
PatchTable: Efficient Patch Queries for Large Datasets and Applications

Connelly Barnes1 Fang-Lue Zhang2 Liming Lou1,3 Xian Wu2 Shi-Min Hu2
1University of Virginia 2TNList, Tsinghua University 3Shandong University

(a) Input (b) Engraving (c) Oil (d) Watercolor
Figure 1: Our artistic video stylization, which generalizes image analogies [Hertzmann et al. 2001] to video. An input video (a) is stylized by
example in several different styles (b-d). We show a detailed crop region of a single frame of the full video, which is shown in the supplemental
video. In the second row we show the exemplar pair that is used to drive the stylization, which consists of an image “before” and “after”
the effect is applied. Our data structure enables this effect to be rendered on the CPU at 1024x576 resolution at 1 frame/second, which is
significantly faster than previous work. Credits: Video in top row © Renars Vilnis; (b) Thomas Nast; (c) Vincent Van Gogh; (d) © Hashimoto et al. [2003].

Abstract

This paper presents a data structure that reduces approximate near-
est neighbor query times for image patches in large datasets. Pre-
vious work in texture synthesis has demonstrated real-time syn-
thesis from small exemplar textures. However, high performance
has proved elusive for modern patch-based optimization techniques
which frequently use many exemplar images in the tens of megapix-
els or above. Our new algorithm, PatchTable, offloads as much
of the computation as possible to a pre-computation stage that
takes modest time, so patch queries can be as efficient as possi-
ble. There are three key insights behind our algorithm: (1) a lookup
table similar to locality sensitive hashing can be precomputed, and
used to seed sufficiently good initial patch correspondences during
querying, (2) missing entries in the table can be filled during pre-
computation with our fast Voronoi transform, and (3) the initially
seeded correspondences can be improved with a precomputed k-
nearest neighbors mapping. We show experimentally that this ac-
celerates the patch query operation by up to 9× over k-coherence,
up to 12× over TreeCANN, and up to 200× over PatchMatch. Our
fast algorithm allows us to explore efficient and practical imag-
ing and computational photography applications. We show results
for artistic video stylization, light field super-resolution, and multi-
image editing.

CR Categories: I.3.6 [Computing Methodologies]: Com-
puter Graphics—Methodology and Techniques; I.4.9 [Comput-
ing Methodologies]: Image Processing and Computer Vision—
Applications;

Keywords: Approximate nearest neighbor, patch-based synthesis

1 Introduction

Digital photography has recently shown clear trends towards higher
resolutions and large collections of photos. Users frequently have
personal collections of thousands of pictures, and billions of pho-
tographs are available from online photo-sharing websites. Reso-
lutions range from tens of megapixels on consumer cameras up to
gigapixels on specialized capture devices. There is a need for algo-
rithms that scale to large image datasets.

Modern patch-based methods have delivered high quality results for
many applications, by synthesizing or analyzing images in terms of
small regions called patches (or neighborhoods). However, these
methods have had a difficult time scaling to large quantities of data.
For instance, the PatchMatch [Barnes et al. 2009] method is in-
efficient for large dataset sizes. This is because finding a corre-
spondence in the worst case reduces to random sampling, which
takes time linear in the database size. In contrast, earlier meth-
ods for texture synthesis could operate in real time [Lefebvre and
Hoppe 2005], due to using low resolution inputs and the use of pre-
computation in the design of their data structures.

Our aim is to accelerate modern patch-based methods so they effi-
ciently scale to high-resolution photographs and collections of pho-
tos. In particular, we aim to accelerate the approximate nearest
neighbor search problem over image patches. This problem has at-
tracted much research interest recently [Barnes et al. 2009; Korman
and Avidan 2011; Olonetsky and Avidan 2012]. To accelerate this
search problem, we use an approach similar to Web search engines.
We assume that modest time resources can be devoted to precom-
puting an inverted index data structure that consequently will permit
very fast queries. As we demonstrate, for many applications, this
index can be computed once when a user’s photographs are first
loaded, and re-used for many queries. This improves interactivity
and efficiency.

The main ideas behind our method are to push as much as possi-
ble of the work to a precomputation stage when the index is built,
and to use array data structures to represent patch appearance space.
This allows us to avoid the complex traversals that hierarchical data
structures like kd-trees must make during patch queries. After the

index is constructed, the time to query the patches of an image
against the index is quite fast. We show improvements in query
time of up to 9× over k-coherence [Tong et al. 2002], up to 12×
over TreeCANN [Olonetsky and Avidan 2012], and up to 200×
over PatchMatch [Barnes et al. 2009], with relative speed-ups gen-
erally increasing for larger datasets (see Section 7 for more details).

To create this data structure, we make three technical contributions.
First, we precompute a lookup table, and use this during query-
ing to seed good initial patch correspondences. This table is con-
structed similarly to locality sensitive hashing (LSH) tables [Datar
et al. 2004; Korman and Avidan 2011]. Second, we fill missing
entries in the table using a novel fast Voronoi transform. Third,
we improve initially seeded correspondences with a precomputed
k-coherence mapping, which uses a novel early termination test for
efficiency. We call our combined inverted index data structure a
PatchTable. We present our method in Sections 3-5.

In the context of artistic and photographic manipulations, efficient
and interactive methods are critical. We demonstrate this with
our three applications: artistic video stylization, light field super-
resolution, and multi-image editing. Our artistic video stylization
method (presented in Section 8.1) generalizes the image analogies
framework [Hertzmann et al. 2001] to video. Here efficiency is im-
portant to render the output video at a reasonable rate. For light field
super-resolution (shown in Section 8.2), we show that our method
permits a practical running time. We believe this will encourage
the adoption of light field technologies. For multi-image editing
(presented in Section 8.3), we show that a user can compute high-
quality results from image collections quickly. If the user is not
happy with the result, then because the index has already been cre-
ated, a new result can be recreated nearly instantly. Our new data
structure improves the running time and interactivity of these appli-
cations, due to its better scalability properties.

2 Related work

We first discuss approximate nearest neighbor techniques used for
image patch searches. Then we discuss how these techniques have
been incorporated into applications in traditional texture synthesis
and inpainting, artistic video stylization, and modern patch-based
methods that use large datasets.

Approximate nearest neighbors. Exact nearest neighbor searches
in high-dimensional spaces generally have high run-times, due
to the necessity of either performing linear scans over the
database [Xiao et al. 2011] or due to the curse of dimensionality
when using data structures [Borodin et al. 1999]. This has moti-
vated the development of approximate nearest neighbor methods.
Different algorithms have been explored for approximate nearest
neighbor queries in metric spaces, such as kd-trees, locality sen-
sitive hashing (LSH) [Datar et al. 2004], and others. These have
been incorporated in libraries such as FLANN [Muja and Lowe
2009]. Image patches can be indexed and searched by such gen-
eral methods. However, more efficient techniques have been devel-
oped that rely on coherence, that is, correspondences for adjacent
patches tend to be piecewise smooth. This observation led to a
fast patch querying method called PatchMatch [Barnes et al. 2009;
Barnes et al. 2010], which used randomized sampling and spatial
propagation of good matches. Korman and Avidan [2011] com-
bined spatial coherence with locality sensitive hashing to improve
query times and accuracy over PatchMatch. Similarly, Arietta and
Lawrence [2011] explored locality sensitive hashing for patches.
TreeCANN [Olonetsky and Avidan 2012] and propagation-assisted
kd-trees [He and Sun 2012] used spatial coherence to accelerate kd-
tree searches using patches, and therefore improved query times and
accuracy over the method of Korman and Avidan. Our work uses

techniques from these previous methods, including a technique sim-
ilar to locality sensitive hashing, and spatial propagation. However
our goal is to minimize query time even at the expense of higher
pre-computation time, so we develop different data structures which
permit fast lookups and few patch comparisons at query time.

Texture synthesis. Texture synthesis aims to create tileable tex-
tures from small exemplars [Efros and Leung 1999]. Real-time
and GPU implementations have been developed [Lefebvre and
Hoppe 2005; Lefebvre and Hoppe 2006]. Two ideas were im-
portant for efficiency: spatial propagation, which was explored by
Ashikhmin et al. [2001], and k-coherence [Tong et al. 2002], which
involved the pre-computation of k most similar patches within the
exemplar. Applications include texture transfer [Efros and Freeman
2001] and super-resolution [Freeman et al. 2002]. Our work incor-
porates the k-coherence idea, and the idea that run-time efficiency
can be improved by performing a more extensive pre-computation.
Our goal and approach are different because we aim to have low
matching error even in high-resolution image collections, which re-
quires a more sophisticated matching algorithm than for small tex-
tures.

Image inpainting. Image inpainting [Bertalmio et al. 2000] re-
moves part of an image by replacing it with a synthesized re-
gion. High-quality inpainting results have been demonstrated by
greedy [Criminisi et al. 2004] and iterative patch-based meth-
ods [Wexler et al. 2007]. Image melding can perform inpainting
across multiple photographs, and geometric or lighting transfor-
mations [Darabi et al. 2012]. Our multi-image inpainting applica-
tion is similar to image melding in its use of multiple photographs
and geometric transformations, however our technique is interac-
tive whereas image melding took many minutes.

Artistic video stylization. Our artistic video stylization appli-
cation extends the image analogies framework [Hertzmann et al.
2001]. Image analogies permit many effects including transfer of
painterly styles by example. By-example video stylization was ex-
plored by Hashimoto et al. [2003], Bousseau et al. [2007], and
Bénard et al. [2013]. High-resolution was precluded in those works
by computational cost. For example, Hashimoto et al. reports 2
minutes rendering time per frame on a 352x240 output video, and
Bénard et al. requires 10 minutes per frame on the GPU. Our novel
data structure increases the rendering speed to 1 frame/second on
the CPU, for videos of medium resolution (1024x576).

Patch-based methods for large datasets. One of the motivations
for our work is the trend towards larger datasets at higher resolu-
tion. Such datasets are seen in volumetric texture synthesis [Kopf
et al. 2007], image melding [Darabi et al. 2012], and patch-based
HDR video [Kalantari et al. 2013] which takes several minutes per
frame. Recently, AverageExplorer has shown interactive patch-
based alignment [Zhu et al. 2014], but required an expensive pre-
computation for real-time matching. High-quality BTF interpo-
lation has been demonstrated with patch-based synthesis [Ruiters
et al. 2013], however this takes 1 hour to generate a 512x512 im-
age. Matching graphs have been computed between and within
photos in image collections, for photo collection editing [HaCohen
et al. 2013; Hu et al. 2013], and image extrapolation [Wang et al.
2014]. We instead focus on the problem of finding patch correspon-
dences. Image super resolution for light field cameras has recently
been demonstrated by Boominathan et al. [2014]. We show how
our method can accelerate this super resolution problem. Our ap-
proach takes a first step towards making such large dataset patch-
based methods more efficient, interactive, and practical.

3 Overview of Method

Our method works by first precomputing a data structure that in-
dexes the patches within the database image. Subsequently, the
data structure can be queried with a query image. Note that we can
easily index image collections by simply concatenating them into a
single large database image1. We now proceed to define our termi-
nology, and then explain at a high level how the pre-computation
and query work for our data structure.

The terminology we use is as follows. We define at every pixel
of both the query and database image a feature descriptor which
has dimensionality d0. Our goal is to find approximate nearest
neighbors for feature descriptors, given a distance function between
them. Unless otherwise specified, we use Euclidean distance be-
tween descriptors. The feature descriptor can be the output of any
function of an image region surrounding the target pixel. We refer
to this image region as the patch, and its position coordinate is sim-
ply the pixel that generated the patch. For example, if color patch
descriptors are used, for square patches with size p × p, then the
feature descriptor simply collects RGB colors for the neighboring
region centered at the given target pixel.2 This results in a feature
descriptor with dimension d0 = 3p2. Note, however, that we can
actually use any descriptor, so our technique is fairly general. As
another example, our light field super-resolution application in Sec-
tion 8.2 uses features based on edge responses that also have PCA
dimension reduction applied. The final output of our method is a
mapping from each query patch to an approximate nearest neighbor
patch in the database image. We call this a Nearest Neighbor Field
(NNF). This stores for every query patch (x, y) coordinate, the co-
ordinate of an approximate nearest neighbor patch in the database,
as well as the patch distance. Our goal is for the lookup stage to
produce a NNF efficiently, even for large database sizes.

We now explain at a high level how the pre-computation for our data
structure proceeds. An overview of the precomputation process is
shown in Figure 2. Our data structure has two components: one or
more tables and a k-coherence mapping. The tables serve to give
a good initial correspondence for a patch, whereas the k-coherence
mapping helps improve existing correspondences. We discuss in
Section 4.1 how we initially populate the tables with patches drawn
from the database image. Next, we explain in Section 4.2 how we
fill holes that remain in the tables using our fast Voronoi transform.
Finally, we discuss in Section 4.3 how we construct the k-coherence
mapping. Once the precomputation is finished, the tables and k-
coherence mapping can be stored in memory or on disk until a
query operation is desired.

The steps of our query method are shown graphically in Figure 3.
The query stage works by looping through patches on a sparse grid
with grid spacing s. We first discuss in Section 5.1 how we perform
a lookup against each table, which gives a good initial correspon-
dence for each patch. Then we discuss in Section 5.2 how we use
k-coherence to improve correspondences, including a novel triangle
inequality test which allows for higher efficiency. In Section 5.3, we
explain how any slight misalignments in correspondences can be
improved with a spatial search. Finally, we discuss in Section 5.4
how we propagate good matches to a dense grid. After this we can
proceed to the next iteration of the sparse grid or output the final
correspondences.

1This requires a mask to forbid patches from crossing image boundaries.
2If color patch descriptors are used, for efficiency, we actually compute

descriptors and distances on demand instead of extracting the descriptor.

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

(b)	 Populate	
Tables	 with	
Patches	

(Sec4on	 4.1)	

	
	
	
	
	
	
	
	
	
	
	
	

(c)	 Fill	 Holes	 in	
Tables	 with	

Voronoi	 Transform	

(Sec4on	 4.2)	

	
	
	
	
	
	
	
	
	
	
	
	

(d)	 Compute	
k-‐coherence	

(Sec4on	 4.3)	

	
	
	
	
	
	
	
	
	
	
	
	

(a)	 Input	
Database	
Image	

Figure 2: Precomputation stages of our method. Tables are built
from an input database image (a) that will be queried later. In (b)
all patches from the database image are added to the tables. The
irregular drawn spacing is intentional, because the table grid spac-
ings are irregular. In (c) table cells with no patch are filled using
our Voronoi transform. Finally in (d), k-coherence is computed for
the patches in the database image.

4 Precomputing the Data Structure

4.1 Populate Tables with Patches

In this section, we briefly review the method of Korman and Avi-
dan [2011], which our method builds upon. We then discuss how
the table dimensions are chosen, how patch descriptors are com-
puted, and how the table is populated with patches. This process is
shown iconically in Figure 2(a,b).

As a review, the method of Korman and Avidan relies on locality
sensitive hashing (LSH). Locality sensitive hashing constructs T
multidimensional hash tables. Database and query feature descrip-
tors are both mapped into the hash table cells by T independent
hash functions, one per table. In our case, a feature descriptor of
dimension d0 has been defined for every patch in the database and
query images. This dimension may be large, however, so a table di-
mension parameter d must also be chosen, which is typically lower
(that is, d ≤ d0).

In the precomputation stage, we fill T tables with patches such that
a fast initial query can be made by lookups against the tables. The
ith table has a targeted number of cells ci = c0/2

i. All tables have
identical dimension d but different sizes along each dimension so as
to achieve the targeted number of cells. The parameters introduced
are the number of tables T and number of cells of the first table c0.

To construct the ith table, we follow Korman and Avidan [2011].
If an arbitrary patch descriptor has been used, then we assume that
the user has previously applied dimensionality reduction, and we
thus retain the first d dimensions to map into the table. If color
patch descriptors are used, then like Korman and Avidan, we re-
duce dimensionality using the Walsh-Hadamard basis in YUV color
space by means of gray-code filter kernels [Ben-Artzi et al. 2007].
Only the first Walsh-Hadamard basis vector is used for the chroma
channels, whereas the full basis is used for the luminance channel.
These choices were made mainly for efficiency. Next, we create
hash functions for each table in the same manner. Our hash func-
tion must assign an integer index for each of the d dimensions of
the table. Like Korman and Avidan, we do this by partitioning each
coordinate into variable size bins along the given dimension. The
bin spacing is determined by dividing a sampled subset of database
patches up into partitions with roughly equal number of samples in
each. For each dimension we maintain a 1D array that maps from
floating point patch descriptor to bin index.

We choose table sizes that are proportional to the range along each
dimension. This is done in practice by scaling the ranges by the
largest real constant ρ such that after rounding to the nearest integer,
the product of all the table sizes does not exceed the target cell count

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

(b)	 Lookup	
in	 Tables	

	
(Sec3on	 5.1)	

	
	
	
	
	
	
	
	
	
	
	
	

(c)	 Follow	
k-‐coherence	

(Sec3on	 5.2)	

	
	
	
	
	
	
	
	
	
	
	
	

(d)	 Spa3al	
Search	

(Sec3on	 5.3)	

	
	
	
	
	
	
	
	
	
	
	
	

(a)	 Input	
Query	
Image	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

(e)	 Propagate	
to	 Dense	 Grid	

(Sec3on	 5.4)	

Sparse	 Grid	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

(f)	 Output	
Nearest	

Neighbor	 Field	

Iterate	

Query	
image	

Database	
image	

Figure 3: Query stages of our method. Every patch in input query image (a) finds a nearest neighbor correspondence to a patch in the
database image. Patch center positions are denoted by grey squares. In (b-d) the algorithm improves correspondences for query patches only
on a sparse grid. In (b) a query patch determines an initial correspondence by lookups in the tables. In (c) the current correspondence is
improved by trying instead k nearest neighbors that were previously pre-computed for k-coherence. In (d) small misalignments are improved
by a local spatial search. In step (e) correspondences on the sparse grid are propagated to the dense grid of patches defined around every
pixel, and the algorithm can iterate by returning to step (c). Finally the output nearest neighbor field (NNF) is returned.

ci. We experimentally determined that the table sizes selected by
Korman and Avidan produce poor results for our data structure.

We also found little benefit to storing multiple patches in each table
cell, so we simply traverse the database patches in random order
and insert only the first patch into each table cell.

4.2 Fill Holes in Table with Voronoi Transform

We wish to push as much of the work as possible into the pre-
computation so that lookups are as efficient as possible. To this
end, we would like to avoid the situation of “hash misses” where
the query algorithm looks up a patch in the table, but the table has
no entry. This scenario can be avoided by filling table cells that
have no patch by using our fast Voronoi transform algorithm. This
step is shown graphically in Figure 2(c).

Grid-based distance or Voronoi transform algorithms can be divided
into two categories. The first category consists of raster-style algo-
rithms like the classic Rosenfeld and Pfaltz [1966] method, which
use a forward and backwards pass through the dataset. The second
category consists of ordered propagation methods such as Ragne-
malm [1992] which maintain a propagation front in memory, where
the front fills in grid cells by increasing distance. In our case,
we experimentally determined that the Manhattan distance metric
where the table cell coordinates are denoted by integers resulted
in equally good query performance as more costly metrics such as
Euclidean distances [Maurer et al. 2003; Felzenszwalb and Hutten-
locher 2012] or distances computed over the table’s irregular grid
center positions. Also, we found that ordered propagation methods
are more efficient in practice than raster methods.

We now present our ordered propagation Voronoi transform which
fills each empty cell of our table with the patch index stored in the
closest cell, under the Manhattan distance metric. This algorithm
assumes we start with an originating set of cells that were initially
filled with patches. At each iteration i, it then determines a prop-
agation front, which is the set of cells with Manhattan distance i
to the originating set. This set can be determined by finding cells
that are adjacent to the previous propagation front. This process
is repeated until the cells at every Manhattan distance have been
found. The challenge of this approach is that we must enumer-
ate cells in increasing Manhattan distance from the origin, without
backtracking or duplicating points. We do this by using a specially
constructed neighborhood graph list, which allows us to use graph
labels to track state information about the propagation direction.
The pseudocode for the full algorithm is shown in Alg. 1.

4	 4	 4	 4	 4	
4	 4	 4	 4	 4	

3	 3	 3	 3	 3	
3	 3	 3	 3	 3	

2	 1	 1	 2	 0	

Graph	 0	 Table	
Dimension	

d=1	

Graph	 1	 Graph	 2	

	
	
	
	
	
	
	
	
	
	
	
	

Graph	 0	

d=2	 2	 1	

Graph	 1	 Graph	 2	

3	

4	

	
	
	
	
	
	
	
	
	
	
	
	

2	 1	
	
	
	
	
	
	
	
	
	
	
	
	

1	

3	

4	

	
	
	
	
	
	
	
	
	
	
	
	

2	

3	

4	

	
	
	
	
	
	
	
	
	
	
	
	

1	

	
	
	
	
	
	
	
	
	
	
	
	

2	

Graph	 3	 Graph	 4	

	
	
	
	
	
	
	
	
	
	
	
	

3	

	
	
	
	
	
	
	
	
	
	
	
	

4	

Propaga9on	
Front	

2	 1	 1	 2	 0	

Figure 4: To fill holes in the table we use our ordered propagation
Voronoi algorithm (see Algorithm 1). These are examples of the
neighborhood graph list needed for that algorithm, shown here for
dimensions d = 1 and 2. The Voronoi algorithm creates a propa-
gation front (shown at right), which fills the d-dimensional lattice
in order of increasing Manhattan distance from label 0. The prop-
agation front starts from a position that contains a patch (labelled
with 0), and expands by following all edges of the graph at left that
corresponds to the current label. For this visualization, each graph
number is also given a unique color. See Section 4.2 for details and
a construction of these graphs for all dimensions d.

The neighborhood graph list required for the Voronoi transform
must have two key properties: (1) it fills the integer lattice in d
dimensions in order of increasing Manhattan distance from where
graph 0 is expanded, and (2) it visits each cell exactly once. In
Figure 4 we give neighborhood graph lists that have these desirable
properties, for dimensions d = 1 and 2. For arbitrary dimension
d we now give a construction for a list of 2d + 1 neighborhood
graphs that has these desired properties. We index the neighbor-
hood graph list from 0, 1, ..., 2d, and add a center vertex to each
graph. For neighborhood graph 0 the center vertex has outgoing
edges labelled {1, 2, ..., 2d}. Each neighborhood graph i ≥ 1 from
its center vertex has outgoing edges labelled i and {j, j+1, ..., 2d},
where j = 2di/2e+ 1. For all graphs, the outgoing edges labelled
i = 1, ..., 2d have corresponding edge vectors -e1, +e1, -e2, +e2,
-e3, +e3, etc. Here ei is the Euclidean basis vector i. This con-
struction generates the neighborhood graphs in Figure 4.

4.3 Compute k-coherence

The final stage of our precomputation is to find k-coherence [Tong
et al. 2002]. As a review, k-coherence finds for each patch p, k-
nearest neighbors that are each some minimum spatial distance δ0
away from p. We compute the k-coherence approximately using

FLANN [Muja and Lowe 2009] with only one kd-tree, high er-
ror tolerance, exactly one tree traversal, and δ0 = 5 pixels. We
sort the resulting k-nearest neighbors by their exact patch distance.
For most applications it is also beneficial to store the exact patch
distance alongside the k-nearest neighbors, because this allows for
more efficient queries at the cost of more memory usage. See Sec-
tion 5.2 for more details on how this is used during querying. The
resulting final index stores both the table and the k-coherence map-
ping together.

Algorithm 1 Voronoi transform by ordered propagation

Input: Table T containing patch positions or empty cells.
Output: Table T where empty cells are filled with nearest patch.

Initialize propagation front (J, P, L) to the originating set:
• Table index list J with indices of non-empty cells.
• Source patch list P with corresponding patch positions.
• Label list L with all 0s.

while J is nonempty do
Initialize next propagation front (J ′, P ′, L′) as empty lists.
for j = 1...|J | do

Find neighborhood graph for current label Lj .
Get edge vectors E and labels ε from neighborhood graph
(see Figure 4 for examples of the neighborhood graphs).
for i = 1...|E| do

Let new table index j′ be table index Jj plus edge Ei.
if Tj′ is empty then

Fill table Tj′ with source patch position Sj .
Append (j′, Pj , εi) to (J ′, P ′, L′), respectively.

end if
end for

end for
Update propagation front: (J, P, L)⇐ (J ′, P ′, L′).

end while

5 Querying the Data Structure

Before we explain our query stage, we briefly review
TreeCANN [Olonetsky and Avidan 2012], which our query
method builds upon. TreeCANN works by inserting database
patches into a kd-tree. To make the query efficient, only query
patches on a sparse grid with spacing s are queried against the
kd-tree. Other query patches have their correspondences filled in
using a coherency assumption. Unlike TreeCANN, we perform
a lookup on our tables instead of a kd-tree, and we query a
k-coherence mapping.

Note that throughout the query section, we compute exact patch dis-
tances so we attain maximum accuracy. We do this by comparing
patch distances in the original dimensionality d0 of the descriptor.
The nearest neighbor field is initialized with either infinite patch
distances or else with a prior, where the patch distances for the prior
are scaled by 1/(1+ κt), where κt is a temporal coherence param-
eter (by default, κt = 0). This prior is used to improve temporal
continuity for artistic video stylization (see Section 8.1), as well as
to ensure that multi-image editing takes only downhill steps during
optimization (see Section 8.3).

5.1 Lookup in Tables

The lookup operation for the tables is shown in Figure 3(b). For
each table, we determine the table cell for the current query patch
on the sparse grid in the same manner as in Section 4.1. Each table
thus proposes a candidate correspondence. For each candidate cor-
respondence, we initialize Dbest as the patch distance recorded at
the current NNF position times 1/(1+κs). Here κs is a spatial co-
herence parameter (by default, κs = 0). If the candidate has lower

Query���
Patch

Currently���
Matched���
Database���

Patchk-coherence���
Candidate i

Dbest

Di

D ′

Figure 5: The triangle inequality allows for an early termination
of the k-coherence search. Here we visualize in 2D both patches
and distances between patches (in reality this would be a higher
dimensional vector space). See Section 5.2 for the derivation.

patch distance than Dbest, then the current NNF correspondence is
replaced with the candidate, andDbest is replaced with the proposed
patch distance. Subsequently we refer to this process as improving
the current correspondence.

5.2 Follow k-coherence

For the current query patch on the sparse grid, we next follow the
k-coherence mapping to obtain potentially better candidate corre-
spondences. This is depicted graphically in Figure 3(c). We look
up in the k-coherence mapping the k-nearest neighbors of the cur-
rent patch that is pointed to by the NNF. We attempt to improve the
current correspondence with each of these k candidates.

For efficiency, we also apply early termination of the search of the
k nearest neighbors list, based on triangle inequality tests. This as-
sumes that when the k-coherence was computed (in Section 4.3),
the exact patch distances between database patches were stored
alongside the k-nearest neighbors. Suppose that we are examin-
ing a query patch, which has a currently matched database patch,
and associated distance Dbest (these are stored in the NNF). Sup-
pose that a k-coherence candidate i is being examined, which has a
distanceDi from the currently matched database patch. We want to
know the distance D′, which is the distance between the query and
k-coherence candidate i. This is shown graphically in Figure 5. By
the triangle inequality, we knowD′ ≥ Di−Dbest, but ifD′ ≥ Dbest
then with certainty we can early terminate. Thus if Di ≥ 2Dbest
then we can early terminate. However, the only scenario where the
bound is exactly achieved is when Di = 2Dbest, which requires
that the three points (representing patch descriptors) in Figure 5 be
collinear. This is unlikely in high dimensional spaces, so in prac-
tice we test whether Di ≥ τDbest for a constant parameter τ ≤ 2
instead. For efficiency it is convenient to compute squared patch
distances, so the early termination test becomes D2

i ≥ τ2D2
best.

5.3 Spatial Search

Similar to TreeCANN [Olonetsky and Avidan 2012], we found that
the resulting correspondences can still be slightly spatially mis-
aligned. Therefore, we improve the correspondence for the query
patch, by searching exhaustively on a [−r, r]× [−r, r] spatial grid
in the database, which is centered at the current best corresponding
patch position (i.e. the position stored in the NNF).

5.4 Propagate to Dense Grid

Finally we propagate the sparse query correspondences so that the
dense grid is filled in. This step is shown in Figure 3(e). We prop-
agate correspondences from the current query patch to a surround-
ing [−s, s] × [−s, s] spatial grid in the query image. Therefore
this propagates good correspondences not only to the surrounding
sparse grid cells but also to the dense correspondences in between.
If color patch descriptors are used with an Lp distance metric then

we do the same as TreeCANN [Olonetsky and Avidan 2012] and
first compute a summed area table [Crow 1984] from the differ-
ences between corresponding pixels, and then for efficiency com-
pute patch distances from this summed area table. If a custom patch
descriptor is used then we do the same as PatchMatch [Barnes et al.
2009] and compute propagated patch distances directly between ap-
propriately shifted versions of the center correspondence. We im-
prove the current correspondences stored in the NNF with the prop-
agated correspondences.

6 Theoretical Time and Memory Bounds

In this section, we briefly derive theoretical bounds for the time and
memory usage. The query time is O(Nd0(T + km)), where N is
the query image pixel count. Thus, for fixed parameter settings, the
query time is linear in pixel count. The precomputation takes time
O(cd+Mη(k)), where c is cell count in all tables, M is database
image pixel count, and η(k) is time per kd-tree query and inser-
tion. The memory consumption is roughly B(c + kM), where B
is the number of bytes to store an index to a patch. This is gen-
erally higher than previous work, such as k-coherence [Tong et al.
2002] which uses BkM bytes instead. For a concrete example,
at the highest accuracy setting trained in Section 7.1, PatchTable
uses 1.1 GB of memory as compared to 300 MB for k-coherence.
These expressions give rough indications about memory and per-
formance. However, it is necessary to perform empirical analysis
to gain greater insight. We conduct such an analysis next.

7 Experiments Demonstrating Efficiency

In this section we discuss the performance of our method on some
benchmark datasets. We first discuss training and testing of the
query algorithm in Section 7.1 and Section 7.2. We then examine
the contribution of different system components to the query per-
formance in Section 7.3. We finally report the time used by the
precomputation in Section 7.4.

7.1 Training

Because there are a large number of parameters for our method,
we first need to train it on example pairs of images to find a list of
reasonable parameter settings. Note that the goal of our training is
not to select a single setting of the parameters, but rather, a list of
parameter settings which gives the best tradeoff between time and
error. This training needs to be performed only once on a represen-
tative dataset. Subsequently, users of the data structure can simply
select from the pre-trained parameter settings, to achieve any tar-
geted time or error trade-off.

We constructed a challenging training and testing dataset that we
call one vs many. Because a major goal of this project is to acceler-
ate queries against databases containing high resolution or numer-
ous images, this dataset is constructed to stress test that aspect of
the system. We started by selecting the images from the vidpairs
benchmark by Korman and Avidan [2011]. This contains pairs of
similar images taken from movie trailers. We resized these images
to 0.4 megapixels. We then constructed a dataset containing a se-
quence of query and database image pairs. The query image is the
first of the pair of similar images. The database is the concatenation
of a number F of frames, including the matched pair, and F−1 im-
ages randomly sampled from vidpairs. Our training set consists of
the first pair of images constructed in this way, for only the lowest
number of frames in the database (F = 10). Our test set consists
of the next 10 such pairs of images, for three different numbers of
frames in the database (F = 10, 30, 60).

Parameter Range

Table cells c0 {108}
Table dimension d {6, 7, 8, 9, 10}
Number of tables T {1, 2, 3, 4, 5, 6}
k-coherence k {0, 1, 2, 3, 4, 5, 10, 20}
Query iterations m {1, 2}
Sparse grid spacing s {1, 2, 3, 4, 5, 6, 10}
Spatial search radius r {0, 1, 2}
Early termination threshold τ2 {1, 1.5, 2, 4}

Table 1: The range of each parameter used in our training. Note
that we tried searching over a range of table cell parameters c0.
However, the search simply converges to the largest permissible ta-
ble size, because higher resolution tables are more accurate.

Our training proceeds by randomly sampling the parameters. For
each parameter we chose a set of values that are reasonable and
then independently sample at random several hundred parameter
settings from the parameter space. We show in Table 1 the range of
values for each parameter. For each setting of training parameters,
we collect the mean query time ti and mean patch error ei, where
the mean has been taken over the training images. Therefore, over
all parameter settings, the collected time and error pairs are S =
{(ti, ei)}. We compute the Pareto frontier of these: informally, this
is the band of points that trades off between minimum time and
error. Formally, the Pareto frontier is the set P = {(t, e) ∈ S :
∀(t′, e′) ∈ S, t < t′ or e < e′ or (t, e) = (t′, e′)}. In our case, it
suffices to compute the Pareto frontier from its definition, however,
it can be computed more efficiently by sorting [Kung et al. 1975].

We next refine the Pareto frontier additionally by a crossover oper-
ation. This can be viewed as a highly simplified genetic algorithm
with only one operation. We select several hundred new samples
of parameters. Each new parameter setting is constructed from two
parent parameter settings that are adjacent on the Pareto frontier,
with the selection between parent parameter values being made by
a coin flip. We sort the final refined Pareto frontier by time and map
the logarithm of time to a normalized speed interval [0, 1]. This al-
lows a user of our code to simply select an intuitive speed setting,
and not need to know anything about the training process. For our
comparison we discretize the speed interval into 30 points.

We use a simpler training process to select parameters for the
methods we compare against. We compare our method against
TreeCANN [Olonetsky and Avidan 2012], k-coherence [Tong et al.
2002], and PatchMatch [Barnes et al. 2009]. For PatchMatch, there
is only one parameter, the number of iterations, so we sample 30
settings of the iterations parameter from 1 to 100. For TreeCANN,
we densely the sample query grid spacing from 1 to 10 and the
database grid spacing from 1 to 100. We then extract a Pareto fron-
tier from the training set, and sample 30 parameters in the same
manner from this frontier as for our method.

For the k-coherence comparison, we must first note that
Tong et al. [2002] was published in the context of a particular
greedy synthesis algorithm. Therefore, the manner in which a gen-
eral query procedure should be built from k-coherence is somewhat
subjective. We chose to build a k-coherence query algorithm that is
similar to PatchMatch [Barnes et al. 2009]. It is initialized with a
uniformly randomly sampled NNF, which is then improved by one
or more rounds of propagation (in alternating forward and reverse
scan order), and k-coherence lookups. This is equivalent to restrict-
ing our algorithm to just the k-coherence and propagate steps, and
sparse grid spacing s = 1. For this comparison, we also disable
the use of the summed area propagation of TreeCANN because that
was researched only many years after Tong et al. [2002]. We trained
the k-coherence method in the same manner as TreeCANN, by sam-
pling k from 1 to 20 and the number of iterations from 1 to 5.

0.2

0.3

0.4

0.5

0.6

0.01 0.1 1 10 100

M
ea

n
Pa

tc
h

D
ist

an
ce

Mean Query Time [sec]

Ours
TreeCANN
k-coherence
PatchMatch

0.2

0.3

0.4

0.5

0.6

0.01 0.1 1 10 100

M
ea

n
Pa

tc
h

D
ist

an
ce

Mean Query Time [sec]

Ours
TreeCANN
k-coherence
PatchMatch

0.2

0.3

0.4

0.5

0.6

0.01 0.1 1 10 100

M
ea

n
Pa

tc
h

D
ist

an
ce

Mean Query Time [sec]

Ours
TreeCANN
k-coherence
PatchMatch

(a) F = 10 frames (b) F = 30 frames (c) F = 60 frames

Figure 6: Results for our one vs many test sets, which query a 0.4 megapixel image against a large image formed by concatenating various
numbers of frames from movie trailers (10, 30, and 60 frames in plots a-c, respectively). The concatenated database image sizes are 4, 11,
and 23 megapixels. We specifically exclude the precomputation time required to index the database image. The query operation in our method
is up to 12× faster than TreeCANN [Olonetsky and Avidan 2012], up to 9× faster than k-coherence [Tong et al. 2002], and up to 200× faster
than PatchMatch [Barnes et al. 2009]. The relative speed-ups generally increase with increasing resolution. Note that the time axis was
chosen to be logarithmic because this was necessary for all competing methods to fit on the same plot. Thus, this plot measures order of
magnitude improvements. For details, see the descriptions in Sections 7.1-7.2.

7.2 Testing of the Query Algorithm

In this section, we present the results on the testing set and discuss
our experiences with generalization and overfitting.

We show experimental results in Figure 6 for our one vs many
dataset. In Figure 6(a,b,c) we show the test results for F = 10, 30
and 60 frames, respectively. The horizontal axis is logarithmic
query time, averaged over the test set. The query operation in our
method is up to 12× faster than TreeCANN [Olonetsky and Avidan
2012], up to 9× faster than k-coherence [Tong et al. 2002], and up
to 200× faster than PatchMatch [Barnes et al. 2009]. The relative
speed-ups generally increase with increasing resolution. Note that
when the error tolerance is very small, the performance of our al-
gorithm ends up being close to both TreeCANN and k-coherence.
This is because for sufficiently low error tolerance, all methods end
up sampling all nearby patches in “patch space.” We omitted com-
parisons against Korman and Avidan [2011], because we found that
the indexing and querying steps for that method cannot easily be
separated without changing the algorithm. Note also that the pre-
computation time required to index the data structure has been ex-
cluded. This is because our data structure is designed specifically
for applications where this cost can be paid upfront once to later
enable a highly efficient query operation.

In practice we found that the large number and variety of patches in
our training set prevent overfitting. For example, the performance
curves in Figure 6 represent test datasets that were held out from
training: they are very nearly monotonic (indicating an absence of
overfitting). They are also very close to the curves produced in the
testing phase if other training sets are used from the same dataset.
Thus, we trained on only the single training set described previ-
ously, and used these learned parameters for our applications.

7.3 Contribution of System Components

In Figure 7, we investigate the contribution of each component to
the query performance. We do this by starting from the full sys-
tem and selectively disabling a number of components. Clearly, the
table lookup, sparse grid, and distance transform components are
critical for performance, because disabling any of them increases
the patch distance significantly. The spatial search appears to im-
prove the numerical patch distance only slightly when it is enabled.
However, in practice, we found the spatial search to be important
for fine-scale alignment, which is perceptually important. The k-
coherence search decreases the patch distance slightly when it is

0.3

0.4

0.5

0.6

0.02 0.2 2

M
ea

n
Pa

tc
h

D
ist

an
ce

Mean Query Time [sec]

Figure 7: We investigate the contribution of each component to
the system by selectively disabling components. These results were
computed over the one vs many dataset, for F = 10 frames.

enabled, particularly in the higher running time regime. Finally,
changing from one table to an arbitrary number of tables improves
performance by only a small amount.

7.4 Time Used by Precomputation

We report here the time used by the precomputation, as well as a
comparison between our Manhattan Voronoi transform and other
alternatives. Note that we have not particularly focused on efficient
precomputation in this paper.

For the one vs many dataset, the precomputation takes the following
times for the fastest speed setting: 7 seconds for F=10 frames, 9
seconds for F=30 frames, and 11 seconds for F=60 frames. For the
slowest speed setting, it takes 53 seconds for F=10, 143 seconds for
F=30, and 306 seconds for F=60. For the slower speed settings,
the majority of the time is taken by the k-coherence computation.

We also compared our Manhattan Voronoi transform with two al-
ternative approaches. First, we compared with an exact Euclidean
transform [Felzenszwalb and Huttenlocher 2012]. We evaluated
both approaches on the one vs many test set. We found ours is
approximately twice as fast, while incurring nearly identical er-
ror. Secondly, we compared with a Voronoi transform that used
the floating-point center positions of the grid cells, instead of their
integer indices. We found that using floating-point centers was sig-
nificantly slower, without providing additional accuracy.

Bicubic TreeCANN Ours

Figure 8: We increase the resolution of 25 views of a light field by 9x, using a high-resolution 12 megapixel reference photo as a training
set. We show the result of super-resolution for one view. A bicubic upsampling result is shown at left. The result of the super-resolution of
Boominathan et al. [2014] is shown at center and right. At center is the result with TreeCANN [Olonetsky and Avidan 2012], which takes 1
minute. At right is the result computed with our data structure, which takes 20 seconds. This has similar error but is 3 times faster.

8 Applications

8.1 Artistic Video Stylization

Our artistic video stylization application is shown in Figure 1. Our
algorithm follows a similar by-example texture synthesis approach
as Hertzmann et al. [2001]. Like Hashimoto et al. [2003], we in-
crease temporal coherency by guiding the synthesized texture using
optical flow.

Our algorithm works as follows. We first remap the luminance of
the exemplar pair to match the input video luminance, in the same
manner as Hertzmann et al. [2001]. Suppose our exemplar pair of
images “before” and “after” the effect is applied are a and a′. We
select patch descriptor dimension d = d0 = 8, and produce patch
descriptors using the lowest frequency gray code kernels [Ben-Artzi
et al. 2007] where the first d/2 dimensions are from a and the sec-
ond d/2 dimensions are from a′.

We synthesize using coarse-to-fine synthesis, in the same frame-
work as Wexler et al. [2007] and Barnes et al. [2009]. This per-
forms an alternating optimization between two stages: patch search
and “voting” of colors between overlapping patches to establish the
best estimate for colors at the next iteration. For our application, we
are given the luminance of the input frame bi and wish to synthesize
the luminance of the stylized frame b′i. For all frames we do this by
iterative coarse-to-fine synthesis, matching patch descriptors in im-
ages (bi, b

′
i) to patches (a, a′) that have been indexed in the table

(for the coarsest level of the first frame, no b′i image exists yet so
we match to a separate table that only indexes a patches). When
there is a preceding frame, at each pyramid level, we first advect
the nearest neighbor field found at the previous frame according to
optical flow, via inverse warping. We use the optical flow algorithm
of Farneback et al. [2003] to match the current frame to the previous
frame. For good results, it is important to enable both the temporal
and spatial coherence parameters. These constrain synthesis along
the time dimension and encourage spatially coherent regions.

We show in Figure 1 the result of our artistic video stylization
application using our data structure. See the supplemental video
for the full results, which shows the result of stylization with sev-
eral different styles. The video also includes a comparison with
Hashimoto et al. [2003], which takes 2 minutes per frame with a
352x240 video. Our method in contrast renders 1024x576 resolu-
tion videos at 1 frame/second.

We do not claim to have the highest possible quality results. Rather,
this application demonstrates the efficiency of our data structure.

In particular, if slower run-time is acceptable, one could improve
quality by using the backwards advection of Bousseau et al. [2007]
or the video cube optimization of Bénard et al. [2013].

8.2 Light Field Super-resolution

Light field cameras must make tradeoffs between spatial and angu-
lar resolution as part of their design. For example, a light field cam-
era could capture more views, but this would require lower spatial
resolution. To overcome these limitations, algorithms for light field
super-resolution have been developed. One such method is Boom-
inathan et al. [2014], which requires the photographer to capture
a high-resolution photograph alongside a light field. The resolu-
tion of the light field is then increased by using the photograph as
a training set. Specifically, the algorithm queries each patch of the
light field against a downsampled version of the photograph, using
simple gradient-based patch descriptors. High resolution light-field
detail is then synthesized from the high resolution photograph.

In this section we show how our data structure can be used to ac-
celerate the light field image super-resolution algorithm of Boom-
inathan et al. [2014]. For efficiency, we modify their algorithm by
reducing patch feature descriptors to 20 dimensions with PCA.

To provide ground truth data for super resolution we captured two
light fields ourselves. These have 25 and 173 views. We captured
these light fields at high resolution with a camera and then down-
sampled the inputs to our algorithm. We can therefore compare any
super-resolved image with the original high-resolution photograph,
to determine the error introduced by the super-resolution process.
These datasets are available from our project page.

In Figure 8, we show a first result of increasing resolution by 9x
on the 25 view data set we captured. With TreeCANN [Olonet-
sky and Avidan 2012], the super-resolution of all 25 views takes 1
minute. For equal error, PatchTable takes only 20 seconds, which
is 3x faster. We measure error by taking mean L2 distance in CIE
L*a*b* color space. We explored the parameters for both methods,
starting from the parameters found in the experiments in Section 7,
to give optimal performance vs quality tradeoffs for both methods.

The per-view super-resolution time with our method is 11x faster
than with TreeCANN, with the remainder of the time accounted
for by the overhead of building the table. Thus, for the 173 view
light field, the speedup over TreeCANN increases to 8x. In order to
accelerate our table building time, for this application, we subsam-
pled the k-coherence mapping with a spacing of 4. Note that in this
paper we have not focused on optimizing the table building time.

8.3 Multi-image editing

By using PatchTable to store and query patches in an image collec-
tion, patch-based image editing can be performed much faster than
previous methods. Although patch-based image edits like reshuf-
fling [Simakov et al. 2008] and inpainting in a single image can be
performed interactively, the process becomes more time-consuming
when using an image collection. For example, when using the
PatchMatch algorithm [Barnes et al. 2009], for large database im-
age sizes, the algorithm resorts to random sampling, which causes
the query time to become very inefficient.

We now explain how to use PatchTable in multi-source editing, by
illustrating the process for image inpainting. Other applications
work similarly. We first concatenate all the images in the collection
to form a large source image L. We are given an input image I and
a region R to complete. We proceed with the multi-scale approach
of Wexler et al. [2007]. We build Gaussian pyramids for the input
and source images. We next build a PatchTable for each pyramid
level for L, which excludes patches in the hole region. The pixels
surrounding the hole in the coarsest level are used to find a good
initialization region in the source image, by minimizing boundary
SSD color difference. Starting from the coarsest level, we look up
matching patches in the corresponding PatchTable. We then gener-
ate the target image by the “voting” scheme of Wexler et al. [2007]
and look up again. As in [Barnes et al. 2009], we only need to
perform such EM iterations for 1–2 times in each pyramid. We
upsample and repeat until we terminate at the finest level.

Using this framework, we can accelerate image completion meth-
ods like image melding [Darabi et al. 2012]. In one image melding
application, patches can undergo geometric transformations like ro-
tation and scaling. Using our method, we can directly take multiple
transformed versions of the input image as the library image, to
proceed with the above editing process. An example is shown in
Figure 9, which only takes 3 seconds to query patches and gener-
ate results from a built PatchTable. We can also stitch images by
inpainting between two images of the same scene, when given an
image collection taken at the same location. To generate the best
stitching results, when initializing, we check a range of possible
scalings of the two input images, and retain the initialization with
minimal boundary color difference. A result is shown in Figure 9.

9 Discussion, Limitations, and Future Work

In this paper we show that an inverted index that we call a
PatchTable can be constructed, which permits efficient queries for
large visual datasets. Our data structure enables applications in
artistic video stylization, light field super-resolution, and multi-
image editing. Our work also opens up additional potential re-
search. On the application side, it would be interesting to explore
RGBD, stereo imaging, and larger image collections. For greater
scalability, it would be interesting to develop distributed implemen-
tations, cluster patches, subsample or compress the k-coherence
mapping, or accelerate the k-coherence precomputation.

Sophisticated binary quantizations and embeddings have been re-
cently developed for nearest neighbor search [Jegou et al. 2011;
Hwang et al. 2012]. The application of these to image patch
searches would be an interesting area of future research.

One intellectual question raised by our work is: what is the most
efficient inverted index that can be constructed for patches, within
reasonable precomputation time and memory constraints? We have
taken a first step towards this goal by demonstrating that an effi-
cient index can be created. However, many research questions re-
main open. Are table or tree data structures more efficient, or some

hybrid thereof? What are the best schemes for hashing, quantiza-
tion, and clustering? What are theoretical bounds on the trade-offs
between memory, pre-computation time, and query time?

10 Acknowledgements

We thank the SIGGRAPH reviewers. For supporting Liming Lou,
we thank Meng Xiangxu and the Chinese Scholarship Council. We
thank ShanShan He for the paper video. This work was supported
by the National Basic Research Project of China (project num-
ber 2011CB302205), and the Natural Science Foundation of China
(project number 61120106007). Figures 1 (top) and 9(b) are li-
censed under Creative Commons, and have been modified.

References

ARIETTA, S., AND LAWRENCE, J. 2011. Building and using a
database of one trillion natural-image patches. IEEE computer
graphics and applications 31, 1, 9–19.

ASHIKHMIN, M. 2001. Synthesizing natural textures. In ACM
symposium on Interactive 3D graphics, 217–226.

BARNES, C., SHECHTMAN, E., FINKELSTEIN, A., AND GOLD-
MAN, D. 2009. PatchMatch: A randomized correspondence
algorithm for structural image editing. ACM Transactions on
Graphics 28, 3, 24:1–24:10.

BARNES, C., SHECHTMAN, E., GOLDMAN, D. B., AND FINKEL-
STEIN, A. 2010. The generalized PatchMatch correspondence
algorithm. In ECCV. 29–43.

BEN-ARTZI, G., HEL-OR, H., AND HEL-OR, Y. 2007. The gray-
code filter kernels. IEEE TPAMI 29, 3, 382–393.

BÉNARD, P., COLE, F., KASS, M., MORDATCH, I., HEGARTY,
J., SENN, M. S., FLEISCHER, K., PESARE, D., AND BREE-
DEN. 2013. Stylizing animation by example. ACM Transactions
on Graphics 32, 119:1–119:9.

BERTALMIO, M., SAPIRO, G., CASELLES, V., AND BALLESTER,
C. 2000. Image inpainting. In ACM Computer graphics and
interactive techniques, 417–424.

BOOMINATHAN, V., MITRA, K., AND VEERARAGHAVAN, A.
2014. Improving resolution and depth-of-field of light field cam-
eras using a hybrid imaging system. In IEEE ICCP, 1–10.

BORODIN, A., OSTROVSKY, R., AND RABANI, Y. 1999. Lower
bounds for high dimensional nearest neighbor search and related
problems. In ACM symposium on Theory of computing.

BOUSSEAU, A., NEYRET, F., THOLLOT, J., AND SALESIN, D.
2007. Video watercolorization using bidirectional texture advec-
tion. In ACM Transactions on Graphics, vol. 26, 104:1–104:10.

CRIMINISI, A., PÉREZ, P., AND TOYAMA, K. 2004. Region filling
and object removal by exemplar-based image inpainting. IEEE
Transactions on Image Processing 13, 9, 1200–1212.

CROW, F. C. 1984. Summed-area tables for texture mapping. ACM
SIGGRAPH 18, 3, 207–212.

DARABI, S., SHECHTMAN, E., BARNES, C., GOLDMAN, D. B.,
AND SEN, P. 2012. Image melding: combining inconsistent im-
ages using patch-based synthesis. ACM Transactions on Graph-
ics 31, 4, 82:1–82:12.

DATAR, M., IMMORLICA, N., INDYK, P., AND MIRROKNI, V. S.
2004. Locality-sensitive hashing scheme based on p-stable dis-
tributions. In ACM symp. on Computational geometry.

https://creativecommons.org/licenses/by/2.0/

Figure 9: Multi-image editing. (a) Image stitching using an image collection. The collection contains 10 images. (b)(c) Image completion
results similar to image melding [Darabi et al. 2012]. Credits: (b) © Fujii Hitomi; (c) Fujii Hitomi, public domain.

EFROS, A. A., AND FREEMAN, W. T. 2001. Image quilting for
texture synthesis and transfer. In ACM SIGGRAPH, 341–346.

EFROS, A. A., AND LEUNG, T. K. 1999. Texture synthesis by
non-parametric sampling. In IEEE ICCV, vol. 2.

FARNEBÄCK, G. 2003. Two-frame motion estimation based on
polynomial expansion. In Image Analysis. Springer, 363–370.

FELZENSZWALB, P. F., AND HUTTENLOCHER, D. P. 2012. Dis-
tance transforms of sampled functions. Theory of computing 8,
1, 415–428.

FREEMAN, W. T., JONES, T. R., AND PASZTOR, E. C. 2002.
Example-based super-resolution. IEEE Computer Graphics and
Applications 22, 2, 56–65.

HACOHEN, Y., SHECHTMAN, E., GOLDMAN, D. B., AND
LISCHINSKI, D. 2013. Optimizing color consistency in photo
collections. ACM Transactions on Graphics 32, 4, 38:1–38:10.

HASHIMOTO, R., JOHAN, H., AND NISHITA, T. 2003. Creating
various styles of animations using example-based filtering. In
IEEE Computer Graphics International, 312–317.

HE, K., AND SUN, J. 2012. Computing nearest-neighbor fields via
propagation-assisted kd-trees. In IEEE CVPR, 111–118.

HERTZMANN, A., JACOBS, C. E., OLIVER, N., CURLESS, B.,
AND SALESIN, D. H. 2001. Image analogies. In Proc. ACM
SIGGRAPH.

HU, S.-M., ZHANG, F.-L., WANG, M., MARTIN, R. R., AND
WANG, J. 2013. PatchNet: a patch-based image representation
for interactive library-driven image editing. ACM Transactions
on Graphics 32, 6, 196:1–196:11.

HWANG, Y., HAN, B., AND AHN, H.-K. 2012. A fast nearest
neighbor search algorithm by nonlinear embedding. In IEEE
CVPR, 3053–3060.

JEGOU, H., DOUZE, M., AND SCHMID, C. 2011. Product quanti-
zation for nearest neighbor search. IEEE TPAMI 33, 1.

KALANTARI, N. K., SHECHTMAN, E., BARNES, C., DARABI,
S., GOLDMAN, D. B., AND SEN, P. 2013. Patch-based high
dynamic range video. ACM Transactions on Graphics 32, 6,
202:1–202:11.

KOPF, J., FU, C.-W., COHEN-OR, D., DEUSSEN, O., LISCHIN-
SKI, D., AND WONG, T.-T. 2007. Solid texture synthesis from
2d exemplars. ACM Transactions on Graphics 26, 3, 2:1–2:9.

KORMAN, S., AND AVIDAN, S. 2011. Coherency sensitive hash-
ing. In IEEE ICCV.

KUNG, H.-T., LUCCIO, F., AND PREPARATA, F. P. 1975. On
finding the maxima of a set of vectors. Journal of the ACM 22.

LEFEBVRE, S., AND HOPPE, H. 2005. Parallel controllable texture
synthesis. ACM Transactions on Graphics 24, 3, 777–786.

LEFEBVRE, S., AND HOPPE, H. 2006. Appearance-space texture
synthesis. 541–548.

MAURER, C. R., QI, R., AND RAGHAVAN, V. 2003. A linear time
algorithm for computing exact euclidean distance transforms of
binary images in arbitrary dimensions. IEEE TPAMI 25, 2, 265–
270.

MUJA, M., AND LOWE, D. G. 2009. Fast approximate near-
est neighbors with automatic algorithm configuration. In VIS-
APP(1), 331–340.

OLONETSKY, I., AND AVIDAN, S. 2012. TreeCANN-kd tree
coherence approximate nearest neighbor algorithm. In ECCV.
Springer, 602–615.

RAGNEMALM, I. 1992. Neighborhoods for distance transforma-
tions using ordered propagation. CVGIP 56, 3, 399–409.

ROSENFELD, A., AND PFALTZ, J. L. 1966. Sequential operations
in digital picture processing. Journal of the ACM 13, 4, 471–494.

RUITERS, R., SCHWARTZ, C., AND KLEIN, R. 2013. Example-
based interpolation and synthesis of bidirectional texture func-
tions. In Computer Graphics Forum, vol. 32, 361–370.

SIMAKOV, D., CASPI, Y., SHECHTMAN, E., AND IRANI, M.
2008. Summarizing visual data using bidirectional similarity.
In IEEE CVPR, 1–8.

TONG, X., ZHANG, J., LIU, L., WANG, X., GUO, B., AND
SHUM, H.-Y. 2002. Synthesis of bidirectional texture func-
tions on arbitrary surfaces. ACM Transactions on Graphics 21,
3, 665–672.

WANG, M., LIANG, Y.-K. L. Y., MARTIN, R. R., AND HU, S.-
M. 2014. BiggerPicture: data-driven image extrapolation using
graph matching. ACM Transactions on Graphics 33, 6, 173:1–
173:12.

WEXLER, Y., SHECHTMAN, E., AND IRANI, M. 2007. Space-
time completion of video. IEEE TPAMI 29, 3, 463–476.

XIAO, C., LIU, M., YONGWEI, N., AND DONG, Z. 2011. Fast
exact nearest patch matching for patch-based image editing and
processing. IEEE TVCG 17, 8.

ZHU, J.-Y., LEE, Y. J., AND EFROS, A. A. 2014. AverageEx-
plorer: Interactive exploration and alignment of visual data col-
lections. ACM Transactions on Graphics 33, 4, 160:1–160:11.

