RealBrush: Painting with Examples of Physical Media

Jingwan Lu! Connelly Barnes?

'Princeton University

(@) (b)

Abstract

Conventional digital painting systems rely on procedural rules
and physical simulation to render paint strokes. We present an
interactive, data-driven painting system that uses scanned images
of real natural media to synthesize both new strokes and complex
stroke interactions, obviating the need for physical simulation.
First, users capture images of real media, including examples
of isolated strokes, pairs of overlapping strokes, and smudged
strokes. Online, the user inputs a new stroke path, and our system
synthesizes its 2D texture appearance with optional smearing or
smudging when strokes overlap. We demonstrate high-fidelity
paintings that closely resemble the captured media style, and also
quantitatively evaluate our synthesis quality via user studies.

CR Categories: 1.3.4 [Computer Graphics]: Graphics Utilities
Keywords: stroke, stylization, data-driven, example, painting

Links: ©@DL fAPDF @ WeB

1 Introduction

Traditional artists working with natural media take advantage of a
great abundance of different materials. These can have different
chemical properties, such as wet, dry, or cracked paint. Pigments
can be scratched, smeared, or mixed with binders or thinners.
Materials can have 3D relief or embedded particles. The artist
can express her creativity by utilizing materials found in the wild,
limited only by her imagination. In contrast, digital artists are
heavily restricted. High quality approximations of commonly used
media such as oil and watercolor have been achieved in research
systems [Baxter et al. 2004; Chu and Tai 2005]. However, these
systems rely on complex simulations that cannot easily generalize

Stephen DiVerdi®*
2 Adobe Systems Inc.

TR

Adam Finkelstein!
3Google Inc.

© (@

Figure 1: A simple painting created by our system. Left to right: (a) shows oil (left) and plasticine (right) exemplars which are used to
synthesize the painting in (b). The foreground flower strokes use oil exemplars, while the background strokes use plasticine and are smoothed
with our smudging tool using. (c) (d) show close-ups of the smearing and smudging effects.

to new media. Commercial tools such as Adobe Photoshop achieve
a wider range of effects with procedural algorithms, at the cost
of requiring significantly more effort to generate a similar level of
natural media fidelity. Ultimately, artists are limited by the built-in
assumptions embodied by digital painting software.

We introduce “RealBrush,” a system that allows artists to paint dig-
itally with the expressive qualities of any physical medium. As
input to the system, the artist first makes some example strokes
demonstrating the medium’s behaviors and scans them in. The
scanned images are processed to make a “library.” Within Real-
Brush, the user can select this library and make new strokes that
are synthesized using the library to create novel marks in the same
style. In this manner, the artist can digitally paint with whatever
physical media she feels most comfortable, without requiring the
development of a custom simulation algorithm (see Figure 2). We
accomplish this by using a data-driven approach that derives the full
knowledge of a medium from the example library, making only the
minimal necessary assumptions about physicality and locality.

Expressive media can achieve different appearances based on the
artist’s skill and technique. In constructing an oil paint library, the
artist may thickly apply paint, or may make smooth, textureless
strokes. A watercolor artist may paint strokes in a calligraphic style.
Therefore, libraries encode not only the physical properties of the
media, but also their application in a specific style by a trained
artist. With a calligraphic watercolor library, a novice user may
make strokes of much higher quality than he could with a real brush.

The shape of individual strokes is only a small part of the behavior
of physical media—traditional painting is not possible without the
complex interaction between strokes. Wet pigment can be advected
by subsequent strokes to create smears, or particles may be pushed
around the canvas by finger smudges. The myriad of potential
effects creates an undue burden to attempt to capture examples
of all different behaviors for a library. A generic data-driven
algorithm that is not tailored for natural media could easily become
impractical due to requiring intractably large amounts of data.

Our main contribution is the plausible reproduction of natural me-
dia painting, with its many behaviors, tools, and techniques, in a
practical and fully data-driven system. This is possible because
we factorize the range of physical behaviors into a tractable set of
orthogonal components that can be treated independently, which is
motivated by our analysis of the space of natural media. We dis-
cuss the implications of this factorization, and present algorithms
for capturing and reproducing each of these behaviors. Our results

http://doi.acm.org/10.1145/2461912.2461998
http://portal.acm.org/ft_gateway.cfm?id=2461998&type=pdf
http://www.cs.princeton.edu/~jingwanl/RealBrush/realbrush.htm

Figure 2: Acquired natural media samples, including paint, char-
coal, pastel, marker, lip gloss, plasticine, toothpaste, and glitter.

demonstrate the algorithm with images painted by artists using a va-
riety of different captured media and with a quantitative evaluation
of the realism achieved by RealBrush.

2 Related Work

Despite the remarkable progress made by digital painting software
to perform increasingly sophisticated image processing, it remains
difficult to achieve results that mimic the textural qualities of real
natural media. Established results fall into three broad categories.

Procedural approaches rely on heuristics explicitly designed to
mimic specific natural media behaviors and effects, based on the
developer’s intuition [DiVerdi et al. 2012]. Commercial packages
such as Adobe Photoshop use these techniques. They provide a
wide range of effects for digital artists, but they have difficulty
reproducing the visual fidelity of natural media and can require
significant user effort to achieve a convincing level of realism.

For higher fidelity results, researchers have developed simulation
approaches that numerically model the physical interaction be-
tween the virtual brush, the canvas, and the pigment medium.
Specifically, modeling deformable 3D brushes and simulating paint
fluid flow through a canvas are increasingly common, and have been
applied successfully for particular natural media, including water-
color [Chu and Tai 2005], oil paint [Baxter et al. 2004; DiVerdi et al.
2010], and pastels [Van Haevre et al. 2007], with impressive results.
Commercially, Microsoft’s Fresh Paint application implements re-
cent work [Chu et al. 2010; Baxter and Govindaraju 2010] to create
an oil paint system. However, these results are all carefully tailored
to their respective natural media, and extending any of them to other
types of artistic tools is difficult. Our focus is a more general digital
painting system that can support arbitrary natural media as supplied
by the artist while maintaining high visual fidelity.

3" l""”(;
Gme Q

Flgure 3: Smgle stroke libraries for oil paint and plasticine.

Our work belongs to the class of data-driven approaches, which
includes such work as modeling virtual brushes [Baxter and Govin-
daraju 2010; Xu et al. 2004], generating brush stroke paths [Xu and
Dong 2006; Xie et al. 2012], and simulating pigment effects [Xu
et al. 2007]. Perhaps most straightforward is using scanned marks
as basic drawing units (footprints), interpolated along a path to pro-
duce novel strokes [Xie et al. 2011]. However these techniques
all still depend on physical simulations and procedural rules which
limit the fidelity and generality of their results. For realistic syn-
thesis of arbitrary media, we use a solely data-driven approach and
avoid any physical model or procedural rules.

Researchers have deformed strokes to match new paths. Zeng
et al.’s work on applying painterly styles to photographs [2009],
and Xu et al.’s decomposition and deformation of Chinese paint-
ings [2006] both warp images of real strokes to create novel shapes.
Earlier work by Hsu et al. [1994] developed a system based on
stylizing lines with warped pieces of art, which has become a core
algorithm of commercial programs such as Adobe Illustrator. All
of these systems suffer from a common limitation though, that
they can only support a small range of deformations of example
strokes before the altered appearance becomes unrealistic. Zhou
et al. [2013] achieve a wider range of deformations, but only from
individual exemplars with uniform texture.

Most similar to our approach is the work of Ando and Tsu-
runo [2010], and Kim and Shin [2010], which use images of real
strokes to stylize user input lines. These works focus on single
stroke synthesis, which is a part of our approach, but we addi-
tionally explore data-driven smearing and smudging. Both ap-
proaches make aggressive simplifications, losing fidelity to gain
performance. That each system relies on small patches that are not
deformed fundamentally limits these techniques by forcing many
patch boundaries within a stroke, which is frequently where ar-
tifacts occur. The lack of deformation also reduces the range of
shapes they can synthesize from few example strokes, and therefore
increases the computational burden per stroke by requiring more
search. These small patches further limit the scale of texture fea-
tures that can be reliably reproduced from example media, because
patch boundaries can cause jarring discontinuities. RealBrush has
two significant advantages over these approaches. First, we are able
to support a wider array of artistic media. Second, we gain higher
fidelity: we are able to reproduce strokes that are indistinguishable
from real examples, as demonstrated by our user study.

Also related is work in texture synthesis. Wang et al. [2004]
generate textures sampled from paintings to stylize 2D images. Yan
et al. [2008] apply a similar technique for shading 3D geometry.
Neither of these approaches provide a means for interactive, paint-
style control. Conversely, Schretter [2005] and Ritter et al. [2006]
both demonstrate brush-based painting systems that use texture
synthesis to fill arbitrary regions with acquired samples. However,
they do not support oriented anisotropic textures, and they do not
consider interaction between overlapping textured regions.

Preprocessing (84)

Single Stroke Synthesis:
e Find optimal sequence of library samples (§5)

e Alpha blending (85.1)
choice { e Graph cut (85.1)
o Texture synthesis (85.2)

Stroke Interaction Synthesis:
e Detect overlap regions in query stroke (86.1)

e Find closest neighbor example (86.2)
e Vectorize interaction regions (§6.3)

. e Apply smear operator (§6.5)
choice { e Apply smudge operator (86.6)

Figure 4: Algorithm overview.

3 Understanding Natural Media

Natural media exhibit a tremendous number of different types of
behaviors (see Figure 2). Simulation based approaches rely on com-
plex physical models to control these effects from a small number
of parameters. They pose a daunting problem for data-driven ap-
proaches, because of the huge number of different examples that
need to be acquired to reasonably approximate the medium.

Factorization. We factor the effect space into four orthogonal
bases—*"“shape,” “smear,” “smudge,” and “composite”—that make
the data acquisition and search problem tractable. Shape refers to
the silhouette and texture of a single stroke made in isolation. Many
obvious media features are part of shape including watercolor’s
darkened edges. However, most of the important qualities of natural
media are due to the interactions among multiple strokes. Smear is
exemplified by applying a new stroke across wet paint, “dirtying”
the brush and smearing the two paint colors together (Figure 6b,c).
Smearing is the core component of color blending on canvas, and
is also referred to as “bidirectional” pigment transfer (from the
brush to the canvas, and vice versa). Smudge specifically refers
to stroking over wet paint with a clean brush or finger to make a
smudge mark, but we use it more generally to refer to any action
that modifies pigment on canvas without applying more pigment,
including using other implements such as salt, a blowdryer, or tissue
paper (Figure 6d,e). Finally, composite refers to the way colors
mixed or applied atop one another optically combine to form the
final reflected color, such as in glazing or overlapping transparent
strokes, or during bidirectional pigment transfer.

Each basis can be captured in isolation, reducing the burden for
data-driven acquisition and synthesis. Shape exemplars are isolated
strokes. Smear exemplars come from crossing paint strokes of
two different colors, so the mixing proportion can be determined
by color. Smudge exemplars do not have a foreground color,
so registered images of the canvas paint are needed, before and
after the smudge is applied. Composite exemplars are overlapping
strokes of different colors, so the combined color can be sampled.

In proposing this factorization, we reduce the library size that must
be acquired from n* to 4n, where n is the number of examples
needed for each basis. We leave composite as future work, and
focus on achieving realistic results for shape, smear, and smudge.
See Figure 2 and Section 4 for examples of these effects.

Algorithm Assumptions. Procedural and simulation based ap-
proaches to digital painting encode explicit assumptions about the
character of natural media into their algorithms. Simulations as-
sume properties of the underlying physical system, while proce-
dural rules assume specific behaviors the media exhibits. Data-
driven techniques have the ability to ease these assumptions, but

al
@) —— s S

(b) ©
Figure 5: Workflow overview. (a) Paint strokes are acquired with a
handheld, point-and-shoot camera with indoor lighting. (b) A few
simple edits isolate and white balance the stroke. (c) The library
stroke is piecewise matched and deformed to the input curve.

completely removing them may not be possible. We enumerate the
basic assumptions we rely on in data acquisition and synthesis.

We call our first assumption stroke causality—that pixels that have
been touched will not be modified after the stroke has passed.
This means we explicitly cannot support effects like watercolor
backruns, where excess water advects pigment into areas of the
stroke that have already been painted.

The second assumption is effect locality—that a stroke’s effect does
not extend beyond its silhouette. This means that for effects like
feathered watercolor where the pigment has advected away from
the brush-canvas contact area, the brush silhouette must be made
artificially large to encompass the entire final extent of the stroke.

Our final assumption is recursion. Given n strokes on a canvas, the
n + 1 stroke may have interactions that depend on the full, ordered
set of previous strokes. Instead, we treat each stroke as interacting
with a single, flattened canvas raster, which elides details about
occlusions and ordering. This assumption enables efficient stroke
interaction synthesis for paintings of thousands of strokes or more.

Media Texture. One complicating aspect of natural media, even in
light of our factorization, is the wide variety of types of texture and
appearance that are exhibited within each of our bases. Consider the
following media and the characteristics of their shapes: watercolor
has smooth internal textures with some granularity and sharp
silhouettes. Oil paint has directional texture and sparse large
features (blobs). Oil sponge has rough and sparse texture with sharp
boundaries. Toothpaste has strong 3D structure. Glitter has noisy
texture and sporadic application. Lip gloss has 3D structure and
sparse noise texture. This is just a selection of possible variations.

Any single technique that could reliably synthesize all of these
media efficiently would be a major advance in texture synthesis.
Therefore it is clear that a small toolbox of core algorithms will be
necessary to produce realistic results across all media.

Algorithm Overview. Our factorization of natural media behaviors
suggests a factored algorithm. RealBrush is a data-driven painting
implementation of this theory including shape, smear, and smudge
behaviors, which are each treated separately and then combined.

First, shape, smear, and smudge examples are collected and pro-
cessed to generate media libraries (Section 4). During painting,
each stroke input by the user is processed individually. Its shape
and texture are synthesized in isolation from a single stroke library
(Section 5). Then, if the stroke covers paint already on the canvas,
a smear effect is synthesized from a smear library and applied to
the stroke (Section 6). When smudging, no new stroke is being
generated, so a smudge effect is synthesized from a smudge library
and directly applied to the paint on the canvas instead.

(@ (b) (© () ©
Figure 6: Smearing and smudging exemplars. (a) We detect the
overlap and the trailing regions. They are highlighted in green
and yellow and are represented by eight polyline segments; (b)
(c) show oil and plasticine smearing exemplars; (d) (e) show oil
and plasticine smudging exemplars. The extracted smearing and
smudging operators are inset.

4 Example Collection and Processing

We collect libraries of exemplars made by real physical media (Fig-
ures 2 and 3) and provide them as default options for casual users.
Advanced users can acquire their own libraries in the same man-
ner. In light of our natural media factorization, we collect separate,
different examples for each of shape, smear, and smudge. Our
exemplars were captured using a DSLR camera mounted on a tri-
pod under normal in-door lighting without any camera calibration.
However, capture a handheld point-and-shoot camera also yields
good results (Figure 5). We scan the exemplars into raster textures,
and semi-automatically process them to create libraries. Single
stroke (shape) exemplars are discussed in Section 4.1, while smear
and smudge exemplars are in Section 4.2.

4.1 Single Stroke Processing

For each medium, we collect iso-
lated brush strokes of different
shape, curvature and thickness
to build a single stroke library,
L, typically between 20 and 30
strokes. For each stroke, the user specifies a rough spine from start
to end (inset, red to black line), which is smoothed and discretized
into samples spaced a few pixels apart (inset, six black dots along
spine). The stroke outline (green) is automatically extracted plus
a small margin to preserve boundary effects. Ribs connecting the
spine to the outline are added greedily, avoiding intersections (inset,
yellow/magenta lines). Each stroke L € L consists of between 30
and 100 samples, L = {t}, where a sample t = {x,1,r} consists
of the 2D positions of the spine, left outline, and right outline points
respectively. The stroke is parameterized by u € [0, 1] along the
spine and v € [—1, 1] from left to right along each rib. We use the
Multilevel B-splines Approximation (MBA) library [Hjelle 2001]
to interpolate u, v coordinates for every pixel in the stroke. The
output of this stage consists of the gray-scale intensity image of the
exemplar, the vector representation, and the uv parameterization.

4.2 Overlapping Stroke Processing

Smearing is the result of transferring pigment from the canvas to
the brush during a stroke, causing a mixing of colors (see Fig-
ure 6). Different physical media properties cause unique smearing
behaviors. For example, thick wet oil paint smears significantly,
pastels smear somewhat, and dry watercolors do not smear at all.
Unconventional media such as plasticine smear differently without
mixing pigments but still smudging them along. We use the term

Figure 7: Single stroke piecewise matching and warping. The
bigger query stroke at the bottom is broken into three overlapping
segments each of which matches an exemplar segment. The three
segments are highlighted in yellow, green and blue.

smearing for all stroke interactions containing overlapping strokes
of different colors.

Artists can also smudge strokes on the canvas without applying
additional pigment, commonly with a finger or clean brush. Such
smudging exemplars contain two strokes of the same color—a
background, and a smudged foreground.

For smearing and smudging separately, we collect between 10 and
20 pairs of overlapping strokes in several different media. For
smearing, we collected oil, plasticine, and pastel. For smudging,
we collected oil, plasticine, lipstick, charcoal, and pencil. Each pair
of strokes overlap at different crossing angles and with different
relative thickness. We only collect pairs of strokes interacting—
our synthesis algorithm can plausibly reproduce the interactions
among many strokes from this data. To process the scanned
overlapping strokes, the user needs to specify the stroke spines (in
our system) and create binary foreground and background masks, F
and B (with Photoshop threshold and brush tool). The system then
automatically vectorizes the foreground and background strokes
(Section 4.1), and then extracts information specific to smearing
and smudging. Note that though the exemplars shown here are
near-orthogonal crossings, our synthesis algorithm can handle all
possible overlap cases.

Interaction Region Vectorization: As input for the on-line syn-
thesis of smearing or smudging, we extract binary masks for the
overlap region €2 and the trailing region ¥ (green and yellow re-
gions in Figure 6a) by doing logic operations on the foreground
and the background stroke masks. Specifically, 2 = F N B, where
F and B are the foreground and background stroke masks. Let
u(€2) define the average u coordinate of a connected region, then
¥ ={A|ACF)\QuA) > u(R)} We refer to interaction
region IT = © U ¥ as the union of the overlap and the trailing
regions. We then extract the contours of the interaction region as
eight polylines (colored line segments in Figure 6a) which are used
for synthesis (Section 6.3).

Smearing Operator: In the interaction region, the background
blue pigments get mixed with the foreground red pigments resulting
in vertical streaks of brownish color along the stroking direction
(Figure 6b,c). Since the physical smearing process is more or
less independent of the specific colors being mixed, it is safe to
require the foreground to be red and background to be blue and
obtain the mixing behaviors that are universal for paints of any
colors. For each exemplar, we extract a smearing operator that is
a 1 channel, 2D texture indicating the amount of background paint
(from O to 100 percent) at each pixel. Since blue and red are more
or less orthogonal after capturing, we simply use one minus the
blue channel (lower right corner of Figure 6b,c). At runtime, we
use the smearing operator to synthesize the smearing appearance of
arbitrary colors (Section 6.5).

Smudging Operator: The foreground smudged strokes consist of
advected pigment from the background strokes (Figure 6d,e). We

¥ sy

(a) Aipha blending

(b) Graph cuts

"gﬂ

(c) Texture synthesis

Figure 8: Artifacts in synthesis and methods to fix them. While simple alpha blending works for most media, some media may not be able to
find well-registered matches and produce ghosting artifacts (a). Graph cuts often improves this (b). Texture distortion artifacts can also be
present for highly textured media. These artifacts can be improved with our off-line texture synthesis module (c).

extract a smudging operator (the lower right corners of Figure 6d,e)
as the inverse intensity indicating the amount of background pig-
ment at every pixel. In addition, we also extract a blending attenu-
ation mask automatically by blurring the left, right, and upper side
of the overlap region binary mask 2. For better synthesis quality, a
more precise blending attenuation mask can be provided by the user
using standard image editing tools. The blending attenuation mask
is used in the synthesis to provide gradual transition at the overlap
region boundaries (Section 6.6).

Qutput. After processing is complete, the following information
is passed to the online synthesis stage. Each of the smearing and
smudging exemplars consist of the vectorization of both the fore-
ground and background strokes and the vector representation of the
interaction region. In addition, the smearing exemplars contain the
smearing operator. The smudging exemplar contains the smudging
operator and the blending attenuation mask. Optionally, the user
can also provide as input the background strokes themselves before
being smeared or smudged by the foreground strokes, which can
facilitate the exemplar matching process (Section 6.2).

5 Single Stroke Synthesis

RealBrush starts by generating the appearance of a single, isolated
stroke. Given an input query spine (a curve-like spline), we estimate
a rough 2D shape and u, v parameterization (see Section 4.1). We
use the algorithm from Lu et al. [2012] to find an optimal sequence
of similar segments from the shape library, by collecting candidate
samples via nearest neighbor search and using dynamic program-
ming to find the best fit. Our features are tailored to our task and are
similar to Ando and Tsuruno [2010]—we consider turning angle,
stroke width, distance to the endpoints, and “appearance” (sampled
intensity across the stroke width). Finally, we warp and merge
the matched grayscale exemplar segments together (see Figure 7)
to determine the lightness, L, of the synthesized stroke. At run-
time, given a user-specified query color, we convert it to CIELAB
space, (Ly, a¢, by). Then the synthesized color Cy = (Ly, ay,
by) of each pixel is: Ly = L, af = aa; and by = ab;, where
a = (100 — L)/100. The synthesis outputs are a binary query
mask Q indicating the regions of the canvas that belong to the
query, the u,v parameterization, and the colors C; that we call
foreground color for the rest of the paper.

5.1 Warping and Merging

The matched segments will not exactly match the shape of the query
stroke and so must be warped to fit. This is done by sampling the
exemplar textures according to the u, v parameterization computed
by the MBA library [Hjelle 2001]. Because the segments are

already close in shape to the query, warping can usually produce
a high quality output.

To merge adjacent segments, alpha blending simply linearly inter-
polates between the two segments in their overlap region, creating
a cross-dissolve. For many types of media with low frequency tex-
tures such as watercolor and oil paint, this produces high quality
results. Alpha blending is easy to implement and efficient, so we
use it for our results unless otherwise indicated. Alpha blending can
result in two types of artifacts: ghosting and blurring (Figure 8a).
Ghosting occurs when matching cannot find segments with similar
appearance at the boundary, and blurring is caused by interpolating
mismatched structured texture. In both cases, graph cuts can be
used to find an optimal seam between segments, followed by gra-
dient domain compositing to smooth the transition [Kwatra et al.
2003] (Figure 8b). In many cases, graph cuts generate a superior
result and is still relatively efficient, so we reserve it as an alterna-
tive merging option.

5.2 Texture Synthesis

To better deal with highly textured media (Figure 8), we have
prototyped an optional texture synthesis module which runs off-
line to produce higher stroke quality. We adapt image melding
[Darabi et al. 2012] to the problem of stroke synthesis. As a
review, image melding works through multiscale texture synthesis
over small square patches. The “melding” component allows for
smooth transitions between different textures without losing detail
in the transition region. We use this to transition between different
brush exemplars. We also use the “texture preserving warps” which
improve the texture distortion introduced by warping.

We apply image melding to an initial guess which is the warped
image after graph cut. However, naive melding alone produces
inferior visual results. Therefore we add constraints to image
melding to better guide synthesis. These include index masks, color
corrections, and rotation constraints. The constraints are illustrated
in Figure 9. The importance of constraints is shown in Figure 10,
which gives a comparison with naive image melding.

Index masks. We apply index masks to constrain interior regions in
the result to be synthesized from interior regions in the exemplars.
We define interior regions to be those that are more than a threshold
distance 7 = 1/4 from the stroke boundary, where the maximum
distance is defined to be unity. The interior regions are shown in
Figure 9, regions 1 and 3. Similarly to image melding, we also
apply distance constraints, which prevent matched patches from
moving too far from the initial correspondence given by warping.

Color corrections. Image melding can introduce undesired fluctu-
ations in color because of its gradient energies. We thus constrain

Exemplar 1

Exemplar 2

Synthesized
Result

Figure 9: Explanation of the optional texture synthesis module.
Two exemplars (top) are matched and an initial guess is constructed
by warping. Texture synthesis improves any texture distortion. Each
upright patch (small square) in the result is matched during multi-
scale synthesis to an appropriately rotated patch in an exemplar.
Rotation constraints orient patches to follow the brush principal
angle (indicated by small arrows inside the patches). Distance
constraints prevent matched patches from moving too far from the
initial correspondence given by warping. Patches are constrained
to only come from the same index mask: patches in region 1 match
patches in region 1, and so forth. The overlap regions 1 + 3 and
2 4 4 match both exemplars and are melded for a smooth transition.

the color outside the initial guess to be transparent and white. To
prevent fluctuations in paint density due to any averaging, at coarse
scales after each iteration we use color transfer [Pitié et al. 2007]
to match colors to the initial guess. We do this locally by running
the color transfer on each of 5x5 sub-windows that are overlapping,
and smoothly interpolating the result in the overlapped regions.

Rotation constraints. We constrain rotations to be similar to the
principal brush angle. These angles follow the direction of the
brush stroke and are shown as small arrows inside the patches in
Figure 9. Patches in the synthesized image are always upright,
whereas matched patches in the source exemplars rotate. We allow
some deviation from the exact brush principal angle by allowing for
matches in an angular window. We use a larger angular window of
30 degrees in the interior region, and a smaller angular window of
10 degrees on the boundary.

6 Stroke Interaction Synthesis

Single stroke synthesis does not consider what is on the canvas.
When strokes overlap, independent synthesis will produce artifi-
cial results. When real media overlap, their appearances change
predictably. RealBrush reproduces two types of these interactions:
smearing and smudging.

We observe that smearing and smudging happen mostly within the
interaction region (defined in Section 4.2). We factor the interaction
effect into three components: color, texture and shape. In most
natural media, the impact to the foreground stroke shape is not
obvious, so we only handle the change of color and texture. This is
a consequence of our natural media factorization—first we perform
single stroke synthesis (Section 5), and input the appearance into
the smearing and smudging algorithms.

When the user paints a new stroke, our system first detects a set of
overlap regions where the canvas beneath already has paint (Sec-
tion 6.1). Per overlap region, we match to a smudging or smearing
exemplar for synthesis (Section 6.2). To warp the exemplar, we vec-
torize the interaction regions (Section 6.3). To determine the colors

(d) No color correction
Figure 10: Comparison with image melding. Melding alone can
produce results that do not closely follow the brush stroke (a).
Our texture synthesis gives an improved result (b). The effect of
removing index masks from our algorithm is shown (c), as well as
the effect of removing color correction (d). Without our constraints,
the texture can deviate from the brush stroke.

(c) No index masks

in the interaction region, we apply weighted color integration (Sec-
tion 6.4). The only difference between smearing and smudging is
how we apply the matched exemplar (Section 6.5 and Section 6.6).

6.1 Overlap Regions Extraction

As strokes accumulate on the canvas, a new stroke might overlap
many previous strokes creating an exponential number of overlap
regions. However, our recursion assumption allows us to treat the
canvas as a single, flattened paint raster, which makes the approach
efficient and scalable. Specifically, the smearing or smudging
behavior of the current time step ¢ is only dependent on the raster
canvas image of all strokes at t — 1, the time of the previous stroke.

At every time step, we update a binary coverage mask C; to
keep track of whether a pixel on the canvas has paint. After
the user paints a new query stroke, the system detects a set of
overlap regions €, = {2} by intersecting the query mask Q;
with the coverage mask: €; = Q: N C;. Each overlap region Q;
is restricted to lie inside the query stroke and forms a connected
component in the coverage mask (Figure 13a). We break long,
irregularly shaped overlap regions into smaller ones by scanning
the connected component along the stroke spine to identify cusps
and cutting at the cusp perpendicular to the spine. For example,
the first two overlap regions in Figure 13a originate from a single
connected component. We also discard small overlap regions, since
their influence on the final painting are minimal. The rest of the
overlap regions are classified into several categories (Figure 11) for
vectorization.

6.2 Exemplar Matching and Feature Vectors

We synthesize the stroke interactions by warping the captured
interaction exemplars. To reduce warping artifacts, we search
for exemplar strokes that cross at similar angles and have similar
thickness. For simplicity and robustness, we design a raster
feature vector to capture information of the overlap region and its
surroundings. For each overlap region in the query stroke, the
feature vector is a two-channel square texture (50 x 50). The square
is oriented along the average foreground stroke spine orientation
in the overlap region. It contains the entire overlap region with
padding so the surroundings can be captured. The first texture
channel contains the alpha matte of the background in the overlap

Pa

(@ (b) © (@) (©
Figure 11: Stroke overlap situations. (a) - (e) The query stroke
(red) might overlap with the background stroke (blue) in several
different configurations. The overlap region might (a) run across
the query stroke; (b) be at the beginning or the end of query stroke;
(c) not separate the query stroke into disjoint regions; (d) be entirely
inside the query stroke; (e) be the entire query stroke; The colored
line segments in (a) indicate the vectorization of the overlap region.
In (b), they indicate the trailing region.

region. The second texture channel contains a mask of whether
strokes are present in the surrounding region. The feature vector
distance is the L? distance between the squares. When providing
the exemplars, the user can optionally input photographs of the
background strokes before foreground strokes are applied. After
manually aligning the “before” and “after” textures, we sample
intensities of the “before” overlap region as the first channel of our
feature vector. The use of the “before” image allows the system to
search for crossing exemplars not only similar in shape, but also
in texture and intensity. Without the “before” image, we reduce
the feature vector to one channel. The search is not sensitive to
the size of the square or the precision of the “before” and “after”
alignment. The amount of distortion even in the case of very
different exemplars is hardly noticeable in the context of a whole
painting. Figure 12 shows the query stroke feature vector and the
most similar overlapping exemplar.

6.3 Interaction Region Vectorization

After identifying the most similar interaction exemplar, we need
to warp the matched exemplar to fit the query interaction region
exactly for synthesis. Section 6.1 identifies the overlap regions in
raster format. We then need to vectorize the regions and identify
the trailing regions. We extract the six polylines (green, blue and
white lines in Figure 11a) for the overlap regions and two polylines
(purple and cyan lines in Figure 11b) for the trailing regions,
corresponding to that of the exemplar (Figure 6a).

From the overlap region mask, we extract the overlap contour using
OpenCV. We scan the overlap contour to identify six “key points”
that divide the contour into six polylines. For overlap regions that
cross the query stroke (Figure 11a), we first intersect the stroke
spine with the contour to identify ps and ps. We then locate
the p1, P2, P3, P4 by tracing from ps and pe clockwise and
counterclockwise along the overlap contour until reaching the query
stroke boundary. When the overlap region is at the beginning (or
end) of the query stroke (Figure 11b), we identify ps to be the
first sample on the query spine and apply an offset from ps to
locate p1 and p2 on the query contour. The offset is determined
by the average thickness of the query stroke. Then ps3, p4, Ps
are extracted the same as case (a). There are also cases where
the overlap region does not separate the query stroke into disjoint
segments (Figure 11c). In this case, we find the overlap contour
sample p’ with smallest v coordinate. We offset from p’ to obtain
p1 and p3 on the overlap contour and use the center of mass p.
to locate ps and ps following the stroke spine direction. Then p2
and p4 are traced from ps and pe, the same as in case (a). When
the entire overlap region is within the query stroke (Figure 11d),
none of the points can be located exactly, so we identify points with

(a) (b) (© (d)

Figure 12: The overlap region feature vector. The overlap regions
of the query and exemplar strokes are characterized by a square
two-channel texture. The query feature vector contains the alpha
matte of the background in channel 1 (a) and a binary mask of
surrounding strokes in channel 2 (b). The best matching exemplar
is shown in (c, d).

maximum and minimum w coordinates as ps and pg and use the
offset idea to find the other points. In the final case where the entire
query stroke is inside a background stroke (Figure 11le), ps and
Ps are the start and end of the stroke spine, and we apply offsets
to locate the other points. In real painting scenario, the case in
Figure 11c happens frequently resulting in many thin interaction
regions. To avoid aliasing and ensure the stableness of the points
Pi, we discard overlap regions that are smaller than some threshold.
For larger interaction regions, experiments show that the detection
of points p; is very robust to all possible overlap shapes and angles.

To finish vectorizing the interaction region IT;, we also detect
and vectorize a trailing region ¥; that follows the overlap region
;. The trailing region length is determined by the ratio of
trailing region length to overlap region length in the exem-
Plar, L(\Ilque'ry) = L(Qque'ry)L(‘I}el‘empla'r)/l/(ﬂezemplar),
where L(ﬂ) = (du(p17p3) + du(p57p6) + du(p27p4))/3
and L(¥) = (du(pr,ps) + du(p7,ps) + du(p7,p4))/3.
du(p1,p2) defines the absolute difference of u coordinates
between two points. We locate the point pr by tracing from point
Ps along the stroke spine direction. Then, we trace two polylines
from p3 and p4 following the stroke spine direction and curve in
to reach p7 (Figure 11b). The trailing region is constrained to lie
within the query stroke boundary. When an overlap region is at the
end of the stroke, there is no trailing region.

6.4 Interaction Region Color Integration

For smearing or smudging, in each interaction region, the back-
ground material colors are picked up by the brush or the finger and
smeared into the succeeding foreground stroke regions. The syn-
thesized query stroke color might have contributions from multiple
background strokes. For each pixel in the interaction region, we
find the background color C; by integrating the colors from the
pixels on and above (with smaller « coordinates) the current pixel
pP. along the stroke spine direction. The set of the background
pixels that contribute to the color of the current pixel is S = {p; |
u(pi) < u(pe),v(pi) = v(Pe), Ps has paint}. Then the integrated
background color is calculated as C, = > w;c;/ > wi, Vp; € S,
where c; is the color of the background pixel p; and w; =
1/(du(ps, pe) + €), € = 0.06. We exclude background pixels that
have no paint to contribute.

6.5 Smearing Effect Synthesis

As the outcomes of the Single Stroke Rendering pipeline, each
pixel of the query stroke has a foreground color C¢. To simulate
smearing, at every pixel, some amount of the background color
C, (defined in Section 6.4) is mixed with the foreground color
C; (defined in Section 5) to create paint streaking effect. We
use the matched smearing operator to estimate the color mixing
proportion « at every pixel. Then the synthesized color of each
query pixel is a blending of the foreground and background colors,

(@) (b) © (d) © ®
Figure 13: Smearing synthesis. (a) The query stroke overlaps
with the background in four overlap regions; (b) The single stroke
synthesis result without smearing; (c) (d) (e) The background colors
in the overlap regions are smeared into the subsequent query stroke
regions. The warped smearing operators are shown on the right of
the query stroke; (f) The four overlap regions are synthesized, alpha
composited and rendered in the context of the background.

Cp, = aCp + (1 — a)Cy. Specifically, we determine the o
for every pixel by warping the smearing operator. We specify
control points on the detected polylines (Figure 11a,b) and apply
interpolation for all other pixels.

Note that each query stroke can have several overlapping interaction
regions. We sort the interaction regions by ascending u coordinates
(4 interaction regions in Figure 13a). We synthesize them in order
by using color integration, followed by alpha compositing. Let C;,
represent the integrated background color for the interaction region
1. The smearing result of multiple interaction regions is therefore a
recursive alpha compositing of the integrated background color C;,
onto the query stroke (Figure 13c-e). C" = aC} + (1 — a)C™ ™!,
where C® = C and n is the number of interaction regions. Finally,
the updated query stroke colors C™ are alpha composited onto the
canvas (Figure 13f).

6.6 Smudging Effect Synthesis

Smudging proceeds similarly to smearing, except that the fore-
ground query stroke is transparent, so the single stroke rendering
pipeline is skipped. Instead, the smudging operator intensities
and the integrated background colors C; directly determine the
smudged colors: the alpha component is taken from the warped
exemplar, while the color is Cp. A warped blending attenuation
mask is used to decrease alpha at the boundary of the query stroke
to avoid boundary artifacts. Finally, the smudged colors are alpha
composited onto the canvas. Figure 14 shows a few stroke scrib-
bles demonstrating the smearing and smudging effects. From left
to right, the first row is synthesized based on the oil and the lip-
stick exemplars. The second row uses the pastel and the plasticine
exemplars.

7 Evaluation

We conducted three user studies to determine how faithfully our
methods reproduce acquired media. Experts can accurately identify
our results as computer-generated given sufficient time, so we focus
on casual viewers. Talented artists can always work around a
system’s limitations to make realistic digital paintings by carefully
applying many strokes. The resulting images can often fool
casual viewers, so evaluating finished paintings is unlikely to
yield meaningful data. A stricter standard is to evaluate each

Figure 14: Smearing and smudging synthesis results. From left to
right, the first row synthesizes the oil and the lipstick media. The
second row synthesizes the charcoal and the plasticine media. A
few strokes are painted in the background with the smearing effect
and then are smudged by a few strokes in the foreground.

algorithm step in isolation. This design controls factors impacting
viewers’ opinions but outside the scope of the paper, such as stroke
trajectories and subjective color preferences.

7.1 Study Design

We employ the same basic methodology in all three studies, adapted
from that of Lu et al. [2012], which shared a similar overall goal.
The idea is to show both real strokes selected from a library, and
synthetic strokes based on the same library, asking subjects which
ones are real (using a two-alternative forced choice design). If the
synthetic strokes effectively match the library, the subject will be
unable to differentiate them and will choose randomly, while a less
successful synthesis approach may be recognized as fake, and the
subject will correctly identify the real stroke more often than 50%
of the time. To avoid frustrating the participants, we chose the two
media (watercolor and oil) that most people are familiar with and
can reliably identify as computer-generated without undue effort.
We first describe the study for single stroke synthesis, and after,
describe the differences for the other two studies.

Study 1: Single-stroke. Subjects are shown an image (the guide)
with three photographic examples of real paint strokes in either oil
or watercolor. Below it appear two test images, one containing
a photograph of a real paint stroke (ground truth), and the other
showing a (synthetic) stroke generated to match the approximate
shape of the ground truth stroke. The subject is told that the guide
image contains real strokes and asked to pick which of the test
images below it is also real (as opposed to a computer-generated
fake). When the subject clicks on one of the two test images
(believed to be real) they are replaced with a new pair, but the guide
image remains unchanged. A progress bar indicates advancement
through a series of 26 test pairs until the task is complete.

Of the 26 synthetic images, eight are rendered using the (“Real-
Brush) method of Section 5 (Figure 15¢), eight are rendered using
a “naive” method (Figure 15b), and ten are obvious “filter” images
(Figure 15d) used to ensure the subject understands the task and is
trying. Each test pair is randomly swapped (left-right); a random

Study 1: (a) exemplar

(b) naive

(c) RealBrush (d) filter

Figure 15: Study images.

flip (horizontal, vertical, both, or neither) is applied to both images;
and the 26 pairs appear in random order. The eight strokes selected
for the RealBrush condition are chosen randomly without repeats to
match a pool of 17 (for oil) or 19 (for watercolor) possible ground
truth paths. Likewise for the naive and filter conditions. Thus,
even though synthetic strokes may only appear once during a task,
a particular ground truth path may possibly be seen by the subject
as many as three times. However, we find in such cases it is difficult
to recognize because of the random flipping and swapping in a long
sequence of comparisons (and even if so, it might only weaken our
statistical findings).

The strokes in the RealBrush condition follow the paths of their
ground truth comparators, and are rendered using a library of 30
strokes, some of which may be used as ground truth in other tests
but are prevented from synthesizing their own paths in a hold-
one-out scheme. The library strokes are, however, disjoint from
the guide image strokes shown to the subject above the test pair.
In the naive method, each test stretches a single library example
chosen randomly from a set of ten relatively straight library strokes,
rather than fitting multiple parts based on shape as in the RealBrush
condition. The strokes in the filter condition, whose goal is to
be easily recognized, have constant color over the entire stroke,
roughly matched to the ground truth. The strokes are all rendered
in blue to prevent color preferences from affecting the results.

Study 2: Smearing. The second study attempts to evaluate
the effectiveness of using smearing operator to approximate paint
streaking behavior in oil media. To avoid the influence of the
color choice, we show crossing strokes using blue as background
and red as foreground consistently as with all of our exemplars
(Figure 15e-g). The ground truth pool contained 10 examples,
and the corresponding RealBrush conditions were drawn in our
application to roughly match the crossing shape of the ground
truth, using 9 possible exemplars in a hold-one-out scheme. The
instructions described, “paint strokes crossing over each other.” In
other respects the study design was as in the first study above.

Study 3: Smudging. In the third study, the guide image showed
five smudges of blue paint. However, the test images were shown
in black-and-white because the color model used in our system is
insufficient to capture the subtlety of this effect well enough to
avoid detection when compared with real smudges (Figure 16d,e).
Using grayscale allows us to factor out the color influence and only

correct / count (%)
study naive method RealBrush
1: single stroke | 462 /736 (63%) | 360/736 (49%)
2: smearing 703 /760 (93%) | 4877760 (64%)
3: smudging 673 /688 (98%) | 413 /688 (60%)

Table 1: Results for three user studies. Subjects were asked to
identify real vs. synthetic strokes. In one condition the synthesis
method was naive, while in the other condition strokes were gen-
erated by methods in Sections 5-6. Results are reported as ratios:
pairs correctly identified over pairs shown. If the synthesis method
effectively matches the medium, subjects will be forced to guess,
leading to an expected 50% ratio. On the other hand, less effective
approaches will be correctly identified more often, leading to higher
ratios. In each study the RealBrush condition is more effective than
the naive approach, with statistical significance.

evaluate the effectiveness of the smudging operator. Accordingly
the instructions are modified describing “black-and-white photos
below.” The RealBrush condition smudges are based on a library
of 10 exemplars, whereas the naive approach uses the “smudge”
tool in Adobe Photoshop. (see Figure 15h.)

7.2 Study Results

Our subjects were recruited on Amazon’s Mechanical Turk, and
restricted to US-only “workers” who were paid $0.20 per task
(“HIT”), which they typically completed in a few minutes. In the
first study, a single worker could perform as many as five HITs for
oil and five for watercolor, while in the second and third studies
workers could perform up to five HITs per study. Most workers
did just one HIT in any study, and in total 139 unique subjects
participated. For each of the three studies 100 HITs were posted,
from which, respectively, data from 92, 86 and 95 were retained
after omitting HITs from workers who failed to correctly identify
the 10 filter images.

Table 1 shows the results of these studies. In each, a Bonferroni
corrected, randomized permutation test on the distributions shows
that the naive approach and the RealBrush methods perform differ-
ently with statistical significance (p < 0.01). In the case of single
strokes the RealBrush method appears to have been indistinguish-
able from real photographs. While less effective, the smearing and
smudging methods still perform well and clearly outperform the
naive methods.

8 Results and Discussion

We gave our prototype painting application to artists to experiment
with the media we have acquired. Some paintings are in Figure 19.
These exhibit a wide range of styles and effects. The flowers and
ocean sunset use plasticine for single strokes, smearing, and smudg-
ing, resulting in smooth textures. The tiger uses oil paint and little
smearing, while the bird uses oil smudging to significant effect.
The dancer’s simple pencil line work demonstrate the quality of
our synthesis for long strokes. The train and landscape mix media,
including oil, watercolor, pencil, and lipstick, which underscores
the utility of supporting many artistic media. Figure 18 shows that
our smudging tool can be used to manipulate photographs for a
painterly effect.

The first result of our evaluation is that for common natural media
(oil and watercolor), synthesized individual strokes are indistin-
guishable from real examples to casual viewers. Though not part
of the evaluation, other media with similar texture properties such
as plasticine, pencil, charcoal, and lipstick, can also be plausibly
reproduced. Off-line texture synthesis handles the harder cases such
as sponge and glitter strokes. One consideration is that we do not

(@ (b) © (d) © ® @
Figure 16: Synthesis limitations. (a) shows a toothpaste smudging
example that will not be successfully reproduced using our synthe-
sis approach. (b-g) shows side by side comparison of an exemplar
(left) with the synthesis result (right). (b,c) lip gloss. Only using the
lightness of exemplars fails to reproduce the color of the sparkles.
(d,e) oil smudging. The textures are faithfully reproduced, but our
simple color model fails to mimic hue changes inside the interaction
region. (f,g) plasticine smearing. The textures and colors in the in-
teraction region are plausibly reproduced, but the foreground stroke
boundary remains untouched leaving an artificially clean look.

specifically handle lighting artifacts during exemplar acquisition.
For example, thick media such as toothpaste (see Figure 16a) may
cast shadows, and wet media such as lip gloss (see Figure 16b)
may have specular highlights. Since our matching is rotation in-
variant, synthesized strokes may have inconsistent lighting effects
as a result. For our exemplar libraries, we capture the media us-
ing overhead lighting to mitigate these artifacts. Another limitation
lies in our color replacement model. We only use the lightness of
the exemplars to modulate the synthesized strokes, therefore any
color differences within the exemplars will be lost. For example,
the sparkles in Figure 16b are not well reproduced in the result in
Figure 16c. Texture distortion due to warping is reduced by our
piecewise matching technique, but can still be observed in some re-
gions, such as Figure 16¢ and the oil sponge and glitter in Figure 8a.

The second result of our evaluation is that synthesized smears and
smudges often look plausible, but are not indistinguishable from
real examples. We believe this is largely due to the difference
in color mixing, which we leave as future work. For smearing,
Figure 15f,g shows that the synthesized color in the interaction
region is different from that of the exemplar. For smudging, a hue
shift (from dark blue to cyan) can be observed from the exemplar
in Figure 16d. Our use of simple alpha blending in the color
integration step results in transition from dark blue to gray in
Figure 16e. Regardless, in practice this is not a serious limitation
as smudges and smears generally occur in complex paintings amid
many strokes, where fine details are less noticeable (see Figures 14
and 19). For some media interactions, our factorized model
assumptions do not hold. We assume that smearing synthesis
does not alter anything outside the foreground stroke’s silhouette.
However, for some media, the silhouette may be changed slightly,
as with plasticine stroke in Figure 16f. Our approach plausibly
reproduces the textures and colors within the silhouette, but leaves
the foreground stroke shape untouched which gives an artificially
clean look (Figure 16g). For smudging, some challenging media
such as toothpaste are not handled well by blending the smudging
operator with the background strokes. Due to strong textures in
toothpaste, the synthesized texture in the interaction region may not
match the textures in the background stroke (see Figure 16a).

Figure 17 shows stroke synthesis results from Microsoft Fresh
Paint, a commercial oil paint application based on state of the art re-
search [Baxter and Govindaraju 2010; Chu et al. 2010], for compar-
ison with Figure 14. We achieve comparable visual quality, while

Figure 17: Test strokes in Microsoft Fresh Paint [Baxter and Govin-
daraju 2010; Chu et al. 2010], generating oil strokes, smeared col-
ors, and smudging with a dry brush, for comparison with Figure 14.

our data-driven approach produces richer textures and organic ap-
pearance. An important advantage of our approach is our support of
a broader range of media. Conversely, our synthesized appearance
is harder to predict or control—a small change in the stroke path
might lead to different matched exemplars with disparate appear-
ances. However, this is arguably similar to the physical painting
process where strokes can have unpredictable appearances, espe-
cially for novices. Additionally, since our exemplar strokes encode
the experts’ techniques, we often found that poorly made query
paths result in aesthetically pleasing synthesized strokes.

Currently, we do not support “scribble strokes,” where the stroke
overlaps itself, due to the use of MBA to compute the u, v param-
eterization (Section 5.1), which can limit paint mixing on-canvas.
This is not a fundamental limitation, as alternative mechanisms for
computing the parameterization may not have this problem. Mean-
while, our smudging functionality provides an easy alternative for
paint mixing (see Figures 1b and 19e). Another limitation is that
synthesis is performed on mouse-up. Both the piecewise match-
ing optimization and the detection of overlap regions require the
knowledge of the whole query stroke. Future work might investi-
gate synthesizing mid-stroke, possibly using a sliding window for
optimization.

For a 1000x1000 canvas, synthesizing one stroke takes from 0.5 to 1
seconds, depending on the stroke length and library size. Due to the
rotation invariant nature of the matching feature vector, roughly 20
strokes with different thickness and curvature profiles are enough
to avoid noticeable repetitions of the same exemplar segments.
Though increasing the library size diversifies the synthesis appear-
ance, we do not find significant perceptual quality improvement.
The matching performance scales sub-linearly with the library size
depending on the nearest neighbor search package. For our chosen
canvas size, the performance bottom-neck lies in the image manip-
ulations for stroke vectorization, color integration, and exemplar
warping. For synthesizing a query stroke, the performance is con-
stant in the number of existing strokes on the canvas, but heavily
depends on the canvas resolution. On the contrary, a vector-based
approach that does not flatten the canvas might perform badly as the
stroke count goes up, which often happen in real painting scenarios.
All our pixel manipulation is implemented in unoptimized C++ on
a single core, so could be improved significantly. The texture syn-
thesis takes minutes per stroke, but large portions are implemented
in MATLAB and may be optimized.

Conclusion. We present RealBrush, a fully data-driven system for
reproducing high fidelity natural media effects in real-time. We
have shown that RealBrush is usable by artists and creates re-

Figure 18: An additional benefit of our recursion assumption
(Section 3) is manipulating photographs. Here, lipstick smudges
were used for a painterly effect. The original photo is inset.

sults that casual users cannot distinguish from photographs. Fur-
thermore, we propose a factorized representation of natural media
painting with explicit assumptions about physical properties that
can motivate future research, and we make our data available to aid
that goal.

Acknowledgements

Special thanks to the contributing artists Daichi Ito, Chen Lifshitz
and Daniela Steinsapir. This work was supported by Adobe.

References

ANDO, R., AND TSURUNO, R. 2010. Segmental brush synthesis
with stroke images. In Proceedings of Eurographics — Short
papers, 89-92.

BAXTER, W., AND GOVINDARAJU, N. 2010. Simple data-driven
modeling of brushes. In Proceedings of 13D, 135-142.

BAXTER, W. V., WENDT, J., AND LIN, M. C. 2004. IMPaSTo:
A realistic, interactive model for paint. In Proceedings of NPAR,
45-56.

CHU, N., AND TAI1, C.-L. 2005. MoXi: Real-time ink dispersion
in absorbent paper. In Proceedings of SIGGRAPH, 504-511.

CHU, N., BAXTER, W., WEI, L.-Y., AND GOVINDARAJU, N.
2010. Detail-preserving paint modeling for 3d brushes. In
Proceedings of NPAR, 27-34.

DARABI, S., SHECHTMAN, E., BARNES, C., GOLDMAN, D.,
AND SEN, P. 2012. Image melding: combining inconsistent
images using patch-based synthesis. ACM Transactions on
Graphics 31, 4, 82:1-82:10.

DIVERDI, S., KRISHNASWAMY, A., AND HADAP, S. 2010.
Industrial-strength painting with a virtual bristle brush. In
Proceedings of Virtual Reality Science and Technology, 119—126.

DIVERDI, S., KRISHNASWAMY, A., MECH, R., AND ITO, D.
2012. A lightweight, procedural, vector watercolor painting
engine. In Proceedings of I3D, 63-70.

HJELLE, @. 2001. Approximation of scattered data with multilevel
b-splines. Tech. rep., SINTEF.

Hsu, S. C., AND LEE, I. H. H. 1994. Drawing and animation
using skeletal strokes. In Proceedings of SSIGGRAPH, 109-118.

KiM, M., AND SHIN, H. J. 2010. An example-based approach
to synthesize artistic strokes using graphs. Computer Graphics
Forum 29,7, 2145-2152.

KWATRA, V., SCHODL, A., ESSA, 1., TURK, G., AND BOBICK,
A. 2003. Graphcut textures: Image and video synthesis using
graph cuts. ACM Transactions on Graphics 22, 3, 277-286.

Lu, J., Yu, F., FINKELSTEIN, A., AND DIVERDI, S. 2012.
Helpinghand: Example-based stroke stylization. In Proceedings
of SIGGRAPH, 46:1-46:10.

PITIE, F., KOKARAM, A., AND DAHYOT, R. 2007. Automated
colour grading using colour distribution transfer. Computer
Vision and Image Understanding 107, 1, 123-137.

RITTER, L., L1, W., CURLESS, B., AGRAWALA, M., AND
SALESIN, D. 2006. Painting with texture. In Proceedings of the
Eurographics conference on Rendering Techniques, 371-376.

SCHRETTER, C. 2005. A brush tool for interactive texture
synthesis. ICGST International Journal on Graphics, Vision and
Image Processing 6, 5, 55-60.

VAN HAEVRE, W., VAN LAERHOVEN, T., DI FIORE, F., AND
VAN REETH, F. 2007. From dust till drawn: A real-time
bidirectional pastel simulation. The Visual Computer, 925-934.

WANG, B., WANG, W., YANG, H., AND SUN, J. 2004. Efficient
example-based painting and synthesis of 2D directional texture.
IEEE Trans. Visualization and Computer Graphics, 3, 266-277.

XIE, N., LAGA, H., SAITO, S., AND NAKAJIMA, M. 2011.
Contour-driven sumi-e rendering of real photos. Computers &
Graphics 35, 1, 122-134.

XIE, N., HACHIYA, H., AND SUGIYAMA, M. 2012. Artist
agent: A reinforcement learning approach to automatic stroke
generation in oriental ink painting. In Proceedings of the
International Conference on Machine Learning, 153—160.

XU, M., AND DONG, J. 2006. Generating new styles of
chinese stroke based on statistical model. In Proc. International
Multiconference on Computer Science and 1.T., 215-222.

XU, S., TANG, M., LAU, F. C. M., AND PAN, Y. 2004. Virtual
hairy brush for painterly rendering. Graphical Models 66, 5.

XU, S., XU, Y., KANG, S. B., SALESIN, D. H., PAN, Y., AND
SHUM, H.-Y. 2006. Animating chinese paintings through
stroke-based decomposition. ACM Transactions on Graphics 25,
2,239-267.

Xu, S., TAN, H., Jia0o, X., LAU, F., AND PAN, Y. 2007. A
generic pigment model for digital painting. Computer Graphics
Forum 26, 609-618.

YAN, C.-R., CHI, M.-T., LEE, T.-Y., AND LIN, W.-C. 2008.
Stylized rendering using samples of a painted image. [EEE
Trans. Visualization and Computer Graphics 14, 2, 468-480.

ZENG, K., ZHAO, M., XIONG, C., AND ZHU, S.-C. 2009. From
image parsing to painterly rendering. ACM Transactions on
Graphics 29, 1.

ZHOU, S., LASRAM, A., AND LEFEBVRE, S. 2013. By-example
synthesis of curvilinear structured patterns. Computer Graphics
Forum 32, 2.

Figure 19: Example artwork by contributing artists. Used with permission. Details in Section 8.

