
Camouflaging an Object from Many Viewpoints

Andrew Owens1 Connelly Barnes2 Alex Flint3 Hanumant Singh4 William Freeman1

1MIT CSAIL 2University of Virginia / Adobe 3Flyby Media 4Woods Hole
Oceanographic Inst.

Abstract

We address the problem of camouflaging a 3D object
from the many viewpoints that one might see it from. Given
photographs of an object’s surroundings, we produce a sur-
face texture that will make the object difficult for a human to
detect. To do this, we introduce several background match-
ing algorithms that attempt to make the object look like
whatever is behind it. Of course, it is impossible to exactly
match the background from every possible viewpoint. Thus
our models are forced to make trade-offs between different
perceptual factors, such as the conspicuousness of the oc-
clusion boundaries and the amount of texture distortion. We
use experiments with human subjects to evaluate the effec-
tiveness of these models for the task of camouflaging a cube,
finding that they significantly outperform naı̈ve strategies.

1. Introduction

A leopard’s spots, an octopus’s mottled skin – the elabo-
rate ways that animals hide themselves have long fascinated
students of biology and perception. What makes these ani-
mals hard to see?

Over the years, biologists and vision scientists have dis-
covered many camouflage strategies. Perhaps the most fa-
miliar of these is background matching, which describes an-
imals that avoid detection by having colors and textures on
their bodies that are similar to those of their natural habi-
tats. But there are many strategies that work by thwart-
ing other visual processes, such as perceptual grouping and
recognition. There are animals, for example, that obfuscate
their body outlines with high-contrast markings, a strategy
known as disruptive coloration, and others whose bodies
have evolved to look like uninteresting objects such as twigs
and leaves, a strategy known as masquerade [23].

While this research has uncovered many of the principles
behind camouflage, there has not been much attention de-
voted to the problem of automatic camouflage, where these
perceptual principles are put directly into practice via algo-
rithms. In this paper, we formulate a camouflage problem

Figure 1: Four views of a camouflaged box. We studied
algorithms for designing the pattern that is drawn on the
box’s surface: here we show the model Interior MRF (Sec-
tion 4.3), which tries to hide seams at the box’s occlusion
boundaries and on its interior. For demonstration purposes,
we printed the pattern on paper and wrapped it around a real
box; in the rest of the paper we render a synthetic box.

and compare several algorithms for solving it. Specifically,
our goal is to determine which surface pattern will best cam-
ouflage a 3D object from the many different viewpoints that
one could see it from (Figure 1).

While camouflage is interesting as a scientific topic,
there are also many applications. One of these is to hide un-
sightly objects such as utility boxes, an idea that has been
playfully explored by public artists [4]. Camouflage can
also be used to observe a scene while remaining hidden, and
bird-watchers and hunters often conceal themselves with
camouflaged clothing, or by staying in special enclosures.

Camouflage is intimately connected with human and
computer vision. While computer vision provides detection
strategies, e.g. for objects [11] and boundaries and salient
regions [15], camouflage provides strategies to avoid being
detected by these cues. Thus we view camouflage as the in-
verse problem of object detection. That is, we wish to solve
the object non-detection problem: to make an object whose
appearance is not detectable.

1

(a) Caterpillars (b) Cuttlefish

(c) European Nightjar (d) Zebras

Figure 2: Animals use many strategies to trick the visual
system. (a) Caterpillars masquerade as twigs [18]; (b) Cut-
tlefish change their skin pattern and use muscles to add geo-
metric bumps or ripples; (c) A European Nightjar uses back-
ground matching and disruptive coloration; and (d) there are
many hypotheses about the function of Zebras’ stripes [21].

Our technical approach is inspired by the remarkable
camouflage abilities of cephalopods such as octopuses and
cuttlefish (Figure 2). These animals observe the surround-
ing environment and then display complex patterns on their
skin for concealment [5]. By analogy, we modularize the
camouflage problem into two stages: capturing the scene
and computing a camouflage pattern. In the first stage (Sec-
tion 3), we take photographs from the views that we wish
to hide the object from, and then we place a synthetic 3D
object into the scene (always a box shape in our experi-
ments). In the second stage (Section 4), we decide how
to color the surface texture. This requires modeling and
making trade-offs among the perceptual cues that could give
away the presence of the object. Our algorithms include a
naı̈ve model as well as more sophisticated models that bal-
ance between these factors. Finally, we use psychophysical
experiments on Amazon Mechanical Turk (Sections 5, 6) to
verify that our camouflage algorithms hide objects signifi-
cantly better than a naı̈ve strategy.

Our technical contributions include: (1) new proposed
models for camouflage of 3D objects; (2) a dataset of 37
scenes that can be used to objectively compare camouflage
models; and (3) a study methodology for comparing cam-
ouflage methods according to human visual perception.

2. Related work

The related work spans biological camouflage, computer
vision, and computer graphics.

Biological camouflage The algorithmic models we dis-
cuss are based on the strategy of background matching, but
there are many other camouflage strategies found in nature.
These strategies include disruptive coloration, which at-
tempts to hide the object’s true outline, and countershading,
which attempts to make the visual cue of illumination less
detectable by shading the bottom of an animal more lightly
than the top. Early work in this area, such as the seminal
work of Hugh Cott [7], provided extensive descriptions of
these phenomena, while recent work has tested these ideas
with experiments. These strategies, and the state of current
research, are discussed extensively in a recent textbook on
animal camouflage [23].

Computational camouflage There has been other work
that applies computational methods to problems in camou-
flage. For example, Reynolds [20] uses genetic program-
ming and a human in the loop to find effective camouflage
patterns for textured 2D backgrounds. There is also ongo-
ing work that estimates effective camouflage patterns using
crowdsourced camouflage games [1]. In contrast, our work
attempts to hide a 3D object from many views simultane-
ously, and we focus on techniques that are fully automatic.
And rather than finding camouflage patterns that work well
in multiple places, ours are tailored for specific 3D loca-
tions. Additionally, there has been work that uses simple
computer vision models to “break” camouflage [24], and
work in computer graphics on “camouflage images” [6] al-
lows one to insert hidden images into a picture.

Texture and MRFs Our work takes inspiration from tex-
ture synthesis [14, 10, 17]. In particular, we introduce cam-
ouflage models based on Markov random fields (MRFs) that
are reminiscent of those used in shift-map image editing
[19], a method that can be used for texture synthesis or
other image manipulations. Our MRF energy function is
also similar to that of seamless montage [13], which aligns
pictures on a 3D surface while minimizing seams.

The problem of image inpainting [2, 8] is closely related
to, yet distinct from, our camouflage problem. With inpaint-
ing, one removes an object from an image by replacing it
with a plausible background texture. In our case, due to our
capturing procedure we already know the background, so
we could exactly solve the single-view inpainting problem.
Furthermore, we wish to camouflage a 3D object from mul-
tiple viewpoints, which raises a problem that is not usually
addressed in inpainting methods: that of resolving the many
conflicting opinions of very different images.

3. Capturing scenes for camouflage

To camouflage an object, we first need to capture im-
ages of the surrounding environment. For each scene, we
capture approximately 10-25 photographs, each represent-
ing a different viewpoint that the object should be hidden

θ

Viewpoints!

r
Scene!

Object to!
Camouflage!

Figure 3: Our capture setup. A real scene contains an object
that is to be camouflaged. We capture the scene without the
object from a wide angular range θ of camera viewpoints.
In some scenes we also vary the height from the ground and
object-camera distance r.

from. During capture, no camouflaged object is actually
placed in the scene, and only pictures of the background are
collected. An example capture setup is shown in Figure 3.
Generally, these pictures are taken from similar distances to
the target object, but with varying spherical angles. Finally,
we estimate the camera pose using structure from motion
[22] and place a synthetic 3D object into the scene using a
simple user interface. In our studies, this object is always
cube-shaped (more precisely, a rectangular cuboid).

We focus on computing effective camouflage patterns,
and we defer to other studies for many practical tasks of ar-
tificial camouflage. These include the task of displaying the
pattern (e.g. on a screen or printed surface), and conceal-
ing the object from shadows and illumination gradients (or
removing these with lighting). Furthermore, objects with
other shapes may pose special challenges, e.g. texture dis-
tortion due to curved surfaces or concavities. Many of these
issues have been studied in 3D texture synthesis work [16].

4. Our camouflage models

In this work, we study background matching, the cam-
ouflage strategy that hides an object by making it look like
whatever is behind it. Since it is impossible to make an ob-
ject look exactly like the background from every viewpoint,
there are trade-offs that must be made. How important is
it to conceal the object’s occlusion boundaries? Are some
viewpoints more important to be concealed from than oth-
ers? We address these questions, designing models that ex-
plore these different aspects of background matching.

4.1. Naı̈ve model: mean coloration

One simple solution is to color the object so that it
matches the background’s coarse color statistics. Thus for
the Mean model, we project each image onto the cube and
then estimate the mean color at each texel (i.e. at each po-
sition on the object’s surface). This algorithm captures the
coarse colors of the background, but the result is blurry and
often conspicuous (Figure 4a).

4.2. Random and greedy viewpoint models

Rather than matching coarse background statistics, we
consider the alternative of matching a small number of
viewpoints more precisely. To motivate this idea, suppose
that we colored the object by projecting an image onto it.
This would make the object completely invisible from the
chosen viewpoint; however, it would often be hidden from
nearby views as well.

This leads naturally to an algorithm. We choose an im-
age and project it onto the cube, filling in the faces that are
visible from that viewpoint. We then choose another view
and project it onto the uncolored cube faces, repeating until
the whole cube is filled in.

With the goal of understanding how the choice of view-
point matters, we consider two versions of this model. The
first of these models, Random, simply projects images onto
the cube in a random order. However, this model leads to
textures that appear stretched or distorted (Figure 4b). For
example, if we were to project an image onto a face that
was very tilted with respect to the viewing direction, and
then viewed the result from a nearby position where the
face was less tilted, then we’d see significant distortion ar-
tifacts; the face may even be occluded from many nearby
views. On the other hand, if we were to project an image
onto a fronto-parallel face, then the texture would look very
similar from nearby views. We call this viewpoint stability.
Thus for our second model, which we call Greedy, we only
project an image onto faces that are observed from an angle
of less than 70◦. And rather than projecting the images in
a random order, we always pick the viewpoint that sees the
most faces from such an angle1.

We note the conceptual similarity between viewpoint sta-
bility and the generic viewpoint principle [12]. Informally,
we prefer to project images that see “generic” views of the
surface texture, rather than “accidental” ones.

4.3. MRF models for hiding boundaries

Often what gives away the presence of an object is a mis-
match in texture along occlusion boundaries. These occlu-
sion boundaries pose a special challenge for camouflage,
because from different viewpoints the occluded background
may change drastically. Also, since the object is often com-
posed of multiple textures, the seams between textures on
the interior of the object are another potentially important
detection cue (both cues can be seen in Figure 4c).

We develop a Markov random field (MRF) framework
that trades off between avoiding these three detection cues:
occlusion matching, interior seams, and viewpoint stability.
Our formulation is similar to MRF-based texture synthesis
and hole-filling methods [19, 13]. We divide the mesh sur-

1If a face is never seen from a shallow angle, then we allow it to be
colored by any view. Ties between viewpoint choices are broken randomly.

(a) Mean (§ 4.1) (b) Random (§ 4.2) (c) Greedy (§ 4.2) (d) Interior MRF (§ 4.3) (e) Boundary MRF (§ 4.3)

Figure 4: Model comparison. Two views of cubes synthesized by each model (top and bottom). The Mean coloration model
(a) produces a blurry result. The Random projection model (b) can produce textures that look distorted; the Greedy projection
model (c) picks undistorted textures that may not match the image content well. These two methods are randomized, and
for illustration purposes we picked random seeds where these failure modes occurred. The Interior MRF (d) trades off
between concealing occlusion boundaries, texture distortion, and interior seams. The Boundary MRF (e) chooses a pattern
that matches the background for a cluster of viewpoints, allowing seams to occur only at face boundaries.

face into texels (256×256 texels per face), and the inference
problem is to label each texel with an index (v, p) where v
and p identify a view and a pixel on that view (which defines
the texel’s color). In our first model, we connect the texels
as a grid graph and add edges between texels on neighbor-
ing faces (Figure 5a), while in our second model we assign
a label to each face and connect adjacent faces.

We use a label space similar to that of [13] (Figure 5b): if
a texel is observed in view v at pixel p, then we add {(v, p+
∆p) | ∆p ∈ T} to the label space, where T is a set of
translations. In our models, we use either T = {(0, 0)}, in
which case labels simply correspond to views, or we use a
3× 3 grid. We minimize the energy function

D({xi}) =
∑
i

Ei(xi) +
∑
i,j

Eij(xi, xj), (1)

where xi is the label for texel i, and Ei and Eij are the data
and smoothness costs.

For the data cost, we trade off between matching occlu-
sion boundaries and choosing a texture that comes from a
stable view of the face:

Ei(xi) = EO
i (xi) + ES

i (xi), (2)

where EO
i and ES

i are the occlusion-matching and stability
costs. We define the occlusion penalty to be

EO
i (xi) =

1

m

m∑
j=1

wij ||c(xi)− cij ||, (3)

where c(xi) is the label’s corresponding color, cij is the
color observed at the projection of texel i into image j, and
m is the total number of views. If the texel is near an oc-
clusion boundary for a particular view, then the normaliza-
tion factor wij is set to nt/nj , where nt is the total number
of texels and nj is the number of occlusion texels in view
j; when the texel is on the interior we set wij = 0. We
consider a texel an occlusion texel if it is within a certain
distance of an occlusion edge (we use 10% of the cube side
length as the threshold), and we blur the input images for
robustness to high-frequency textures.

For the texture stability cost, we estimate how distorted
the texture will appear when seen from other views:

ES
i (xi) =

1

m

m∑
i′=1

min(ρ(J(v(xi), i
′, fi)), τ). (4)

Here v(xi) is the view that the texel has been assigned
through its label, and fi is the texel’s face. The term
J(i, i′, f) is the Jacobian at the center of face f of the
change in pixel coordinates (p′x, p

′
y) at view i′ relative

to pixel coordinates (px, py) in view i: J(i, i′, f) =
∂(p′x, p

′
y)/∂(px, py). The stability function ρ sums over

both of the eigenvalues of J the penalty ρ*(λ) =
αmax(λ − γ, 0)2, where λ is an eigenvalue. We set the
parameters to discourage stretching factors that arise due to
very tilted views, and to limit the contribution due to any
single pair of views, setting γ = 2, α = 20, and τ = 60.

To investigate the trade-offs between these different de-

tection cues, we study two variations of this MRF model.
We call the two resulting models the Interior MRF and the
Boundary MRF. The two models share the same data costs
but have different strategies for achieving smoothness on
the cube interior. Results are shown in Figure 4.

Interior MRF Our first MRF model attempts to hide all
texture edges on the interior of the cube. We define a
smoothness cost between adjacent texels xi, xj that penal-
izes seams, similar to the smoothness term in [19]:

EI
ij(xi, xj) = αI

√
||c(xi)− c̃i||2 + ||c(xj)− c̃j ||2, (5)

where c̃i is the color texel i would have if it were given the
label xj , and similarly for c̃j . In more detail, suppose that in
view v the texels i and j project to pixels pi and pj respec-
tively, and that texel j is labeled with (v, pj + ∆p). Then
the prediction c̃i is the color at pixel pi + ∆p in view v.
In particular, if the two labels come from the same image
and use the same translation, then the cost is zero. To allow
the MRF to synthesize texture when hiding seams, we en-
able label translations, setting T = {−d, 0, d}× {−d, 0, d}
where d = 30 pixels. To balance the seam cue with the
occlusion cues, we set αI = 32. We use graph cuts with
α-expansion [3] to find a labeling with this model.

Boundary MRF It is natural to ask whether some interior
seams are more conspicuous than others. We explore this
idea in our second MRF model, the Boundary MRF, which
minimizes the same data costs as Interior MRF but only al-
lows seams to occur at boundaries between faces (whereas
the Interior MRF allows them to occur anywhere on the in-
terior). The assumption behind this model is that for poly-
hedral shapes, face boundaries are relatively “safe” places
to put seams: a seam on the interior of a face will be visible
from every view that sees the face, but a boundary seam will
only be visible to views that see both faces.

To remove seams on faces, we require all of the texels
on a face have the same label. Thus for efficiency reasons
we assign a label to the whole face, rather than to individual
texels2. The data cost for one of these face “supernodes” is
the cost of assigning the label to all of its texels:

Ef (xf) =
∑
i∈Ff

Ei(xf), (6)

where xf is the label for this face, and Ff is the set of texels
belonging to this face. Adjacent faces are connected to-
gether, forming a six-node MRF. For the smoothness cost,
we use a very large Potts cost, penalizing adjacent faces
with different labels, which effectively requires the solution
to have minimal seams. Since we do not allow seams on

2A very similar (but harder to optimize) model can be obtained by mod-
ifying the smoothness cost in Interior MRF: adding a large Potts cost for
texels on the same face and a smaller Potts cost for between-face edges.

(b) Label space for one texel!(a) MRF!

…
…!

Figure 5: The Interior MRF is structured as a grid graph where
each texel is a variable (a). Texels near face boundaries (in blue)
have special occlusion-boundary costs. Each texel is labeled (b)
with a pixel from one of the views, plus a shift that comes from
a grid; this grid is centered on the texel’s projection in each view.
In Boundary MRF, we use the same data costs, but texels on each
face are combined into a single node, and we do not allow shifts.

faces, we disable pixel translations, setting T = {(0, 0)}.
We solve for the optimal solution using brute-force search.

For typical scene configurations (and cube-shaped ob-
jects), the solutions contain projections from just two rep-
resentative viewpoints: one view is usually projected onto
three faces, and another is used for the rest. In this way, the
model is similar to the Greedy model. Both models choose
a small number of representative views to project onto the
cube, but the Boundary MRF decides on these views using
explicit data costs instead of viewing-angle heuristics.

5. Psychophysical study design

We evaluate our camouflage algorithms with psy-
chophysical studies on Amazon Mechanical Turk. Our ex-
perimental setup resembles work in visual search [25] and
also studies that compare the effectiveness of different cam-
ouflage patterns [1, 9]. We show subjects a sequence of
pictures: some contain a box and some do not. They are
instructed to press the y key if they see a box and n if they
do not. If they answer y, they must click on the box. We use
a distance threshold to test whether their click is near the
box (8% of the image width). They are also told that after
45 seconds, it will no longer be possible to respond. After
the user responds or times out, we outline the box or state
that there was no box. To make users comfortable with the
setup, we include a short practice (6 images).

To avoid possible interference effects, we show each sub-
ject examples from only one algorithm. Since the task is
easy if one knows the location of the box, we only show
users one viewpoint per scene, which is chosen at random
for each user. We randomly (50% chance) pick whether the
image contains a box. To ensure that the image being shown
was not used as an algorithmic input, we use a “leave-one-
out” procedure. For each image, we synthesize a camou-
flaged box using all other photos of the scene and then ren-
der from the held-out view. To exclude poorly performing

Mechanical Turk workers, we also include eight easy im-
ages, and exclude users who perform poorly on them.

We use two evaluation metrics. First, we measure con-
fusion rate, the probability of a subject answering incor-
rectly. Second, we measure time-to-find, the amount of time
it takes the user to press y, given that there actually is a box
in the scene and that the user subsequently clicks on it. A
good camouflage algorithm would thus cause a user to have
a high confusion rate and large time-to-find. In our evalu-
ation, we “pool” these values per subject: we compute the
subject’s median time-to-find and their confusion rate, and
we test whether users put into one algorithmic treatment
perform differently than those put into a different treatment.

6. Results

6.1. Quantitative results

We evaluated the five models described in Section 4 us-
ing our study design. We found these methods all outper-
form the naı̈ve model on both the time-to-find and confusion
rate evaluation metrics (Table 1). Furthermore, we found
that the MRF methods significantly outperform the random
projection methods on time-to-find, while all of the best-
performing methods have similar confusion rates.

For confusion rate, we tested for significance using a
two-sided t-test, and for the (long-tailed) time-to-find met-
ric we used the two-sided Mann-Whitney U . Since we per-
formed multiple tests (compared every algorithm with every
other on two metrics) we used the Holm-Bonferroni method
to control the number of false discoveries at the significance
level of 0.05 (we essentially use a significance threshold of
0.01 after correction).

Both MRF-based methods had significantly higher time-
to-find than the projection-based methods. In particular,
the median time for Boundary MRF was more than a half-
second greater than that of Greedy (p < 10−6 for the
time-to-find comparison between these models), and Inte-
rior MRF outperformed Greedy by more than 200ms (p =
0.006). However, the difference between the two MRF
models on time was not significant (p = 0.027).

While these three models differed on time, there was not
a large difference between their confusion rates. The MRF-
based methods’ confusion rates were about 2% higher on
this metric than Greedy, but this difference was not sig-
nificant (p = 0.011 when comparing Interior MRF and
Greedy). Meanwhile, Interior MRF and Boundary MRF
methods had almost identical confusion rates, though the
former’s was insignificantly higher. Between the two
projection-based methods, we found that Greedy signifi-
cantly outperformed Random on confusion rate (p = 0.003)
but not on time (p = 0.394). All methods were significantly
better than Mean on both metrics (p < 10−6 for all compar-
isons). See the supplemental material for full statistics.

Model Confusion Time to find Overall time n
Uniform 0.03 ± 0.00 1.38s ± 0.03 1.42s ± 0.03 327
Mean 0.09 ± 0.00 1.70s ± 0.04 1.74s ± 0.03 328
Random 0.25 ± 0.01 2.59s ± 0.08 2.59s ± 0.06 288
Greedy 0.28 ± 0.01 2.66s ± 0.11 2.72s ± 0.08 309
Interior MRF 0.30 ± 0.01 2.90s ± 0.10 2.92s ± 0.08 299
Boundary MRF 0.30 ± 0.01 3.25s ± 0.13 3.27s ± 0.09 284

Table 1: Quantitative results. Higher is better. We report the
mean confusion rate and median time-to-find (Section 5).
We also include the overall time, which is the same as time-
to-find but with the median taken across all responses rather
than per user, and n, the number of users (each sees 37 im-
ages). The baseline Uniform gives the object a solid color,
acting as a lower bound on performance. Confusion rates
include both false positives and negatives (for comparison,
the chance of missing a true cube for Interior MRF is 46%;
see supplemental material for details). Standard errors for
time were computed using bootstrapping.

The fact that Boundary MRF and Interior MRF improve
over Greedy on time suggests that occlusion boundary mis-
matches and texture distortion are useful cues to conceal for
background matching. As one possible explanation for the
similar confusion rates, we note that all methods are based
on the same principle: that projecting a view onto the cube
will conceal it from nearby views. In some cases, there may
be few views that conceal the cube well. In this situation,
the observer may miss the cube only when their viewpoint is
close to the projected one; otherwise the imperfections will
be obvious enough that they will find the cube eventually.

6.2. Qualitative examples

We show representative results in Figure 6, and we show
multiple viewpoints for a small number of scenes in Fig-
ure 7. To illustrate the differences between the models, we
also compare the results of different models in Figure 8.

7. Discussion
Our work suggests that the best background match-

ing models must trade off between concealing different
cues, such as texture distortion (Greedy), occlusion match-
ing (Boundary MRF), and hiding interior seams (Inte-
rior MRF). While in general these goals appear to be in con-
flict, particular scenes show that one model will often excel
over its competitors. For example, in scenes where the ob-
ject is close to a backing wall or floor (Figure 8a), occlusion
cues are relatively easily to hide. In other scenes, thwarting
these occlusion cues is not enough, and interior seams or
texture distortion may be more important (Figure 8b).

We see our paper as opening two directions of future
work. First, while we have focused on creating patterns that
are effective in psychophysical studies, the task of convinc-
ingly displaying these patterns in the real world has chal-
lenges of its own, such as lighting and printing limitations.

Figure 6: One viewpoint from 20 (of 37) scenes used in our study. Camouflaged cubes have been placed in each one using
the camouflage model Boundary MRF (Section 4.3). Can you find them? Zooming is required. We sampled scenes randomly
after filtering by aspect ratio, and sorted them by their confusion rates from the psychophysical study (scenes with low
confusion rate shown first). We chose views where the cube is easier to find (many omitted views are substantially harder).
We used all of the viewpoints to compute the camouflage patterns, without the leave-one-out procedure used in the study.

Figure 7: Multiple views for selected scenes, camouflaged using the Boundary MRF model.

As an initial experiment in this area, we printed a camou-
flage pattern and wrapped it around a real box (Figure 1).
The result has visible color mismatches and shading effects.
Another direction is to explore different biological princi-
ples of camouflage. In this work we focused on background
matching, but there are many other strategies for camou-
flage in biology (Figure 2), such as disruptive coloration,

masquerade, actively emitting light, and changing shape.

In conclusion, we have presented and tested new mod-
els that camouflage an object from multiple viewpoints. We
performed human studies and found that our models im-
prove significantly over a naı̈ve camouflage model. Our re-
sults also provide insight into the cues that are important for
camouflage. They suggest that projecting viewpoints onto

(a) Boundary MRF vs. Greedy (b) Interior MRF vs. Boundary MRF (c) Greedy vs. Boundary MRF

Figure 8: Result comparison. We show cases where one model (left image) produces a better camouflage than another (right
image), as measured by confusion rate. In (a), the Boundary MRF chooses textures that match a planar background and a
textured scene well. In (b), the Interior MRF stitches together textures that match the backgrounds well, while the Bound-
ary MRF introduces warping and seam artifacts. In (c), the Boundary MRF chooses a texture that contains a conspicuous
table leg, which contributes little to the cost but is semantically important; in the second example it hides the box from one
cluster of viewpoints (pointing parallel to the log) but makes it conspicuous to others (those facing the log).

the cube is better than coarsely matching colors, and that it
can take significantly longer for someone to find the object
if these views are chosen well. Finally, our results suggest
that matching occlusion boundaries and modeling texture
distortion results in better camouflage, and that hiding all
interior seams may be less important. Our database, as well
as the source code for the algorithms and psychophysical
experiments, will be available to other researchers.

Acknowledgments. We thank Yair Weiss and the mem-
bers of Ruth Rosenholtz’s group for the helpful discussions.
This work was supported by NSF CISE/IIS award 1212928
and an NDSEG Fellowship to A.O. Photo credits for Fig. 2:
[18] and Flickr users 84884728@N03, giselaglb, schinker.

References
[1] Where is that nightjar? http://nightjar.exeter.ac.uk/

where-is-that-nightjar. Accessed: 2014-04-12. 2, 5
[2] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester. Image in-

painting. In ACM Trans. Graphics, 2000. 2
[3] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy mini-

mization via graph cuts. IEEE Trans. PAMI, 2001. 5
[4] J. Callaghan. Public art projects. http://joshuacallaghan.

com/publicart.htm. Accessed: 2014-04-12. 1
[5] C.-C. Chiao and R. T. Hanlon. Cuttlefish camouflage: visual per-

ception of size, contrast and number of white squares on artificial
checkerboard substrata initiates disruptive coloration. Journal of Ex-
perimental Biology, 2001. 2

[6] H.-K. Chu, W.-H. Hsu, N. J. Mitra, D. Cohen-Or, T.-T. Wong, and
T.-Y. Lee. Camouflage images. ACM Trans. Graphics, 2010. 2

[7] H. B. Cott. Adaptive coloration in animals. 1940. 2
[8] A. Criminisi, P. Pérez, and K. Toyama. Region filling and object re-

moval by exemplar-based image inpainting. Image Processing, IEEE
Transactions on, 2004. 2

[9] I. C. Cuthill and A. Székely. Coincident disruptive coloration. Phil.
Trans. of the Royal Society B: Biological Sciences, 2009. 5

[10] A. A. Efros and W. T. Freeman. Image quilting for texture synthesis
and transfer. In ACM Trans. Graphics, 2001. 2

[11] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan.
Object detection with discriminatively trained part-based models.
IEEE Trans. PAMI, 2010. 1

[12] W. T. Freeman. The generic viewpoint assumption in a framework
for visual perception. Nature, 1994. 3

[13] R. Gal, Y. Wexler, E. Ofek, H. Hoppe, and D. Cohen-Or. Seamless
montage for texturing models. In Com. Graph. Forum, 2010. 2, 3, 4

[14] D. J. Heeger and J. R. Bergen. Pyramid-based texture analy-
sis/synthesis. In ACM Trans. Graphics, 1995. 2

[15] X. Hou and L. Zhang. Saliency detection: A spectral residual ap-
proach. In CVPR, 2007. 1

[16] J. Kopf, C.-W. Fu, D. Cohen-Or, O. Deussen, D. Lischinski, and T.-
T. Wong. Solid texture synthesis from 2d exemplars. ACM Trans.
Graphics, 2007. 3

[17] S. Lefebvre and H. Hoppe. Parallel controllable texture synthesis. In
ACM Trans. Graphics, 2005. 2

[18] M. A. Noor, R. S. Parnell, and B. S. Grant. A reversible color
polyphenism in american peppered moth (biston betularia cog-
nataria) caterpillars. PloS one, 2008. 2, 8

[19] Y. Pritch, E. Kav-Venaki, and S. Peleg. Shift-map image editing. In
ICCV, 2009. 2, 3, 5

[20] C. Reynolds. Interactive evolution of camouflage. Artificial life,
17(2):123–136, 2011. 2

[21] G. D. Ruxton. The possible fitness benefits of striped coat coloration
for zebra. Mammal review, 2002. 2

[22] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: exploring
photo collections in 3d. In ACM Trans. Graphics, 2006. 3

[23] M. Stevens and S. Merilaita. Animal camouflage: mechanisms and
function. Cambridge University Press, 2011. 1, 2

[24] A. Tankus and Y. Yeshurun. Convexity-based camouflage breaking.
In Pattern Recognition, 2000. 2

[25] A. Toet. A high-resolution image data set for testing search and
detection models. TNO Human Factors Research Institute, 1998. 5

http://nightjar.exeter.ac.uk/where-is-that-nightjar
http://nightjar.exeter.ac.uk/where-is-that-nightjar
http://joshuacallaghan.com/publicart.htm
http://joshuacallaghan.com/publicart.htm

