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Editing materials in photos opens up numerous opportunities like turning

an unappealing dirt ground into luscious grass and creating a comfortable

wool sweater in place of a cheap t-shirt. However, such edits are challeng-

ing. Approaches such as 3D rendering and BTF rendering can represent

virtually everything, but they are also data intensive and computationally

expensive, which makes user interaction difficult. Leaner methods such as

texture synthesis are more easily controllable by artists but also more limited

in the range of materials that they handle, e.g., grass and wool are typically

problematic because of their non-Lambertian reflectance and their numerous

self-occlusions. We propose a new approach for editing of complex materials

in photographs. We extend the texture-by-numbers approach with ideas from

texture interpolation. The inputs to our method are coarse user annotation

maps that specify the desired output, e.g., the local scale of the material and

the illumination direction. Our algorithm then synthesizes the output from a

discrete set of annotated exemplars. A key component of our method is that

it can cope with missing data, interpolating information from the available

exemplars when needed. This enables production of satisfying results involv-

ing materials with complex appearance variations such as foliage, carpet,

and fabric from only one or a couple of exemplar photographs.

Categories and Subject Descriptors: I.3.3 [Computer Graphics]: Image

manipulation—Texturing
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1. INTRODUCTION

Editing materials in a photograph is a powerful operation that can
boost the users’ creativity as it allows them to create more visually
appealing images. In this paper, we are interested in manipulating the
appearance of common materials such as grass, foliage, moss, wool,
carpet, or stone. We enable a fine-grain control of the appearance of
these materials for a variety of applications including weathering,
interior and exterior design, landscaping, and cloth design. For
instance, with our approach, one can create a flower topiary with
plausible shading cues so that it can be inserted into a photograph of
a garden. Or in another scenario, users can edit a picture of a t-shirt
to render it with several different types of fabric to preview various
options.

Material editing is, however, a delicate task; to produce good
results, one has to preserve the complex interplay between material
properties, illumination, and viewing direction. As an example, due
to self-occlusions, the appearance of grass depends heavily on the
viewing direction and lighting environment; not modeling these vari-
ations yields unnatural looking grass. In addition, natural materials
often vary continuously, e.g., between various colors and/or weath-
ering levels, further adding to the complexity of the task. Enabling
artist control in these conditions becomes particularly challenging:
an overly simplified appearance model like a repetitive texture may
be easy to manipulate but fails to capture the richness of most mate-
rials; too detailed representations like 3D geometry and BRDFs are
difficult to author. In this work, we seek to address this tension by
building upon texture synthesis and texture interpolation.
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Fig. 1. Replacing the dirt in an image by a lawn covered with leaves. The grass and leaves exemplars are annotated to indicate the grass region and the scale of

the grass. The user specifies the desired annotation values for the target image, and our algorithm synthesizes the result. Standard texture representation would

fail to handle the intricate occlusions in such an example or would introduce unsightly repetitions, while capturing a BTF of a size on the order of a lawn is

infeasible with existing techniques. Our approach produces plausible results for materials with complex appearance using only images downloaded from the

Internet and minimal user input.

Existing texture synthesis tools can handle many regular and
semi-regular materials such as brick walls and straw [Efros and
Leung 1999; Wei and Levoy 2000] and reproduce their appear-
ance under varying lighting conditions [Fang and Hart 2004], using
small images as exemplars. The space of possible appearances for
stochastic and complex materials such as grass and foliage cannot
be represented by a single, small exemplar, which poses a challenge
to these methods. At the other end of the spectrum, one could re-
sort to more complex representations such as bidirectional texture
functions (BTFs) [Dana et al. 1999], which can represent a much
wider range of appearances. However, this dense sampling of the
appearance space comes at the cost of practicality: the associated
capture systems are cumbersome compared to casual image capture
[Ngan and Durand 2006], and user control is only available through
involved, dedicated interfaces [Kautz et al. 2007].

Our key insight is that many complex materials can be repro-
duced well by a few large enough (i.e. larger than regular 2D tex-
ture patches) exemplars that sparsely sample the appearance space,
provided that those exemplars capture at least the extremes of the
materials’ appearances, and that we provide the ability to interpolate
between them. This strikes a balance between simple but limited
standard texture synthesis and rich but impractical BTF rendering.
This model can be controlled by a simple and expressive annotation
metaphor; we demonstrate standard aspects such as scale and ori-
entation, as well as more sophisticated ones including weathering
level, material transition, and viewing angle.

Algorithm summary. Figure 2 illustrates our pipeline. The in-
put to our algorithm is a set of exemplar images representing the
materials of interest; they can be user photos of the material or
selected from an online photo collection. We opt for larger image
exemplars rather than small texture patches; as we shall see in the
results section, this is crucial in avoiding repetitiveness in the out-
put and capturing the variability of the material. This variability
is indicated by user provided annotations that allow for control
over given parameters of the material appearance. The user also
provides an image to be edited as well as a set of annotations that
describe the desired appearance in this target image using the same
representation (Section 3).

From these data, our algorithm renders an image with the desired
appearance variations. A key property of our approach is that we

do not assume that all desired appearance parameter values are
present in the exemplars, i.e., the input data may not cover the entire
annotation space, and the target annotation combinations need not
have exact matches in the source annotation data. To cope with this
situation, we first segment the input data into a few clusters that
represent a consistent appearance (Section 4). Before the synthesis
process, for each desired annotation value, we identify the relevant
candidates from all clusters (Section 4.2) and assign them weights
(Section 4.3). The final step is a coarse-to-fine synthesis process that
generates a candidate patch for each selected cluster (Section 5.1)
and produces the result by merging the candidates using the cluster
weights (Section 5.2). As we shall see in the discussion section,
the combination of interpolation with clustering and weighting is
necessary for producing plausible results; skipping any of these
steps significantly reduces the output quality.

Contributions. We demonstrate that complex and heteroge-
neous materials can be synthesized according to specified annota-
tions. Our main contribution is twofold: first, we generate previously
unseen appearance by using interpolation. This differentiates us
from most current texture synthesis approaches (e.g. appearance
manifolds [Wang et al. 2006]). Our technique’s ability to generate
plausible results even in the presence of large amounts of missing
data is verified experimentally. The second part of our contribution
is taking the clustering approach and introducing the interpolation
weights as a more effective way to handle annotations. We found that
all components of our clustering and sampling scheme are crucial
in order to effectively combine interpolation with larger exemplars
and continuous annotations as the ones we are using.

2. RELATED WORK

Texture synthesis. Many approaches exist to generate new im-
age textures from exemplars, e.g., [Efros and Leung 1999; Wei and
Levoy 2000; Lefebvre and Hoppe 2005; 2006; Barnes et al. 2009;
Kwatra et al. 2005; Han et al. 2008]. They work well for homoge-
neous, flat 2D textures with scale and orientation changes, but do
not handle other variations in which we are interested, e.g. in illumi-
nation or view angle. Our work is closer to the texture-by-numbers
technique that enables variations guided by annotations ( [Hertz-
mann et al. 2001]). Many recent methods follow this paradigm; the
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Fig. 2. Our pipeline: user input – source and target (Section 3), preprocessing of source and target data to generate constraints for the synthesis (Section 4) and

coarse-to-fine synthesis (Section 5).

control maps of [Rosenberger et al. 2009] and the texton masks of
[Zhang et al. 2003] are examples of guiding annotations. However,
[Rosenberger et al. 2009] assumes a layered model for the material,
with hard boundaries between the intermediate layers, and is thus
unsuitable for rendering smooth material transitions. The texton
masks of [Zhang et al. 2003] only serve to ensure that prominent
texture features are preserved during synthesis; they do not allow
for the kind of control over material appearance that we introduce
here, particularly for more complex materials such as grass or tree
foliage. Moreover, methods based on Image Analogies only utilize
the annotations inside the similarity metric and thus often fail to
adhere to the user’s intent (see Section 6). Finally, they require an
exemplar for each possible annotation combination, which may be
an unrealistic requirement in practice. We propose a more robust
way to exploit annotations, and additionally deal with missing anno-
tation data by texture interpolation, which is not otherwise possible
using current approaches.

Our interpolation scheme is inspired by previous work for texture
interpolation [Matusik et al. 2005; Risser et al. 2010; Darabi et al.
2012; Park et al. 2013]; more specifically, we build upon image
melding [Darabi et al. 2012], which uses gradient energies to al-
low for smooth texture interpolation. However, in all these works,
the exemplars between which interpolation happens are known and
identified beforehand, and separated into small discrete images that
are typical of the material; this is not true in our case, where we are
interpolating between large exemplars of complex, heterogeneous
materials, with large variability present in each exemplar. Since
this variability is captured by the annotations, the two extremal ap-
pearances between which interpolation is applied are determined
differently for each pixel of the target image, depending on the
user’s specification for the target appearance. Precomputing interpo-
lated appearances between all available pairs of extremal material
appearances to satisfy any possible user request would be infeasible.
Instead we devised the use of clustering of the input exemplars as
a first way to handle the variability, and a sampling scheme for
handling the annotations, as an easier way to automatically infer
which exemplars to use for filling in the missing data, and how much
importance to assign to each cluster for a particular user-specified
target appearance. This sets us apart from other texture interpolation
techniques, even multi-material ones ([Ruiters et al. 2013]).

To model lighting and foreshortening effects, some techniques ap-
ply texture synthesis on a proxy geometry. In [Bonneel et al. 2010],
users generate a coarse 3D model of a scene and synthesize texture
to augment it with details and natural materials. [Johnson et al. 2011]
applies texture synthesis to refine 3D renderings. Both works only let
users control the final result through the 3D geometry of the scene;
we work in image space and offer direct control over the material
appearance using annotations. Eisenacher et al. [2008] use Bézier
patches to gather and apply texture under arbitrary geometric trans-

formations but still focus on regular textures. Textureshop [Fang and
Hart 2004] is also based on image manipulations and provides tools
to model a 2.5D proxy that is later textured. Appearance variations
are created by occlusions and shading stemming from a synthesized
displacement map. The assumption is, however, that the base ma-
terial is regular, its geometry representable as a displacement map,
and all its appearance changes due to shading. While we follow a
similar motivation, we aim to handle complex materials that cannot
be modeled with a displacement map (e.g. grass, foliage); for that
we rely on sophisticated texture synthesis and interpolation. Our
generic annotations can represent a variety of phenomena, including
(but not limited to) shading, weathering and transitions between
materials.

Some recent methods focus on the particular problem of simulat-
ing weathering effects ([Lu et al. 2007],[Wang et al. 2006]). They
might yield more physically accurate weathering results but are lim-
ited in scope. Our approach handles a variety of editing scenarios,
including weathering, and contrary to [Lu et al. 2007], only utilizes
standard photographs without the need for specific acquisition pro-
cedures. It also adds the ability to extrapolate missing data from the
available exemplars.

BTF synthesis. BTFs enable very high fidelity reproduction of
texture [Dana et al. 1999], but their capture requires lab conditions
and thus can be prohibitively expensive and time-consuming, as
opposed to e.g. texture acquisition from the Web or casual photog-
raphy. Ngan and Durand [2006] simplify BTF acquisition, but still
require a large number of photographs and a lab capture set-up. In
[Kautz et al. 2007], editing BTFs is achieved via an out-of-core
architecture; [Lepage and Lawrence 2011] introduces an interface
for breaking down a spatially varying BRDF into a foreground and
background layer, for subsequent separate editing of the materials.
[Ruiters et al. 2013] demonstrates interpolation of BTF materials by
separation into a height-map and a parallax-compensated BTF, how-
ever binary feature masks must be provided by the user to preserve
features. All these works show high quality results, but BTFs still
must be captured in a laborious process prior to their processing. An
initial approach to bridge the gap between BTFs and exemplar-based
textures can be found in [Liu et al. 2001], where a small number of
image inputs is used to synthesize a BTF. However, the assumption
of a height-field type of surface geometry practically limits the range
of materials that can be handled; materials such as grass and straw
remain out of reach for this approach.

3. USER INPUT AND CREATION OF THE

EXEMPLAR SPACE

The required user input consists of source input and target input
data. The source input data comprises a set of images capturing the
various appearances of the materials in question, and corresponding
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(a) source

     image

(b) annotation:

     normals

(c) annotation:

     light

Fig. 3. Step 1: Collecting the source input data.

The users supply a source image, and optionally

mask the portion of it to be used during synthe-

sis (a). For illustration purposes, we choose to

discard the middle portion of the source topiary.

Also provided is a set of numerical annotations

for the source, in this case for the normal (b) and

the light direction (c).

(a) target annotation-

     normals

(b) target annotation-

     light

Fig. 4. Step 2: Collecting the target input

data. In this case, the user wants to synthe-

size a bunny-shaped topiary onto a blank tar-

get image. For this, they provide normal (a)

and lighting (b) annotations, corresponding

to those in Figure 3 (here, they were created

by rendering a bunny mesh). The marked red,

green and blue points will be used in the up-

coming illustrations.
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Fig. 5. Step 3: Structuring the annotation space. By concatenat-

ing the source annotations for each pixel we get the annotation

space (a). In (b), we visualize the target annotation data in the

same space. The points inside regions with limited availability of

source data (the middle portion of the figure) will be interpolated

using these annotations.
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(a) clusters in annotation space (b) clusters on source

Fig. 6. Step 4: Clustering the source annota-

tion data. Each cluster will be used to provide

a candidate for the target image, and the can-

didate images will then be interpolated using

appropriate weights. Given the annotation

space of Figure 5(a), the clustering algorithm

produces two clusters (a). These, when plot-

ted on the source image, indicate the top and

bottom portion of the source topiary, as ex-

pected (b).
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(c) ε-balls, blue point(b) ε-balls, green point(a) ε-balls, red point

Fig. 7. Step 5: Assigning sampling regions (ǫ-balls) inside each

source cluster for each target pixel. The figure shows the ǫ-balls

for the three marked points on the target bunny annotations of

Figure 4. Each point has two ǫ-balls, one per cluster; the clusters

are as shown in Figure 6. The top row in (a), (b), (c) shows the

ǫ-balls in the annotation space of Figure 5, colored according

to the cluster. The second row shows the ǫ-balls overlaid onto

the source image. The requirement for a minimum amount of

candidate samples makes for unequally sized ǫ-balls; the further

away the target data point from the the cluster points, the larger

the ball radius.

Fig. 8. Step 6: Computing cluster weights. The

appearance for the portions of the target image

with target annotations located in the “holes” in

the annotation space missing data (Figure 5(b))

will be interpolated from appearances in the

source clusters, using cluster weights. In this

visualisation of the cluster weights (clusters are

as in Figure 6), the closer the color to orange,

the higher the weight for the top topiary cluster,

similarly for blue and the bottom cluster. The

highlighted points are the same as in Figure 7;

note the weight values as compared to the ǫ-ball

radii. The result of the synthesis is in Figure 14.

annotations for those images (Figure 3). The target data comprises
the target image and target annotations similar in spirit to the ones
of the source (Figure 4). Each annotation is a per-pixel scalar map
with all values in the [0, 1] range; it associates the image appearance
of the neighborhood around each pixel in the source images with
a numerical value for a particular characteristic that is relevant for
the appearance variations of the material. Typical examples of such
characteristics are the viewing angle, illumination intensity, degree
of weathering, local structure orientation and scale, etc. In the case
where more than one material is to be synthesized, annotations can
specify which type of material is contained in each source image,
and in the case of transitions between two materials, possibly also
quantify how far between the two materials a given appearance is.

Our algorithm is not constrained to any particular way of ac-
quiring the annotations. They can be generated via painting with
an image authoring software, possibly with the assistance of more
advanced tools such as diffusion curves [Orzan et al. 2008]. They

can also be the output of dedicated methods that extract a particular
characteristic from a source image (e.g. shape-from-shading for the
surface normal and/or scene lighting); for characterizing the local
shape, one can also use synthetic renderings of simple geometric
primitives as annotations.

Optionally, the user can provide alpha matted (RGBA) source
images as input. We do not consider transparency as a factor af-
fecting material appearance, however it can prove very helpful in
synthesizing some types of material transitions, as we shall see in
the results section.

By collecting all the values for the various characteristics for each
pixel, we get a tuple that fully describes the local appearance around
this pixel; the exemplar (or annotation) space for the particular
synthesis task in question then is the set of all tuples for all pixels in
the source images (Figure 5(a)). Holes in the annotations indicate
that data is missing for that part of the annotation space .
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(a) sources (b) target (c) annotations

(d) off-white sweater (e)
control of scale

and rotation
(f) gray sweater

Fig. 9. In this example, we experiment with different ways of annotating.

We use the top source in (a), and annotate with 3D rendering of a sphere

(source normals), shape from shading (t-shirt normals), and manual painting

(source and t-shirt lighting) to get the result in (d). Sketching two more

annotation images via diffusion curves (t-shirt orientations and scales, not

shown), changes the woven pattern appearance (e). Switching the source

changes the fabric of the t-shirt (f).

The source images do not need to capture the full spectrum of
appearance variations. Our algorithm is able to synthesize appear-
ance for characteristic tuples not present in the input data. However
we assume that the source images at least span the spectrum of
appearance that the user would like present in the synthesis result;
that is, we can synthesize appearance for any annotation point inside
the convex hull of the source annotation data, but not outside it.

The dimensionality of the exemplar space depends on what the
user considers important features of the material appearance. We
have found that two or three dimensions are mostly sufficient to
account for common variations in material appearances; however,
other than an increase in runtime, our algorithm is not inherently
constrained to low dimensional exemplar spaces.

4. STRUCTURING THE EXEMPLAR SPACE

We now consider a material represented by an exemplar image E
(created by concatenating all source images) and a corresponding
n-dimensional annotation image A. The annotation data populate
the n-dimensional annotation space.

4.1 Clustering in annotation space

The first step of the preprocessing is clustering the source data
into clusters of similar appearance; each cluster will then generate
independent synthesized results, and these results will be merged
together. Regions of the annotation space well covered by source
annotation data that are close to each other in value are assigned to
one cluster; separation between the regions indicates the need for a

different cluster, as shown in Figure 6. The intuition here is as fol-
lows (see also Figure 5): when it comes to synthesizing appearance
associated with a particular target annotation combination, we need
to check whether there are enough source appearance candidates
to ensure a plausible result. If that target data point is in a coherent
region of the annotation space well covered by source annotation
data, then we can safely use samples from that region only to syn-
thesize. When an appearance is requested with an annotation value
in a “hole” in the annotation space, then we need to interpolate from
source data at the boundary of the “hole”. Clustering provides a
way of identifying those “holes”. It also ensures that all extremes of
material appearance variations are represented with candidates for
a particular target appearance specification. As shall be displayed
in the results, this is of particular importance when synthesizing
appearance for target annotations not present in the input data.

Clustering in the annotation space is done using the Mean Shift
algorithm [Comaniciu and Meer 2002] with bandwidth of 0.5 for
all examples (recall that all annotation images are normalized to
[0, 1]). In order to scale to high resolutions we first merge all source
data points with identical annotation values into a single point. If
the number of remaining points still exceeds a large threshold cmax

(we used cmax = 108), we perform quantization by binning before
proceeding with the clustering: all points within the same bin are
assigned to the same point, and bins are equally spaced along all
dimensions so that the total number of bins is equal to cmax.

(a) target (b) source (c) annotations

(d) result (e) missing data (52%)

Fig. 11. Using one cluster per type of brick, and annotations for transitions

between the two types of brick, normals, and light direction, we successfully

handle the brick material and generate clean transitions between its two

variants. 52% of the synthesized regions corresponds to previously unseen

target annotation combinations (shown in purple).

4.2 Candidate sampling regions

During synthesis for each cluster, we will have a number of target
n-dimensional annotation data points to synthesize. In order to allow
for better control over the output appearance, we further restrict the
set of candidate apperances that will be considered for a given target
annotation to a neighborhood around that target annotation point.
We now define this notion of neighborhood in the annotation space.
For each such annotation point a, and for each cluster i, we need
to collect all candidate exemplar data points belonging to i that lie

ACM Transactions on Graphics, Vol. 34, No. 2, Article 22, Publication date: February 2015.
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(a) target (b) source (c) annotations (d) result

Fig. 10. A carpet example. A background image (a) and a source texture image (b) are chosen. The source and target are annotated according to lighting

amount and fine-scale carpet fiber transitions (c) as well as scale (not shown), resulting in a new carpet (d).

in the neighborhood of a. We call those neighborhoods ǫ-balls and
denote them by Bi(a) .

The ǫ-balls Bi(a) are axis-aligned ellipsoids centered on the
target annotation point a. The user defines the scaling parameters
ǫk for each annotation dimension k. Selecting a small ǫk results in a
strict sampling ball with candidates that follow the k-th annotation
more closely, but may lead to more repetitive results. A larger (more
permissive) sampling ball contains candidates that deviate more
from the annotation but also allows for more variation.

To avoid excessive repetition, we ensure that a minimum number
of candidates Ni is always present in the ǫ-balls. Thus the radius of
Bi(a) along annotation dimension k is in fact:

Rik(a) = max{ǫk, R
0

ik(a)}. (1)

where the minimal radius R0

ik(a) is the result of scaling an ellipsoid
that initially has radii (ǫ1, . . . , ǫn) by the smallest isotropic scale
R(a) so that it contains at least Ni candidate points. The scale R(a)
can be determined by a kd-tree that finds the nearest Ni points in a
Euclidean metric ([Mount and Arya 1998]); we only need to scale
all source annotations by 1/ǫk before inserting them into the tree,
and then reverse the scaling by setting R0

ik(a) = ǫkR(a). We set
Ni = max{1000, Ni,total/30}, where Ni,total is the total number
of points in cluster i, to ensure that we have at least 1000 neighbors
in the ǫ-ball to choose from. We visualize some ǫ-balls in Figure 7.

4.3 Cluster weights

At several points during synthesis, the appearances suggested by all
clusters are weighted by appropriate weights, to generate the final
interpolated appearance. The interpolation weights represent how
well the overall appearance of a given cluster matches the target
specification, and thus how useful that cluster is when synthesizing
appearance for that specification. We would like our weights to have
three properties: (i) if a target annotation is far from all clusters, the
weighting should roughly be in inverse proportion to the distance to
each cluster; (ii) inside a cluster, the weights should be sparse with
just that cluster’s weight near 1 and the other clusters’ weights near
0; (iii) on the boundary of two clusters, the weights should be high
for those two clusters and low for the others.

The weights are themselves images of size equal to the size of
the target image, whose value at a given target pixel depends on

(a) 35% missing (b) 55% missing (c) 70% missing (d) 80% missing

(e) result for (a) (f) result for (b) (g) result for (c) (h) result for (d)

Fig. 12. Our algorithm can synthesize visually plausible results even in the

presence of missing data, with the quality of the result degrading gracefully

as less data is available. Repetitiveness and failure to match the desired

appearance only occurs in the extreme case with 80% of missing data. See

Figure 14(c) for the result without missing data.

the annotation vector, a, of that pixel. For cluster i, the value of the
weight image Wi(a) is defined as:

Wi(a) =
1

Z

∑

k=1...n

ǫk
g(Rik(a)− ǫk)

(2)

Here k = 1 . . . n are the dimensions of the annotation space, Z is a
normalization factor so the weights sum to 1 for each target anno-
tated point a, and g is a clipping function that returns its argument
if it is positive, otherwise it returns a small clipping value that is
0.8min

a
{Rik(a)− ǫk|Rik(a)− ǫk > 0}, to make sure that target

points whose ǫ-balls are fully inside a cluster still get higher weights
for that cluster than points with ǫ-balls partially inside the cluster.

Our weights satisfy the three properties: (i) is satisfied by design.
Inside a cluster Rik(a) − ǫk tends to be small and so the given
cluster’s weight dominates, thus satisfying (ii). On the boundary
between two clusters, the radii to those two clusters tend to be only
a moderate factor larger than ǫk while all other radii are quite large,
making those two clusters dominate in the weights and satisfying
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(a) source (b) annotations (c) target (d) result

Fig. 13. Synthesizing colorful hair. The annotations (b) account for the color and the transitions of the hair in the source (a). Using those we can add gradient

colored hair to the target image (c)

property (iii). We show the weights for the target shown in Figure 4
and the clusters shown in Figure 6 in Figure 8.

5. COARSE-TO-FINE ITERATIVE SYNTHESIS

In this section we describe the actual synthesis process. Given our
appearance clusters with their corresponding weights, we proceed
to synthesize the output image, by synthesizing for each cluster
separately and combining the synthesized images. We take the same
general patch-based texture synthesis approach as in multi-source
image melding [Darabi et al. 2012], for its smooth interpolation of
both color and texture. Image Melding starts with an initial guess for
the target image at a low resolution; it then proceeds to iteratively
synthesize candidate images from each of the sources one at a
time, and merges the candidates using appropriate weights. This
is done in a coarse-to-fine multiscale fashion: the merged result of
the previous (coarser) scale is used as a common starting point for
the synthesis iterations for all sources at the next (finer) scale. The
“inner” synthesis iterations are done by means of the generalized
PatchMatch [Barnes et al. 2010] algorithm; after a certain number of
matching iterations, a color “voting” from overlapping patches takes
place to generate a single color per pixel; the result of this process
is a candidate image reconstructed from each source independently.
A combination of the candidates using the weights produces an
improved output image to be used as input for the next scale.

In our case, we use Image Melding to synthesize and combine
images generated from each cluster separately, i.e. our “sources”
for Melding are the various clusters; a number of improvements
were necessary in order for this process to be applicable in our
scenario. First, we generalize Image Melding to allow for multiple
sources and annotations in the melding step. Additionally, the per-
cluster “inner” synthesis step was modified to enable constrained
synthesis necessary for handling missing data, namely to disallow
candidate patches that are outside the current cluster or the ǫ-balls
for a particular target pixel. Finally, our enhanced melding process
is able to handle matting, by synthesizing using RGBA source and
target images with alpha premultiplied.

For each cluster we generate a different initial guess by copying
to the target image a source patch that has most similar annotation
and averaging overlapping patches for each pixel into a single image
(a process called “voting” in [Darabi et al. 2012]). We store the
locations of the copied source patches in the initial Nearest-Neighbor
Field (NNF, [Barnes et al. 2010]) for each cluster.

5.1 Reconstruction within clusters

For each cluster i, we use generalized PatchMatch [Barnes et al.
2010] to select for each patch pj in the target image the best match-

(a) source (b) annotations

(c) bunny (d) duck (e) Luigi

(f) naı̈ve synthesis (g) insertion onto the grass of Figure 1

Fig. 14. We synthesize topiaries (c,d,e) by rendering annotation maps using

3D models. We added an alpha channel to the exemplar, which enables us

to generate finely detailed boundaries that are not present in the 3D models.

Our approach outperforms naı̈ve synthesis (f) which uses only the center of

the exemplar, and simply modulates the result to convey lighting effects; this

result appears artificially smooth, does not match the source in highlight and

shadow colors, and lacks realistic boundaries. Our synthesized topiaries and

grass can be creatively composited together to render a more complex scene

(g) with little effort – here, we manually adjusted brightness and contrast

of the synthesized topiary after its creation, so as to match the colors of the

synthesized grass. We also added a shadow to the composited result.

ing source patch among the set of acceptable candidate source
patches. This set consists of all source patches whose annotation
point at the center pixel of the patch is inside the ǫ-ball Bi(pj) of
the center pixel of the target patch; during PatchMatch, we reject
all candidates that are outside those ǫ-balls. We use a weighted
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(a) source, with the weathered part magnified

(b) annotations

(c) our method, with missing data as an inset

(d) Image Analogies

Fig. 15. Transfer of three differently weathered materials onto a brick

wall. The brick exemplars were scaled to similar sizes during preprocessing.

The source annotations are discrete weathering levels, and the target ones

continuous (33% missing data, shown in purple in (c) ). Compared to Image

Analogies [Hertzmann et al. 2001] (d), our approach better handles smooth

transitions and better matches the specified annotations.

Euclidean patch distance on the channels RGBA as well as the
gradients of RGB as a similarity measure, with a high weight on
the alpha channel to avoid mixing transparent and opaque areas.
Once we have correspondence NNFs for each cluster, we create
reconstructed RGBA images Vi for each cluster i by “voting”.

Rotation and scale control. We optionally allow patch scales
and rotations to be constrained by auxiliary scale and rotation an-
notation images S,Θ which are specified on the sources and the
target, but are otherwise exempt from the preprocessing stage of

(a) full source (b)
source with

no leaves
(c) annotations

(d) result for (a) (e) result for (b) (f) missing data for (e)

Fig. 16. In this example, missing data points are isolated and spread over

the entire exemplar (annotations as in Figure 14). Our algorithm nonetheless

succeeds in generating a bunny with the correct apparent shape by exploiting

nearest neighbors available in the ǫ-balls. The images are better viewed in

higher resolution. (e) has 52% of missing data, shown in purple.

Section 4. In the typical PatchMatch scenario, the matching process
searches for the rotation and scaling transformations for the source
patch that best fit the target patch. We also employ such search, how-
ever we first transform the source patch according to the difference
between the annotated scales and orientations in source and target,
prior to applying the rotation/scaling generated by the search. In
the case of rotations, for example, we constrain the minimum and
maximum angle for each (transformed) source patch to be within
[θ1 − θ2 − δθ, θ1 − θ2 + δθ], where θ1 and θ2 are source and target
angles, δθ is a global tolerance, and target patches remain upright
and are not transformed. This enables control over the generated
orientations and increases the available number of candidate patches,
since we do not need to restrict ourselves to patches of a particular
orientation. Scale is constrained likewise in the log domain.

5.2 Combination based on weights

We now combine the reconstructed versions {Vi} of the target, each
independently created from cluster i, into an improved target for the
next iteration, in a way that smoothly interpolates texture and color.
Even though the per-cluster images are synthesized independently,
their textures at this stage are approximately registered, thanks to
the PatchMatch-type synthesis of Section 5.1 (which includes image
gradients) and the coarse-to-fine nature of the synthesis (which
ensures that the synthesis for all clusters starts from the same image
at each iteration). However, we still need smooth color interpolation.

We do this interpolation first by alpha-compositing each recon-
structed image Vi on the background . We also retain the alpha as
a separate component. We now convert to L∗a∗b∗ color space so
that we can perform smooth interpolation between any discrete
material colors by means of Poisson reconstruction on L∗. We
additionally augment each reconstructed image with the gradient

channels ∇L∗, so that the augmented images Ṽi have 6 channels:
(L∗, a∗, b∗, α, ∂L∗/∂x, ∂L∗/∂y).

We wish to reduce our collection of 6 channel images to a single
image based on our per-cluster weights from Section 4. For the
non-gradient components we take a weighted average based on the
per-cluster weights Wi. For the gradient components we choose per-
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pixel the gradient with maximum norm ‖Wi∇L∗‖. This generalizes
the two-source blending algorithm of Darabi et al. [2012] to multiple
sources. The result is a single image with 6 channels. The 3 channels
(L∗, ∂L∗/∂x, ∂L∗/∂y) are consolidated into a single channel L∗

by performing screened Poisson reconstruction [Bhat et al. 2008]
(to avoid blur, a high weight of 5 for the gradient channel gives best
results). Finally, we convert back to RGBA space and multiply by the
alpha to gain an improved target image that is alpha-premultiplied.

6. RESULTS

Our experiments demonstrate that our approach can synthesize a
variety of complex materials. In most figures, in addition to the
exemplars, annotations, and final result, we also show which regions
were synthesized from existing data (in yellow) and from missing
data (in purple). We consider that data are missing for a target
annotation combination when there are insufficient source data in
the neighborhood of that annotation, i.e., we had to enlarge the ǫ-
ball by increasing the radius along any dimension using the max in
Equation 1 (Section 4.2). All images referenced in this section are
best viewed in high resolution.

Structure of the annotation space. We first illustrate our ap-
proach on a scenario with a single cluster and a negligible amount of
missing data (Figure 10). In these conditions, our method is concep-
tually similar to previous texture synthesis work such as [Zhang et al.
2003], with the difference that we only allow candidates from within
an ǫ-ball, which forces the result to follow the annotations closely.
Figure 9 shows another single cluster example. This example also
illustrates the flexibility of our annotations, as they were acquired in
four different ways, and shows that, given the annotations, one can
easily change the exemplar to get a new appearance.

In Figure 11, we manipulate two different brick materials with two
clusters, and manage to transfer this complex and spatially-varying
texture onto the windmills, while also making the brick materials
follow a new user-specified labeling pattern. Figure 17 illustrates the
influence of the number of annotation maps on a mossy tree example.
While too few annotations might be insufficient, after a certain point
adding more annotation images becomes redundant and has only a
minor effect. The existing annotation images already capture most
of the useful information; adding better annotations improves how
these data are used but we are limited in terms of appearance by the
variation available in the exemplars, which remained unchanged.

Complex boundaries and transitions. Figures 11, 15, 20, 13
and 17 show that our approach can synthesize complex transitions
between materials, which is key to add effects such as weathering
and render natural scenes like moss on a tree trunk, or tree foliage.
The topiary of Figure 14 shows that we can reproduce the complex
boundaries using alpha matting and a transition annotation image.
We generated the annotations by rendering a 3D model that had
smooth boundary and our technique was able to synthesize the
finely detailed contour typical of foliage. This allows for complex
compositing: in Figure 14 we show a result of inserting this topiary
in the yard of Figure 1. For this example this case, we adjusted
manually brightness and contrast to match the background and
added a shadow.

Missing data. Most of our results are generated from incom-
plete exemplars, that is, some data are missing. Figure 12 systemati-
cally studies the robustness of our approach to such missing data.
The main artifact that appears is an increased level of repetition
when most data are missing (80%), where the result fails to match
the specified annotations.

(a) source

(b) moss, shadow and shape annotations

(c) single annotation result and missing data

(d) double annotation result and missing data

(e) triple annotation result and missing data

Fig. 17. Varying the number of annotations. The user provides mossy and

moss-free tree exemplars (a). They also create a dark moss exemplar by

adjusting the brightness of the initial bright moss exemplar to simulate the

appearance of moss in the shade. The available annotations (b) indicate the

moss regions, the lighting variation and a horizontal annotation image that

encodes the cylindrical shape. Using only the moss annotation image to indi-

cate where moss should be yields a poor result (c). Adding the illumination

annotation image greatly improves the result (d). Adding the third annotation

image yields a more modest improvement (e). Missing data regions are

shown in purple ( 42%, 57% and 70% respectively).

Missing data regions are usually concentrated in a large portion
of the annotation space that is not represented in the exemplars. Fig-
ure 16 shows another less common case where missing data points
are isolated and spread over the entire space. In this example, users
seek to generate a flower topiary without leaves, and to do so, they
exclude the leaves from the source exemplar, leaving many holes
spread over the entire exemplar. Our approach handles this case with
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(a) source (b) annotations (c) full algorithm

(d) melding only (e) binary weights (f) nearest neighbor

(g) 1 cluster (h) 4 clusters

Fig. 18. Evaluation of the different components of our algorithm. Using

melding only without any annotations, yields a poor result exhibiting random

and uncontrollable appearance variations, due to using a large topiary source

with a lot of appearance variation without annotation control (d). If we use

binary weights, e.g. weights quantized to zero or one (e), the transition is

not smooth. For (f), we select a single nearest neighbor in image space out

of all patches from all clusters, instead of reconstructing inside each cluster

and melding; the result deviates from the annotations, since the synthesis is

biased against a portion of the valid data. Without clustering or with too few

clusters (g), transitions are not smooth. Once there are sufficient numbers

of clusters, results are not as sensitive to the number of clusters (c,h). See

Figure 19 for explanation of the inset numbers.

a single cluster and approximates the appearance of missing data
parts by looking at nearest neighbors available in the ǫ-balls.

Comparison to Image Melding. We already demonstrated in
Section 2 the conceptual differences between standard texture in-
terpolation techniques (e.g. Image Melding [Darabi et al. 2012])
in terms of determining the data being interpolated. There exists
a second difference from Image Melding, namely the continuous
annotation images that are crucial for producing the desired appear-
ance. Figure 18(d) shows a result of only using melding without
any annotations. For this example, we only used as sources the
two discretely labeled image regions with the two extremal appear-
ances (i.e. “top and lit”, “bottom and in the shade”) without any
annotations, and hoped for Image Melding interpolation to gener-
ate the smooth geometry and lighting transitions the user asked
for. Instead we get a relatively flat result exhibiting random and
uncontrollable appearance variations, instead of a smooth dark-to-
bright gradient. This is due to using a large topiary source with a lot
of appearance variation without annotation control. Naturally, one
could eliminate these variations by making the source image regions
smaller, but as shown in Figure 12, restricting the source exemplars
to small material chunks yields repetitive results that do not exhibit
the rich variations present in most natural materials. Thus texture
interpolation is not enough in the presence of larger exemplars: our
annotations and ǫ-ball sampling scheme are still necessary to control
the output appearance.

0.2 0.4 0.6 0.8
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Normalized chi−square distances to ground truth
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melding, no annotations
two clusters, binary weights
two clusters, NN in image space
single cluster
ours − two clusters
ours − four clusters

Fig. 19. Quantitative comparison of the figures in Figure 18. The graphs

show the cumulative frequency of chi-square distances of the local (win-

dowed) luminance histograms between the various results in Figure 18 (d)-(i)

and the ground truth in Figure 18 (a). See the text for details on the computa-

tion of these distances; as a general rule, graphs that are more concentrated

towards the top left side of the figure are preferable, as they are more concen-

trated around smaller distance values and converge faster. The full method

with 2 clusters outperforms the other results, with the four cluster result

coming second. The numbers shown in Figure 18 are the mean values of the

above shown distances.

Necessity of clusters. We already demonstrated in Section 2
the necessity of clustering in the context of missing data, where
melding is required; i.e., clustering is a practical way of specifying
what is being interpolated. Clusters are however also necessary in
the single-material scenario in order to generate smooth transitions
of appearance and allow for control in the presence of larger image
exemplars. Figure 18 (g) studies exactly this: here, all available
source patches are considered in a single cluster. In such a case,
patch-based synthesis approaches will often try to only use patches
from the “bottom and in the shade” part of the source to fill in the
lower part of the rectangular hole, and patches from the “top and lit”
part of the source for the upper part of the hole. This is because such
selection leads to good coherence in most of the final result, in par-
ticular around the edges of the hole. However, around the transition
zone we get an abrupt, discontinuous switch in appearance. Instead,
we want to make sure that all extremals of material appearance (in
this case, patches from both the bottom and the top of the source)
are represented and used as candidates till the last possible moment,
when they are interpolated to give a smooth appearance transition;
hence the need for two or more different clusters in the presence of
missing data.

Quantitative evaluation. Figure 18 also studies the effect of
using incorrect weights during the melding. A quantitative com-
parison of the different results in Figure 18 is shown in Figure 19.
The comparison metric is obtained by calculating local histograms
for sliding 11x11 windows on the reconstructed topiary result, and
calculating an 8-bin histogram of the luminance channel inside each
window. We then compare these histograms to those calculated
on the equivalent windows in the ground truth image, using the
chi-square histogram distance as a difference measure. Figure 19
shows the cumulative histogram of these distances, collected over
all the overlapping windows. An ideal result would have most of
the windows near distance zero, and thus would be more concen-
trated around the top left part of the plot area. The figure shows
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normals light normals light normals light

(a) noisy (b) quantized (c) blurry
annotations annotations annotations

Fig. 21. Our method is robust to a reasonable amount of error in the

annotations, which suggests it could handle different ways of generating the

annotations. In this example, we test with different versions of the normal

and light annotations of the bunny topiary in Figure 14(c), while keeping the

source annotations and the transition annotation unmodified. In (a), we add

20% of noise, in (b), we use an annotation of lower detail (quantized), while

in (c), we use blurred versions of the target annotations.

that our method outperforms the melding result as well as the other
variations that don’t make use of the full pipeline.

Figure 23 shows a quantitative evaluation on a rendered image. A
scene, complete with surface normal information, was rendered with
Mitsuba [Jakob 2010] and used as a source, with the 3 coordinates
of the normals as annotations. We then synthesize for part of it and
compare the synthesized normals to the ground truth.

Comparison to naı̈ve texture synthesis. In Figure 14(d) we
compared our method to naı̈ve texture synthesis, where a small
texture sample of homogeneous appearance is provided. We gener-
ated this result by synthesizing from a small texture square chosen
from the center of the exemplar bush, using our pipeline without
annotations. This produces an intermediate result with constant light-
ing that we multiply by the lighting annotation map. Simply using
modulation to render the lighting effects in their entirety does not re-
produce well the shape and light variations of the appearance of the
foliage and the synthesized boundary is implausible and exhibits a
“wrapping-paper” kind of appearance. That being said, once the de-
tails of the variation of the material appearance have been captured
with our method (e.g. the local behavior of foliage around shape
cusps and curves), out method can still benefit from modulation by
adding low-frequency lighting variations. For instance, we rendered
the ambient occlusion on the grass in Figure 1 using modulation.

Comparison to Image Analogies. We also compared our ap-
proach to Image Analogies [Hertzmann et al. 2001] on a weathering
example (Figure 15). In all fairness, [Hertzmann et al. 2001] does
not aim at generating smooth transition boundaries, hence the abrupt
switch around the regions where the user requested modifications;
our method avoids such problems due to the presence of gradient
channels and Poisson reconstruction. Ignoring those boundary ar-
tifacts, [Hertzmann et al. 2001] also does not follow the user’s
specifications as closely. This behavior was noted also in [Zhang
et al. 2003]: only relying on the L2-norm of an image augmented
with annotation channels can produce results arbitrarily different
from the desired ones, particularly if there are multiple such chan-
nels. Weighting the channels can help, but we found that tuning
those weights is tedious and may not achieve results similar to ours
even after several tries, particularly given the randomized character
of the synthesis and the presence of an alpha channel, which also

(a) trivial use of annotations (b)our result

Fig. 22. Simply incorporating the annotations in the patch distance without

our clustering/sampling scheme can be hard to control in practise, especially

in the presence of multiple annotations and an alpha channel. Here, we

attempt to create a topiary bunny using the 3 annotations of Figure 14 as well

as an alpha mask for the boundary. Adding these 4 channels to the color and

gradient channels produces an augmented image of 13 channels, to be used

by PatchMatch during synthesis. Appropriately weighting all these channels

can be a hard task - in this case, the synthesis completely misses one ear (a)

due to incorrect synthesis of the alpha channel; it also does not respect the

annotations as well as our result (b) does .

needs to be weighted. Figure 22 shows a typical result of simply
using an L2-distance on the annotations while trying to reproduce
the results of Figure 14; the boundaries are incorrectly synthesized
and the annotations not closely followed. Figure 23(c)-right also
shows a quantitative comparison of the quality of the reconstructed
annotations. In Figure 15, our automatic clustering and interpolation
combined with hard constraints provided by the ǫ-balls successfully
renders the intermediate degrees of weathering requested, while
[Hertzmann et al. 2001] copies appearance from the closest match-
ing degree of weathering. We observed this behavior regardless of
the settings that control the patch distance metric; we demonstrate
the best Analogies result we obtained after fine tuning.

Discussion. We implemented our prototype in Matlab and C++.
Our code is not optimized and runs offline; the results shown in the
paper took in the order of a few hours to compute, the bottleneck
being the inefficient implementation of Image Melding. Since Patch-
Match can be made very fast using multithreading and vectorization,
and number of iterations can be fine-tuned for speed, we are confi-
dent that after optimization we can reach reasonably fast runtimes
for interactivity. We leave this as future work.

The only significant parameter in our system remains ǫk, for
which we used the default value 0.1 in most cases. The number of
clusters is chosen automatically by the Mean Shift algorithm. When
we had to tune ǫk, the set value was either 0.05 (better match of the
annotation) or 0.2 (less repetition). Despite this, repetition remains
visible in a few examples, as is common in texture synthesis and
patch-based optimization methods. As future work, we plan to add
spatial and nearest-neighbor “jittering” [Lefebvre and Hoppe 2006;
Risser et al. 2010], which should help alleviate this issue.

In terms of exemplars, while our approach fully supports more
complex exemplars, we also found it easier to work with simple
shapes like spheres and planar surfaces when possible, in order to
keep the annotation time at a minimum. In terms of annotations, we
found that no special expertise is required to create them; it suffices
for the user to understand the (mostly straightforward) effects that
they want to capture, e.g. the light changes or the shape variations.
With the exception of Figure 9, the remaining annotations were
either binary or gradient images (painted within a few minutes) or
prerendered images of simple primitives (spheres, cylinders) adapted
to the size of the sources. We found that keeping annotations simple
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(a) original tree (b) annotations (c) result tree (d) missing data

Fig. 20. Modifying the lighting in a tree. The original tree image (a) has an unsightly shadow on the right. For the exemplar, we loosely matte the foliage

regions. The annotations (b) indicate red foliage, shadow, and transition regions, with source annotations in the top row and target annotations in the bottom row.

The resulting tree (c) has the shadow removed and matches the target colors. Some amount (d) of previously unseen annotations (about 5% of the total target

region) is present in this example as well.

(a) source (b) result
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(c) angle “error” (d) compared with ground truth

Fig. 23. Synthesizing on a synthetic scene. A textured 3D model of an

apple is rendered into a source image (a). The renderer also provides exact

information about the (x,y,z) coordinates of the surface normals, visualized

as (r,g,b) in color in (a - inset). In this experiment, we use these coordinates

as annotation channels, both for source and target and try to reconstruct the

original apple; we exclude from the source image and annotations the portion

outlined in red. The result is shown in (b). This result is derived by looking

up, for each patch of the target image, the patch in the source image specified

by the optimal map (i.e., NNF) found by PatchMatch during synthesis, and

subsequently performing a voting step for overlapping patches. Using this

same map to look up patches on the source annotation (a-inset) instead of

the source image (a), and using the same voting scheme, we can generate an

image that approximates the normals of our synthesized image, which we

can then compare to the ground truth source annotation. These synthesized

normals are shown in (b - inset), and the angle deviation between the two

insets is shown in (c)-left. While the ǫ-balls guarantee that the annotations are

closely followed, the annotations are not directly used in the patch distance;

hence the focus during synthesis is on synthesizing coherent appearance

for the apple. In (c)-right, the angle error is shown for a result obtained via

regular Image-Analogies style patch synthesis, without our sampling scheme

but with the annotations taking part in the patch distance, as in Figure 22; our

method respects the prescribed annotations better. A quantitative comparison

of the synthesized texture to the ground truth (with the same metric as in

Figure 19) is shown in (d).

can be advantageous for our method; it is helpful to give annota-
tions that provide a coarse guidance of the high-level effects, while
the texture synthesis process renders the fine details necessary to
produce a natural looking image. That being said, our method is
reasonably robust to different ways of capturing the same desired
effect, as well as to some amount of noise. We showcase this in
Figure 21, by adding noise, blurring or quantizing the target annota-
tions of Figure 14, to simulate e.g. manual painting/labeling of the
annotations instead of using an automatically rendered image. On
the other hand, if automatic annotations are used and the annotation
generation procedure completely fails to capture the desired effect,
our method might be unsuccessful too. An example is shown in
the inset Figure 24: the automatic shape-from-shading method used
([Barron and Malik 2012]) did not manage to capture the symmetry
of the shirt, and the reconstructed shirt looks dirty and implausible.
For this example, manual correction to the annotation was nessecary.

Fig. 24. Failure of the automatic annotation

Our method
can currently only
handle opaque, non-
reflective materials;
the appearance
of transparent or
reflective objects
may heavily depend
on distant parts of
the scene and is left
as future work. Our
materials have stochastic textures with small to middle scale
structure details, which covers a broad range of common natural
materials such as grass, foliage, stone wall, fabric, etc. Most
problematic cases included materials with large-scale structures of
different appearance which are hard to place in correspondence (e.g.
walls with large differently shaped bricks, close ups of plants with
ample empty space).

Our approach offers two ways to deal with transitions, either with
an alpha channel or by providing an exemplar that exhibits a sample
transition. When the backgrounds of the input and the exemplar
match, we recommend the latter; this makes the process simpler and
faster by avoiding creation and handling of an alpha channel.

7. CONCLUSION

We have demonstrated a new method for synthesizing images con-
taining complex and/or heterogeneous materials by generalizing
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from only limited exemplars. Our approach is able to process arbi-
trary images including photos downloaded from the Internet and
enables user control through simple tools such as brushes and diffu-
sion curves. It produces results richer than standard texture synthesis
without adding the complexity of BTF capture. The variety of exam-
ples that we have shown attests to the versatility of our technique.

ACKNOWLEDGMENTS

We are grateful to Jim McCann for various discussions and idea sug-
gestions on interactivity. We are also grateful to Wenzel Jakob for the
introduction to Mitsuba. We thank our image sources: Flickr users
Anup Jaiswal (Anup_Nikon D40), Glen Scott (hey mr glen),
Mark Walsh (4mtr), Lindsay Buckley (lindsaypunk), Robert
Moore (Brron) , and the websites www.istockphoto.com,
www.molon.de, graphicleftovers.com, and
www.publicdomainpictures.net . This project was funded in
part by the ERC Starting Grant iModel (StG-2012-306877).

REFERENCES

BARNES, C., SHECHTMAN, E., FINKELSTEIN, A., AND GOLDMAN, D.

2009. PatchMatch: a randomized correspondence algorithm for structural

image editing. ACM Trans. on Graphics 28, 3.

BARNES, C., SHECHTMAN, E., GOLDMAN, D., AND FINKELSTEIN, A.

2010. The generalized patchmatch correspondence algorithm. In Proc.

European Conference on Computer Vision. 29–43.

BARRON, J. T. AND MALIK, J. 2012. Color constancy, intrinsic images, and

shape estimation. In ECCV (4), A. W. Fitzgibbon, S. Lazebnik, P. Perona,

Y. Sato, and C. Schmid, Eds. Lecture Notes in Computer Science, vol.

7575. Springer, 57–70.

BHAT, P., CURLESS, B., COHEN, M., AND ZITNICK, C. L. 2008. Fourier

analysis of the 2D screened Poisson equation for gradient domain prob-

lems. In Proc. European Conference on Computer Vision. 114–128.

BONNEEL, N., VAN DE PANNE, M., LEFEBVRE, S., AND DRETTAKIS, G.

2010. Proxy-guided texture synthesis for rendering natural scenes. In Proc.

International Workshop on Vision, Modeling and Visualization. 87–95.

COMANICIU, D. AND MEER, P. 2002. Mean shift: a robust approach toward

feature space analysis. IEEE Trans. on Pattern Analysis and Machine

Intelligence 24, 5, 603–619.

DANA, K. J., VAN GINNEKEN, B., NAYAR, S. K., AND KOENDERINK,

J. J. 1999. Reflectance and texture of real-world surfaces. ACM Trans. on

Graphics 18, 1, 1–34.

DARABI, S., SHECHTMAN, E., BARNES, C., GOLDMAN, D. B., AND SEN,

P. 2012. Image melding: combining inconsistent images using patch-based

synthesis. ACM Trans. on Graphics 31, 4.

EFROS, A. A. AND LEUNG, T. K. 1999. Texture synthesis by non-

parametric sampling. In Proc. International Conference on Computer

Vision. Vol. 2. 1033–1038.

EISENACHER, C., LEFEBVRE, S., AND STAMMINGER, M. 2008. Texture

synthesis from photographs. Computer Graphics Forum 27, 2, 419–428.

FANG, H. AND HART, J. C. 2004. Textureshop: texture synthesis as a

photograph editing tool. ACM Trans. on Graphics 23, 3, 354–359.

HAN, C., RISSER, E., RAMAMOORTHI, R., AND GRINSPUN, E. 2008.

Multiscale texture synthesis. ACM Trans. on Graphics 27, 3.

HERTZMANN, A., JACOBS, C. E., OLIVER, N., CURLESS, B., AND

SALESIN, D. H. 2001. Image analogies. In Proc. ACM SIGGRAPH.

327–340.

JAKOB, W. 2010. Mitsuba renderer. http://www.mitsuba-renderer.org.

JOHNSON, M. K., DALE, K., AVIDAN, S., PFISTER, H., FREEMAN, W. T.,

AND MATUSIK, W. 2011. CG2Real: Improving the realism of computer

generated images using a large collection of photographs. IEEE Trans. on

Visualization Computer Graphics 17, 9, 1273–1285.

KAUTZ, J., BOULOS, S., AND DURAND, F. 2007. Interactive editing

and modeling of bidirectional texture functions. ACM Trans. on Graph-

ics 26, 3.

KWATRA, V., ESSA, I. A., BOBICK, A. F., AND KWATRA, N. 2005. Texture

optimization for example-based synthesis. ACM Trans. on Graphics 24, 3,

795–802.

LEFEBVRE, S. AND HOPPE, H. 2005. Parallel controllable texture synthesis.

ACM Trans. on Graphics 24, 3, 777–786.

LEFEBVRE, S. AND HOPPE, H. 2006. Appearance-space texture synthesis.

ACM Trans. on Graphics 25, 3, 541–548.

LEPAGE, D. AND LAWRENCE, J. 2011. Material matting. ACM Trans. on

Graphics 30, 6, 144.

LIU, X., YU, Y., AND SHUM, H.-Y. 2001. Synthesizing bidirectional

texture functions for real-world surfaces. In Proceedings of the 28th

Annual Conference on Computer Graphics and Interactive Techniques.

SIGGRAPH ’01. ACM, New York, NY, USA, 97–106.

LU, J., GEORGHIADES, A. S., GLASER, A., WU, H., WEI, L.-Y., GUO,

B., DORSEY, J., AND RUSHMEIER, H. E. 2007. Context-aware textures.

ACM Trans. on Graphics 26, 1.

MATUSIK, W., ZWICKER, M., AND DURAND, F. 2005. Texture design

using a simplicial complex of morphable textures. ACM Trans. on Graph-

ics 24, 3, 787–794.

MOUNT, D. M. AND ARYA, S. 1998. ANN: Library for approximate nearest

neighbour searching.

NGAN, A. AND DURAND, F. 2006. Statistical acquisition of texture appear-

ance. In Proc. European Symposium on Rendering. 31–40.

ORZAN, A., BOUSSEAU, A., WINNEMÖLLER, H., BARLA, P., THOLLOT,
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