E
has vertices consisting of the coordinates in A, and the horizontal
and vertical edges are set only if the correspondence field is smooth,
i.e. the field vector has changed less than a threshold. This gives us
large corresponding regions between the two images, which we call
“islands.” In the space-time region we are filling in between A and
B, we use the corresponding “island” regions as hard constraints,
and they are constrained to animate with constant linear velocity.
Note that it may be objectionable if a keyframe changes from the

top to the bottom row (or vice versa) during zooming. Therefore,
we optionally run a second pass of keyframe clustering requiring
contiguous sets of keyframes to be even numbers.

Retargeting. Next, given the constraints, we fill in the uncon-
strained parts of the space-time volume, shown in magenta in Fig-
ure 5-left. We begin at the larger image B, and iteratively re-
target down to smaller resolutions until we reach the size of A.
For each resolution, we repeatedly run the summarization algo-
rithm [Simakov et al. 2008] to retarget down the current image,
with the source image S in Equation (1) as the larger tapestry B.
We omit the dcomplete term from the objective, because the input
domain is changing as we transition to the next discrete scale. We
also accelerate the process by retargeting only at the finest scale.

Boundary conditions. Because our initial guess begins at B,
the boundary condition at the bottom of the space-time volume
is implicitly enforced. However, we also need to ensure that the
animation sequence ends at the smaller tapestry A. To accomplish
this we use as our input domain S a weighted combination of
patches from A and B, linearly interpolating the weighting factor
so the animation converges to A at the last frame. We also grow
the islands by inflating them as we approach A in the space-time
volume.

An example of a temporally coherent space-time interpolation is
shown in Figure 5-right. As in the previous section, we compute
this online by using overlapping tiles.

5 Implementation and results

Results showing discrete tapestry scales are shown in Figures 1 and
6. The continuous zoom operation is shown in our video.

The running time and space used by our algorithm varies according
to the level of approximations made. The clustering preprocess for
a short film (10 mins, sampled at 2fps) takes roughly 75 minutes:
15 minutes for the actual clustering and 60 minutes to compute
the square affinity matrix. For clustering frames in full-length
films, the computation of the affinity matrix dominates the running
time. As an approximation, the entire affinity matrix need not be
computed, and only a band within a threshold distance of the main
diagonal need be computed, as argued in Section 4.1. Nevertheless,
even with this acceleration, precomputation of the affinity matrix
requires 6 hours for a 75 minute film. Note that the clustering
process is optional and can be omitted, or could be replaced with a
more efficient process.

Once the keyframes are chosen, high resolution high quality tapestries
can be computed offline. Each discrete tile (500 pixels wide) takes
about 10 seconds to compute. The continuous zoom interpolation
uses tiles of the same size, and it takes roughly another 10 seconds
to compute the zoom animation between scales. Alternatively, the
interface can be run at interactive rates at a somewhat lower reso-
lution and quality. Our interactive implementation computes 500
pixel-wide tiles of the discrete tapestry in about 0.5 seconds each,
and each zoom tile can be computed in about 2 seconds. As de-
scribed previously, to avoid pauses in the user interface, we pre-
fetch tiles in the neighborhood of the user’s current scale space
region. Therefore the user can move around the scale space in-
teractively. We show in the accompanying video that due to the
interactive rendering rates, the user can change keyframes and an
updated tapestry can be recomputed interactively.

6 User study

To evaluate the effectiveness of our approach we performed a user
study focusing on the task of finding an event in a familiar film.
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Figure 5: Continuous zooming. Left: “Island” constraints on the animated zoom sequence between a discrete tapestry at a smaller zoom
value (top) and a larger zoom value (bottom). Regions present in both images are constrained to move with constant, linear velocity. Magenta
regions are unconstrained. The interpolation starts with the bottom image as initial guess, and retargets the image to smaller sizes, holding
the linearly-animated islands as hard constraints. Islands expand as the smaller image is reached, enforcing convergence. Right: Results of
the retargeting where the unconstrained (magenta) regions have been synthesized. The sequence zoom exhibits temporal coherence.

(a)

(b)

(c)

Figure 6: Discrete tapestries for various films: (a) Kind of a Blur ( c© Skunk Creek Productions), (b) Star Wreck (Energia Productions, Creative Commons license) and (c) Big
Buck Bunny (Blender Foundation, Creative Commons license). The lines between each zoom level indicate the extent of the corresponding regions at each scale.

We invited 22 individuals familiar with the films Star Wars Episode
IV: A New Hope (1977) and The Matrix (1999) to find events with
a visual and a temporal component, such as “the first appearance
of Luke Skywalker” or “the last appearance of Obi-Wan Kenobi.”
Each participant was trained to use the three different interfaces
shown in Figure 7: Our tapestries, a keyframe filmstrip, and a
simple scrollbar. In all three cases, a preview window above the
interface showed the frame corresponding to the current x location
of the mouse in the interface. The training and practice session
used a third film, The Lord of the Rings: The Fellowship of the
Ring (2001). We first asked users to find events in Star Wars using
each of the three interfaces. We next tested the importance of the
zoom animation by switching it off for some tasks, replacing it

with an instantaneous transition between discrete tapestries. In the
final section of the study, users freely chose their favorite of the
three interfaces when finding events in The Matrix. Users were
quizzed on their familiarity with the events in Star Wars both before
and after the study, and were given a post-study questionnaire to
evaluate different interfaces.

During the study we timed the performance on each task, but
found no statistically relevant difference in task performance: The
average task time was about 30 seconds, but varied dramatically
between individuals, probably because of differing familiarity with
the subject material and comfort with video browsing interfaces in
general. (In a previous pilot study we included a fourth interface
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Figure 7: Three interfaces presented to users in a study. Footage from Elephants Dream, courtesy of The Blender Foundation

consisting of DVD chapter menus and fast-forward/rewind controls,
but task times for this interface were consistently 3 to 4 times longer
than the others, so we omitted it from the final study to limit user
frustration.)

However, users strongly preferred tapestries over other interfaces,
both by their own evaluation and by their preferences when given
free choice of interface:

• 95% of participants (21 of 22) ranked tapestries as the most aes-
thetically pleasing of the three interfaces, while one participant
ranked the keyframe interface first.

• 68% of participants (15 of 22) found tapestries the easiest to use
for the event-finding task, 23% (5 of 22) ranked keyframes the
easiest, and 9% (2 of 22) ranked tapestries and other interfaces
tied for ease-of-use.

• 73% of participants (16 of 22) preferred using tapestries with
the continuous zoom animation instead of discrete jumps.

• 73% of participants (16 of 22) used tapestries more than other
interfaces when given their choice of interface.

• 73% of participants (16 of 22) preferred tapestries as their
overall favorite interface of the three. 18% (4) preferred
keyframes, and 9% (2) ranked frames and tapestries as tied.

Users also gave valuable feedback for improving our interface for
zooming through scale space. Some users who were most familiar
with the subject material and with video browsing felt that the zoom
animation was too lengthy, slowing down their search time. The
zoom transition time used in our study was 1.2 seconds, but several
works suggest that shorter zoom transitions between 0.3 and 1.0
seconds are more appropriate. Thus, the results shown in the video
use shorter zoom transitions of .6 seconds.

7 Discussion and Future Work

In each of the stages of our algorithm, we attempt to preserve all
of our four criteria described in Section 1.1. In keyframe selec-
tion, BDS is optimized under the constraints that entire frames are
accepted or rejected, while chronological ordering and continuity
between scales are maintained using subset constraints. In static
tapestry generation, our system again optimizes for bidirectional
similarity, applying an additional temporal distance term to loosely
enforce chronological ordering. Here scale-space continuity is not
explicitly enforced, but rather inherited implicitly from the subset
constraints of keyframe selection. Finally, when constructing zoom
animations, the continuity constraint is enforced by constructing
and interpolating “islands,” the coherence term from BDS is opti-
mized to fill in the remaining space, and chronological ordering is
inherited implicitly from the static tapestries.

It may seem to be a deficiency that our framework has no explicit
cut detection preprocess as in many other common video analysis
techniques. However, in professionally edited film, most cuts are
intended to be invisible [Murch 1995], so we place no special
significance on the location of a cut: only the similarity between
frames matters. For example, if a scene contains a rapid series
of shots alternating between two characters, it is plausible to

summarize it using as few as one keyframe for each character, rather
than a keyframe for each shot.

Keyframe selection. Our keyframe selection algorithm offers a
simple theoretical solution that optimizes the same energy function
as discrete tapestry synthesis. However, our system does not
depend on using this keyframe selection mechanism, and indeed
other keyframe selection methods may be advantageous for specific
applications. For example, uniform keyframe selection offers
the twin advantages of speed – no precomputation is necessary
– and a roughly linear mapping from the x coordinate of the
tapestry to time. Manual keyframe selection offers the advantages
of human cognition and aesthetics to choose visually appealing
and informative keyframes. Figure 8 shows a comparison of
three tapestries generated from same source content but with three
different keyframe selection mechanisms.

Failure cases. Although the bidirectional similarity synthesis
algorithm eliminates and blends redundant visual content, it often
happens that two adjacent keyframes in an initial layout have
significantly different visual contents. In such cases, the algorithm
fails gracefully by creating a blurred and feathered stitch along their
boundary. Our method uses face detection as a preprocess: When
this fails we can see some faces squashed in the final tapestry. But
the cost of false positives is low, so we can use an extreme portion of
the ROC curve to estimate face regions, and the only artifact is that
some non-face regions may fail to be compacted. Nonetheless, the
face detector may fail to fire on unusual faces (i.e. robots, bearded
faces, cartoon faces). Face detection is not the only option for
preserving structures: our method supports external identification
of other important objects or regions within the video that could be
supplied either manually or using other computer vision techniques
(e.g. salient region detectors and object detectors).

Another extension would be to create animated tapestries, in which
the region underneath the mouse begins “playing” a short sequence
or multiple sequences within the tapestry in order to visualize the
dynamic content of that scene. The work of [Correa and Ma 2010]
achieves a similar animation effect by animating the extracted
foreground objects. Other improvements to the tapestry generation
could be achieved by adding a boundary compatibility term for
adjacent keyframes to encourage even more contiguous tapestries.

In this work we proposed an optimization that attempts to mini-
mize an underlying energy function by introducing several stages
of approximations. In the future we would like to explore the fea-
sibility of constructing a tapestry by minimizing a single unified
objective function directly, rather than multiple successive stages
with slightly different approximations.

In conclusion, we have presented a new video summarization tech-
nique that constructs spatially continuous and zoomable visualiza-
tions of video. We presented an objective function for such sum-
maries and optimize this objective using a series of stages, comput-
ing the final stages in real-time. We hope that this technique will
prove useful for video navigation, video editing, and the presenta-
tion of video search results.



(a)
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Figure 8: Comparison of key frame selection methods for the film Elephants Dream: (a) Uniform sampling. Note that many frames are dark
or otherwise contain little information. (b) Clustering. The visual information is denser and less redundant. For example, the end credits
have been reduced to a single cluster, while the bright gray part on the left was expanded to include the two dominant characters (missed by
the uniform sampling). (c) Manual selection. The information density is yet higher, and the characters’ facial expressions are highlighted.
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