1 Derivation of Band-Limited Expressions

Given a shader function f(z) and a band-limiting kernel k(x,w) where w
describes the width of the kernel, we wish to determine the convolution func-
tion

f(x, w) = / f(ak(z — 2’ w) da’, (1)
or equivalently,

fla,w) = /Oo fla — 2 )k(a',w) d'. (2)

Except as noted below, we will use a normalized Gaussian kernel with

standard deviation w as our band-limiting kernel:
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k(x,w) = e 2uw?, 3
() = e )

1.1 Identity Function
Let f(x) = x. Then,

flao,w) =

/2
m—x )e “2u? da’
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= e 2w2 dr’ —
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Note that the second mtegral evaluates to 0, since the integral from —oo to
0 has the same magnitude but opposite sign as the integral from 0 to oc.
Thus, we are left with

flz,w) =
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e 2w2 dxz’
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1.2 Absolute Value
Let f(z) = |z|. Note that

lz —x

,|_{x—x’ if o' <

' —x  otherwise.



This allows us to partition the integral as follows,
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where erf is the Gauss error function.

1.3 ceiling

Note that when z is not an integer, [z] = || + 1. The case when x is
an integer does not change the value of the integral, since its support has
measure zero. We can therefore treat the ceiling function in terms of the
floor function. Thus,

— —

ceil(z,w) = floor(z,w) + 1

1.4 cos
Let f(x) = cosx. Then,

/2
cos(z — x')e 22 da',

fla,w) =

w\/_



Using the identity
cos(aw — B) = cos avcos f + sin asin f3,

we substitute to get,

A~ 1 o0 12
flz,w) = / (cosx cos 2’ + sinx sin 2’ )e” 2a? dz’
wvV2Tm J o
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Note that the second integral evaluates to 0, since the portion from —oo
to 0 has the same magnitude but opposite sign as the portion from 0 to co.
Thus, we are left with

A 1
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flz,w) = / cosxcosx'e 22 dx’
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Letting 8 = ﬁ and b = 1, and using the fact that cosz’ and e #* are
both even functions this becomes
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Gradshteyn and Ryzhik [I] include a solution for the integral (equa-
tion 3.896-4), which we substitute and simplify:
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Jla,w) = ——=2 {5\/%6 w}
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1.5 floor

Note that by definition, fract(xz) = x—|x|. Therefore, |z| = z— fract(x). We
band-limit the floor function as a linear combination of the identity function
and fract. As shown in Section the identity function is unchanged under
band-limiting. Thus,

— —

floor(z,w) = x — fract(z,w)

1.6 fract
We define fract(x) = x — [z].

1.6.1 Gaussian Kernel (fract,)

We apply the convolution theorem to compute the convolution of fract(x)
with a Gaussian kernel.
We start with the Fourier series expansion for fract(x):

fract(z) = % + Z(an cos 2mnx + by, sin 2mnx)

n=1

1
a0:2/ rdx
0

1
a, = 2/ x cos(2mnx) dx
0

where

1
b, = 2/ xsin(2mnx) dx
0

The first coefficient, then is simply 1. To solve for a,, let © = x and
dv = cos(2rnz) dz. Then du = dz and v = ;- sin(2rnz). Using integration
by parts, we have
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To solve for b, let u = z and dv = sin(27mnx) dz, so that du = dx and
v = —5cos(2mnx). Using integration by parts again,

x 1 2 !
b, =2 [—2— cos(27mm)] +— [ cos(2mnx) dx
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Substituting these coefficients back into the Fourier series expansion for-
mula, we find

1 1
fract(x — Z— sin(2mnz).

™
n=1

From this, we can compute the Fourier transforms of fract and our Gaus-
sian kernel:

F [fract(z)] (k) = %5(1:) Y %z 60k +n) — 6(k —n)

7 { 1 629;22:| (k) _ 1 w\/%e_szﬂsz _ 6_2w2ﬂ,2k2
w21 w21

Observing that the coefficient of 0(k) is only relevant when k = 0, we
multiply these together to get

—ow2n2n2

Ze (6(k +n) — 8(k — n))

n=1

Finally, we take the inverse Fourier transform, which, by the convolution
theorem, results in the convolution of our original functions:

—2w2m2n?

1 oo
fx =5 Z ‘ sin(2mnx)

n=1

1.6.2 Box Kernel (fract,)

We use Heckbert’s technique of repeated integration [2] to derive the convo-
lution of fract(x) with a box kernel. This technique requires the computation
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of the first integral of fract:

= / fract(z'

We treat fract(z) as a continuous function with a slope of 1 almost every-
where and arbitrarily large slope in the neighborhood of integer values of x.
Note that this is consistent with the use of the Fourier series in the previous
derivation. We use the first fundamental theorem of calculus to find F"

b
F(b) — F(a) = / fract(z") dz’

We relate this integral to the integral from |a| to |b] as follows,

b 1] a b
/ fract(x") dx’ = fract(z')da' — | fract(z")d2' + [ fract(z") da’
a la] la] b]

The first term may be partitioned at integer values of 2’ as

Lo [b]+1
/ fract(x Z/ fract(z') da'’ —/ fract(x") dz’.
E n=

a)

Substituting, we get

[b]+1
F(b)—F(a) / fract(z") d2’ —/ fract(z") dz’ —/ fract(x") dx
n=|a] b
Note that, due to the periodicity of fract(x), we can subtract any integer
value from both bounds of integration without changing the value of the
integral. In particular, since n, |a], and |b] are all integers, the integral is
equivalent to

b—1[b]

n=

LbJ a—|a] 1
F(b)—F(a) = / fract(z") da' / fract(z') da'— fract(a") da’
la 0

Note that the integral in the first term no longer depends on n. In ad-
dition, since the bounds of the integrals in each term span a subset of the



range [0, 1], we can replace fract(z’) with 2’. Thus,

1

1 a—|a
F(b) — F(a) = (|b] — |a] +1)/0 a:’d:z:’—/o a:'da:'—/b_LbJ ' dx’
_ b —laj+1 (a—la))* 1-(b— (b))

2 2 2
_ |b] — a] + 1 — fract*(a) — 1 + fract®(b)
2
_ fract*(b) + |b] B fract*(a) — Laj'
2 2

Thus, we conclude that
 fract*(z) — | =]
= 5 .

Using Heckbert’s result, the convolution of fract(z) with a box kernel
with width w is given by,

fla,w) = % (F (H%) _F<$_%>>
_ fract® (a+ %) = fract? (¢ = 3) + |2+ 3] — | — 8]
2w

1.6.3 Tent Kernel (fracts)

We again use Heckbert’s technique of repeated integration to derive the con-
volution of fract(x) with a tent kernel. Since the second derivative of the
tent kernel consists of three impulses, we must compute the second integral
of the fract(x). Starting from the first integral of fract(z), derived above, we
wish to find

F(z) = /fmd2(‘§) il S %/fmctg(x) dz — %/ 2] do.

We compute the two integrals separately. As above, we compute the def-
inite integral and use the first fundamental theorem of calculus to determine
the indefinite integral. Starting with the left term, we relate the bounds of
integration to |a| and [b]:

1] 1 a 1 b
- fract* (') da’ — = | fract*(2')de' + = | fract®(2) da’.
2 J1a) 2 J1a) 2 )




We partition the first term at integer values of 2’ leaving us with

b]

= Z / fract?*(2') da’ — = fmctQ(x') dx’ — %/LHIJ fract? (') da’.
la] b

n=|a]

As above, the periodicity of fract(x’) means that subtracting any integer from
the bounds of integration does not affect the value of the integral. Thus, this
expression is equivalent to

o]

1 a—|a
— Z / fract?*(2') da’ — 5/ fract®* (') da’ — —/ fract®(x
0

n=|a|

Noting that the bounds of integration are all subsets of the range [0, 1], we
replace fract®(x') with the equivalent expression x'%:

|.bJ B |.aJ _l_ ]‘ /1 I/2 dx/ o l/a_LaJ .7:/2 dx/ o 1/1 37,2 d.ﬁU/.
2 0 2 /o 2 Jo—p)

Substituting for the integrals, we have

b] —laj+1 (a—la})® 1—(b—[0))’
6 6 6 ’

or equivalently,

1b] —la] fract®(a) N fract®(b)
6 6 6
Thus, the indefinite integral of % fract®(z) is

fract®(x) + ||
G .

We now turn our attention to % f; |2’ | dz’. By definition, this is equiva-

lent to b
1
5/ (' — fract(x")) dx’.

Substituting the known definitions for ff 2’ dr’ and fab fract(x) dx’, we have

v —a* <fmct2(b) +1b) fract?*(a) + LaJ)
4 4 4 ’




which we can regroup as

b2 — fract*(b) — |b]  a® — fract*(a) — |a] '

4 4
Thus, the indefinite integral of § |z] is

2% — fract®*(z) — |z]
1 :

Putting these together, we have
fract®(x) + | ] N 2% — fract*(z) — |z

Flz) = 6 1
B 2fract®(x) + 2 |z] = 32 — 3fract*(z) — 3 |z
N 12 * 12
32?4 2fract®(z) — 3fract®(z) — |z
B 12
32?4 2fract®(x) — 3fract®(z) — x + fract(z)
B 12 '

Therefore, using Heckbert’s result, the convolution of fract(x) with a tent
kernel with width w is given by

Fla,w) = <5 (Fla + w) — 2F(z) + F(z +w)).

1.7 saturate

Let f(x) = saturate(z) = maX(O min(1,z)). Then,

/2
flz,w) = satumte (x —2)e 202 da’

w\/ 2m
12
= / max(0, min(1,z — a'))e” 2.2 dz’.

Note that min(1, z—2") < 0 when x < 2/. Thus, max(0, min(1,z — 2’)) =0
when x < 2’. Also note that min(1,z — 2’) > 0 when 2’ < z. Therefore,
max (0, min(1,z — 2’)) = min(1,z — 2’) when 2’ < z. Thus, we can simplify
the above integral without reference to the max function:

/2
f(z,w) 5 / min( 2’ Ve 27 da.
w\ 2T




Now note that when 2/ < x—1, min(1,z—2’) = 1 and whenz—1 < 2/ < z,
min(1l,z — 2’) =  — 2’. Thus, we can partition the integral into two terms
without reference to the min function:

Ax,w x—xeszdx+ ezw2d:z:
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e 2w2 dr’ + e 202 dr’
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e 2w2 dz’ — e 2w2 dxz’
w\/27r w\/27r
x'e 2w2 dz’ + x'e 2w2 dxz’
w\/27r w2
21 1 N ¢ (a: — 1)
—er
2 w2
T f(:z:) x (x—1)+1+1 f(x—1>
o —er —_— J—
2 w2 w2 w2
+ v (1 — e<1212)2) - (1 — 62222)
\ 2T \ 2T
x f( x > x—1 f<x—1>+ w (% (2_12)2>+1
= —er - er —— (e 2T — ¢ 2w -
2 w2 2 wv?2 V2T 2
1 T 2 2 (z=1)2
=—|zef|——= ) —(z—1) erf \/7 e 2? —e 20?2 | +1
(o (555) e (53) w2 )+1)
1.8 sin

Let f(x) = sinz. Then,

/2
sin(z — 2')e” 202 dx’.

fla,w) =

wA 2T

Using the identity

sin(a — ) = sina cos f — cos asin 3,
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we substitute to get

N 1 o0 /2
flz,w) = / (sinz cosa’ — coszsina’)e 202 da’
wv2T J

1 0 2 1 00 2

. . ;) —Z 5 / : ) —E 5 /
= sinxcosx'e 2w? dx’ — coszsinz'e 2w? dx
21 J - —00

w w21

Note that the second integral evaluates to 0, since the portion from in fty
to 0 has the same magnitude but opposite sign as the portion from 0 to co.
Thus, we are left with

12

2 1 < , 22
flz,w) = sinx cosz'e” 207 dx
—0o0

w2
. oo )
sSin T _ ==
= cos e 202 da’
W2 J o

Letting 8 = # and b = 1, and using the fact that cosz’ and e #* are

both even functions, this becomes

: oo
. sin a2
flz,w) = cosbx’ e P77 da!
WV2T J oo
: o0
sin a2
= 2 e P cos b dx’
WA 27 0

Gradshteyn and Ryzhik [I] include a solution for the integral (equa-
tion 3.896-4), which we substitute and simplify:

f( ) 2sinz |1 /m ,g
T, W) = —./—=e
w2 2V B
sin x T T
= — 1 e m
wV2T\ 52
sinx w?
= 2rwe 2
w27
. _w?
=sinxe 2
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1.9 2?
Let f(z) = 2% Then,

12
flz,w) = (x — 2') e 2 da

w\/27r
12
= (2 — 222’ + 2 e 207 da’
w27 )

296 o0
:I’Q—

12
2'e 22 do’ +
21 J oo wy/ 2
Note that the second integral evaluates to 0, since the portion from —oo

to 0 has the same magnitude but opposite sign as the portion from 0 to oo.
Thus, we are left with

xe22dx

flo,w) = 2%+ Ze 22dx

w21

:xZ—i—

1.10 step

Let f(z) = step(z) = H(x), where H is the Heaviside step function. Thus,

/2
step x—a')e 22 da’

f(:v,w

w21

H(x):{o if 2 <0

1 otherwise

By definition,

Therefore step(x — ') = 0 when = < 2’ and step(z — 2’) = 1 when x > a'.
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Thus, we can simplify the integral without reference to the step function:

Ax,w = e 2w2dx
flaw) = — /_27r

= e 2w2 dz’ +
w21 w2
1 wV27 T

1

- —|— er

2 or 2 ’LU\/§
1

2

(i 2 )

e 2w2 dx’

1.11 trunc
We define a function, trunc(z), that rounds = toward zero. That is,

lz] ifz>0

[x] otherwise

trunc(x) = {

Note that, when z is not an integer, [2] = |x| + 1. Since the case when
x is an integer has measure zero, it does not effect the result of the integral.
Thus, we can define trunc as

lz] +0 ifx>0
|z] +1 otherwise

trunc(x) = {
Noting the similarity to step(x), we arrive at our final definition of trunc(z):

trunc(x) = | x| — step(z) + 1

We band-limit trunc(x) as a linear combination of the floor function and
step function. That is,

—_—

trunc(z, w) = floor(z, w) — step(x, w) + 1

13



2 Summary of Sampling Functions

f(z) flz,w)
x x
x? 22+ w?
fract(z) % Z 27rna:) o~ 262n2n?
|l‘| x erf T/—Fw\/‘e 2w2
[z] T — fmct(x w)
[2] ]%E’(x, w) + 1
w2
cos cosre 2
w2
sinx sinrxe "z
z 2
saturate(x) % <x erf <7) (z — 1) erf (x 1) n w\/> (e =, =y ) N 1)
step(a, ) 5 (1 + erf Z}%)
trunc(x) J%E“(:c,w) _ Step(z,w) + 1
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