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Image pipelines arise frequently in modern computational photography sys-

tems and consist of multiple processing stages where each stage produces

an intermediate image that serves as input to a future stage. Inspired by re-

cent work on loop perforation [Sidiroglou-Douskos et al. 2011], this paper

introduces image perforation, a new optimization technique that allows au-

tomatically exploring the space of performance-accuracy trade-offs within

an image pipeline. Image perforation works by transforming loops over the

image at each pipeline stage into coarser loops that effectively “skip” cer-

tain samples. These missing samples are reconstructed for later stages us-

ing a number of different interpolation strategies that are relatively inex-

pensive to perform compared to the original cost of computing the sample.

We describe a genetic algorithm for automatically exploring the resulting

combinatoric search space of which loops to perforate, in what manner,

by how much, and using what reconstruction method. We also present a

prototype language that implements image perforation along with several

other domain-specific optimizations and show results for a number of differ-

ent image pipelines and inputs. For these cases, image perforation achieves

speedups of 2x-10x with acceptable loss in visual quality and significantly

outperforms loop perforation.
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(a) Reference Output (b) Image Perforation

Fig. 1. Optimizing an image pipeline using image perforation. An
anisotropic radial artistic blur is applied to (a, inset at top left) an input
image to produce (a) the reference output. (b) An optimized version of this
pipeline is automatically found by image perforation (the bottom row shows
zoom regions). Image perforation works by transforming loops over image
arrays to skip certain samples that are subsequently reconstructed from the
available samples. This achieves faster running times at the cost of some
loss in image fidelity. In this case, a speedup of 6x is achieved for a negli-
gible amount of error. Photo credit:© Cheon Fong Liew.

1. INTRODUCTION

Image processing pipelines are common is modern graphics and
computational photography systems. They consist of multiple pro-
cessing stages where each stage produces an intermediate image
that serves as input for a future stage. Examples of common im-
age pipelines include HDR tone-mapping [Paris et al. 2011], edge-
aware smoothing [Tomasi and Manduchi 1998; Chen et al. 2007],
and many types of non-photorealistic image effects [Kang et al.
2009]. Figure 1 illustrates an image pipeline designed to produce a
dramatic artistic effect that emphasizes the center of the image.

It is often the case that a particular implementation of an im-
age pipeline can be altered, or tuned, to make it execute faster
with some acceptable loss in fidelity. However, this type of opti-
mization is still a difficult and time-consuming manual process, but
one that is becoming more important alongside the proliferation
of hardware platforms with widely varying resources and architec-
tures from high-end laptops to smartwatches.

To help meet this challenge, we introduce image perfora-
tion, an automated approach for exploring an important space of
performance-accuracy trade-offs inherent to an image pipeline. The
output of image perforation is an ordered list of modified image
pipelines (variants) that achieve faster and faster running times
for greater sacrifices in accuracy. Our approach is inspired by re-
cent work in software engineering on loop perforation [Sidiroglou-
Douskos et al. 2011], a compiler technique that accelerates general-
purpose programs by skipping certain loop iterations. Image perfo-
ration is a similar compiler optimization technique specifically de-
signed to accelerate image pipelines. It works by skipping certain
image samples that are expensive to compute and using relatively
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inexpensive methods to reconstruct these missing samples when
they are needed in future processing stages.

We introduce several code transformations designed specifically
for loops over multidimensional data since images are typically
interpreted as multidimensional arrays of color intensity values.
These include loop transformations that skip a regular spaced set
of samples and others that skip an irregular set of samples adapted
to the local frequency content of the image (Section 3.1). Our ap-
proach also considers different methods for reconstructing miss-
ing samples such as nearest neighbor, Gaussian, spatially-varying
Gaussian, and multilinear interpolation (Section 3.2). Finally, we
explore several domain-specific code transformations including a
technique we call congruence simplification (Section 3.3.3), which
simplifies sample reconstruction code using congruence relations,
and special handling of color channels, which can often be effec-
tively perforated differently (Section 3.4).

The space of possible code transformations is combinatoric: type
of perforation (e.g., uniform grid or nonuniform), reconstruction
method, presence of domain-specific transformations, and associ-
ated parameters. Therefore, using an exhaustive or greedy search
as was described by Sigiroglou-Douskos et al. [2011] makes it dif-
ficult to identify useful approximations. To overcome this limita-
tion, we present a genetic search that efficiently explores the space
of transformations by mutating a population of variants found to
provide good performance-accuracy trade-offs over multiple gen-
erations (Section 5). The optimized programs have sampling rates
automatically selected throughout their computations by the auto-
tuner: in most cases grid sampling is used, but in some cases, non-
uniform sampling is used.

We evaluate our approach using a prototype language and com-
piler that implements image perforation along with a benchmark
of input images that spans different subjects, texture amounts, and
resolutions (Section 6). We present results for seven common im-
age pipelines: artistic blur (Figure 1), bilateral filter, bilateral grid,
demosaicing, median filtering, two-pass blur, and unsharp masking
(Section 7). We show that image perforation is able to achieve sub-
stantial speed-ups of 2x-10x with little loss in visual quality. We
also demonstrate that image perforation significantly outperforms
loop perforation in this domain. In Section 7.8, we port our opti-
mized programs to the Halide [Ragan-Kelley et al. 2013] language
for computational photography, and find that our ported programs
are about 2× faster than the original Halide programs.

2. RELATED WORK

This paper builds on developments in a number of different areas
that have traditionally seen little overlap.

Filter approximation. Several techniques have been proposed
that use various optimization strategies to approximate discrete
linear filters [Uesaka 2003; Uesaka and Kawamata 2000; Sharman
et al. 1998; Yu and Xinjie 2007; Alcázar et al. 1996]. Similar to
our approach, these methods reduce running times at the cost of
some approximation error. Farbman et al. [2011] demonstrated
a multi-scale technique for accelerating convolutions with filters
having large support. Their technique is able to approximate a
certain class of image operations in linear time at error rates that
are acceptable for many applications. Although our approach could
also be used to tune individual linear filters, it is not restricted to
this domain and can instead approximate arbitrary image pipelines
that involve complex non-linear operations.

Optimizing image pipeline compilers. Image pipelines may be
described in a number of domain-specific languages as graphs of
operations that each process data locally with kernels [Shantzis
1994; Guenter and Nehab 2010; PixelBender 2010]. OpenCL and
CUDA each expose a data-parallel programming model that can ef-
ficiently target both GPUs and CPUs [Buck 2007; OpenCL 2013].
The Halide programming language [Ragan-Kelley et al. 2013] op-
timizes image pipelines by allowing for loop transformations that
trade-off parallelism, locality, and recomputation. In Halide, the
programmer specifies a high-level algorithm along with a sched-
ule that provides details about storage and execution order. Similar
to our approach, Halide includes an auto-tuner that searches for
schedules that deliver the best performance.

Image perforation differs from these previous methods in that it
reduces runtime not by finding an optimal execution order or use
of memory, but by replacing computationally expensive samples
with interpolated values that are much faster to compute. Though
our method does not explicitly search for optimizations that take
advantage of execution scheduling, locality, parallelism, etc., we
present some preliminary experiments that indicate the speed-ups
due to our approximations persist through common vectorization
transformations (Section 7.6), and offer performance advantages
when combined with Halide (Section 7.8). Therefore, image
perforation can be seen as a complementary approach that can be
effectively combined with these alternative optimization strategies.

Subsampling in rendering. There is a rich history of rendering
techniques that employ a similar subsample-and-reconstruct ap-
proach to achieve faster running times [Damez et al. 2003]. These
include methods that subsample environment maps [Agarwal
et al. 2003], indirect lighting calculations [Keller 1997], shadow
calculations [Ramamoorthi et al. 2007], and even the framebuffer
itself [Bishop et al. 1994; Yang et al. 2008; He et al. 2014;
Vaidyanathan et al. 2014]. However, much less work has been done
on subsampling image pipelines and, to our knowledge, no prior
method attempts to automatically learn a profitable subsampling
schedule “on the fly” for a particular scene or rendering technique.

Loop perforation. This paper builds on the work of Sigiroglou-
Douskos and colleagues [2011] who described a general method for
exploring the space of performance-accuracy trade-offs in general
purpose programs by subsampling (perforating) for loops. Loop
perforation can be applied to any loop that can be put in the form
for (int i = 0; i < n; i++). They considered transforma-
tions that multiply the step of a loop by a constant factor, skip
a loop iteration with some probability, or alter the bounds of the
loop. They described both an exhaustive search and a greedy search
for identifying combinations of transformations that reduce running
time for the least amount of error.

Perhaps the most significant difference between loop perforation
and image perforation is the fact that, in many cases, image
pipelines require reconstructing skipped samples in order to
produce useful optimizations. For example, consider the final
stage in which the output image is assembled. Simply skipping
iterations would result in missing (black) pixels. To overcome these
limitations, we introduce a broader class of loop transformations
and new reconstruction strategies that provide a much richer set
of optimizations that are more appropriate for image pipelines.
Furthermore, we also introduce an efficient search strategy based
on a genetic algorithm that is able to identify good optimiza-
tions more quickly than exhaustive search, which is very slow,
or a greedy search, which is prone to becoming trapped in poor
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local minima. We directly compare these two methods in Section 7.

Genetic algorithms and auto-tuning. Genetic algorithms and ge-
netic programming (GP) are general machine learning strategies
that use an evolutionary methodology to search for a set of pro-
grams that optimize some fitness criterion [Koza 1992]. From an
initial population of candidates, a new evolved generation of candi-
dates is produced through a series of mutation and combination op-
erations (i.e., cross-over). After each generation, a new population
is chosen that favors the fittest candidates and this process repeats.

Genetic algorithms have received renewed attention in the field
of computer graphics lately. Recent work by Sitthi-Amorn et
al. [2011] describes a GP approach to the problem of automatic pro-
cedural shader simplification. Brady and colleagues [2014] showed
how to use GP to discover new analytic reflectance functions. We
use a similar genetic algorithm as Sitthi-Amorn et al. [2011] to au-
tomatically search over the space of image perforations.

More generally, searching for optimal program implementations
falls under the rubric of program auto-tuning. Auto-tuning has
been successfully applied in many domains such as parallelizing
stencil computations [Christen et al. 2011] and multigrid PDE
solvers [Chan et al. 2009]. OpenTuner [Ansel et al. 2013] simul-
taneously employs many different search methods such as the sim-
plex method, genetic search, and others. Although our method is
inspired by this prior work, we employ a straightforward genetic
algorithm and focus on the problem domain of image processing.

3. IMAGE PERFORATION

In this section, we introduce image perforation using a motivating
example of optimizing a two-pass blur. We describe the different
loop perforation strategies our approach considers for skipping and
reconstructing samples (Sections 3.1-3.2) along with specific opti-
mizations involving the choice of precomputed vs on-demand sam-
ple reconstruction (Section 3.3), congruence simplifications (Sec-
tion 3.3.3), and handling color channels (Section 3.4). We present
our prototype language and compiler in Section 4.

At its core, image perforation exploits the observation that the
frequency content of the arrays produced at each stage in an image
pipeline are often well below the theoretical Nyquı̈st limit. Some-
times this may be true only within local regions. This is due to a
number of factors including characteristics of the input image itself
(e.g., it may show a smooth blue sky alongside high-frequency tex-
tured regions) or the nature of the computation (e.g., some image
regions may be more aggressively blurred than others). For exam-
ple, if an intermediate stage aggressively blurs the image it receives,
it should be possible to represent this stage’s output using far fewer
samples than the input. Following a similar argument, it should also
be possible to accurately reconstruct these “skipped” samples when
they are needed in future processing stages. The goal of image per-
foration is to automatically modify the source code of an image
pipeline to exploit these opportunities while still accommodating a
wide range of inputs.

We will assume that an image pipeline can be described as a di-
rected acyclic graph where each vertex corresponds to a processing
stage that computes an output array by executing a loop. A stage
may depend on arrays computed in earlier stages. Note that the
arrays can be of any dimensionality, although we use the term “im-
age” because we focus on image processing. In our current proto-
type, the image processing stages are indicated by the developer
using a semantic annotation (in our prototype language, we use
for each). We leave for future work the automatic identification
of these stages: this would require locating in the abstract syntax

tree nested loops over spatial coordinates, which result in assign-
ment to an output array. We also assume that the computation for
each pixel is independent from other pixels.

To help describe image perforation, consider the following two-
stage image pipeline that performs a Gaussian blur:

Listing 1. Two stage blur program.

function twoPassBlur(in , out)

for each (x,y) of A as stage1

A[x,y] = sum(K(i,σ)*in[x-i,y], i=-h...h)

for each (x,y) of out as stage2

out[x,y] = sum(K(i,σ)*A[x,y-i], i=-h...h)

The first stage computes a horizontal blur of the input within
each scanline and stores this in a temporary array A. The second
stage performs a vertical blur. In Section 7, we analyze the specific
case of a wide Gaussian blur with h = 8 and σ = 4.

By the Nyquı̈st-Shannon’s theorem [Pavlidis 2012], the uniform
sampling theorem for band-limited signals, we know that the first
stage is band-limited so that it can be subsampled by 4 in the x
dimension without losing much information. Similarly, the second
stage is band-limited such that it can be subsampled by 4 in both
the x and y dimensions. By the same theorem, one can show that
the samples that are skipped can be accurately reconstructed from
those that are not skipped using some form of interpolation. Image
perforation seeks to identify and exploit these types of optimiza-
tions automatically.

3.1 Perforation strategies

We consider three approaches for perforating loops over image ar-
rays: grid sampling, adaptive sampling, and importance sampling.

Grid sampling. This technique transforms a loop so that it is
executed only at a regularly distributed subset of locations in the
array, or samples. This is an appropriate choice if the array is
globally band-limited, such as the blur example. Specifically, grid
sampling uses a spacing vector s ∈ N

k, where k is the number of
variables in the for each loop. The samples are then distributed
with equal spacing si along every dimension i. In the blur example
above, stage1 could be safely perforated using grid sampling with
a spacing of (4, 1) and stage2 with a spacing of (4, 4).

Adaptive sampling. This technique transforms a loop so that it is
executed only at an irregularly distributed subset of samples, typ-
ically arranged so that high-frequency regions are sampled more
densely (Figure 2). Adaptive sampling first evaluates a coarse grid
of samples, and then adaptively refines areas by adding additional
samples wherever the output is found to vary rapidly (Figure 2(d)).
This approach was inspired by the shader sampling scheme of
He et al. [2014]. Unlike He et al., however, we automatically deter-
mine where refinement occurs without requiring the user to write a
separate procedure.

We introduce a parameter k that is the grid spacing. We con-
struct the coarse grid with one sample every k pixels, and evaluate
the output of the current pipeline stage at these coarse grid loca-
tions. Next, we assign a refinement priority for each coarse sample,
which is the sum of absolute differences between the pixel value
at the coarse sample and each of its 8 neighbors. We refine coarse
samples with the highest priorities by surrounding them with closer

samples. Specifically, we use a k̂×k̂ fine grid, where k̂ is k rounded
up to the nearest odd integer. We continue to place fine samples un-
til the target sample count is achieved.
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(a) (b) (c) (d)

Fig. 2. Illustration of adaptive sampling and importance sampling. Adap-
tive sampling computes samples (b) by refining an initial coarse grid to
have denser samples wherever the output image varies rapidly. Importance
sampling computes from (a) the input image (c) an importance map using
the texturedness measure of Bae et al. [2006] and takes a parameter f that
determines the number of samples as a fraction of n the image resolution.
We use a modified version of the dithering method of Ostromoukhov [2001]
to (d) distribute these fn samples according to the importance map. Photo
credit: © Frank Swift.

We also introduce a parameter f that is equal to the fraction of
samples that will be computed relative to the size n of the input
image. For example, f = 0.5 indicates that half of the pixels should
be computed. The target sample count is then simply fn.

For efficiency, we use a histogram operation to decide the cutoff
priority below which fine samples should not be generated. We
place the refinement priorities in a histogram and work downward
from the largest values of the histogram, accounting for the number
of fine samples created, until we meet the target sample count. This
histogram approach takes only O(n) time, whereas a comparison
sort would require O(n logn) time.

Importance sampling. Like adaptive sampling, importance sam-
pling transforms a loop so that it is executed only at irregularly
distributed samples (Figure 2). However, unlike adaptive sampling,
importance sampling computes fixed sample locations based on the
texture properties of the input image. This is an appropriate choice
if the image array is locally band-limited. For example, in Figure 1,
portions of the image near the edges are more aggressively blurred
whereas regions near the center retain high-frequency details.

Importance sampling relies on an importance map to determine
where to place samples. In general, it is infeasible to compute an
optimal importance map for each stage as this would require knowl-
edge of the stage’s output. In our experiments, we found that the
image texturedness measure of Bae et al. [2006] worked well for
this purpose. For efficiency, we modify their method to use a sim-
ple Gaussian blur instead of a bilateral filter. Specifically, the im-
portance map is computed by applying this slightly modified tex-
turedness measure to the input image (Figure 2(b)). Alternatively,
the programmer could supply a custom importance map.

To achieve speedups, our sampling strategies need to have a low
time overhead relative to the existing parts of the image pipeline.
Therefore, we introduce an efficient method for placing samples
that are proportional to the importance map, and also relatively
well-distributed spatially. This is related to the literature on Pois-
son disc sampling [Wei 2008].

Our efficient importance sampling method works by simply
remapping the intensities of the importance map followed by
dithering. We remap the intensities of the importance map so
that it sums to the target number of samples, fn, after being
clamped to the range [0, 1]. This remapping can be done efficiently

using histogram operations as described in Appendix A. We then
use dithering to determine the final sample locations, as shown
in Figure 2(c). We explored both Floyd-Steinberg [1976] and
Ostromoukhov dithering [2001], and found that Ostromoukhov’s
technique performed better due to its blue noise properties.

3.2 Reconstruction

The perforation strategies described previously result in some en-
tries in the output image array being skipped. In most cases, simply
ignoring these missing samples is unacceptable as they would re-
sult in black pixels in the image. We investigated several methods
for reconstructing missing values from the set of computed sam-
ples. These include nearest neighbor interpolation, spatially invari-
ant and spatially-varying Gaussian interpolation, and multilinear
interpolation. In each case, we seek to balance the fundamental
trade-off between reconstruction accuracy and running time.

For nearest neighbor reconstruction we simply copy into the
output array the nearest sampled location, as determined by the
Manhattan distance metric [Rosenfeld and Pfaltz 1968]. For spa-
tially invariant Gaussian reconstruction we use an infinite impulse
response (IIR) approximation to a Gaussian kernel [Young and
Van Vliet 1995], although faster parallel algorithms could be used
instead [Nehab et al. 2011].

For spatially-varying Gaussian reconstruction we use the method
of repeated integration [Heckbert 1986]. In particular, we perform
two integrations which gives a tent filter approximation to the
Gaussian. This method can be used with both adaptive and impor-
tance sampling. For importance sampling, the parameter for our
spatially varying Gaussian in d dimensions is given by σ(x) =
σ0/M(x)1/d, where M is the importance map after rescaling, x is
the spatial location, and σ0 is a parameter either provided by the de-
veloper or, more commonly, determined during the genetic search
described in Section 5. This is derived by requiring a spherical filter
of radius σ(x) to cover an approximately equal number of samples
for every location x, i.e., M is the “volume” of the sphere, and σ is
the “radius” of the sphere. For adaptive sampling, where there is a
fine sample we use σ(x) = 0.01 and where there is a coarse sample
we use σ(x) = σ0k. Again, σ0 is a parameter typically determined
by the genetic algorithm.

We reconstruct the final image I ′ from the samples S and sam-
pled image I , using a reconstruction filter G, according to:

I ′ =
G ∗ I

G ∗ S
(1)

Here we assume the samples S are either zero or one and the sam-
pled image has been initialized to zero in non-sampled locations.

The final reconstruction method we consider is multilinear inter-
polation. Clearly, we can support this in the general case by using
repeated integration, which gives a tent filter reconstruction. How-
ever, when multilinear reconstruction is used in conjunction with
grid sampling further accelerations and storage reductions are pos-
sible, as discussed in the next section.

3.3 On-demand reconstruction

We previously described reconstructing the missing values at each
skipped location and storing these in the image array. However, in
many cases it is advantageous to reconstruct skipped samples on-
demand, as they are needed in subsequent processing stages. This
trade-off of precomputed vs on-demand reconstruction is especially
helpful for grid sampling, because the fixed grid sample locations
permit fast reconstructions. We do not use on-demand reconstruc-
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Fig. 3. Congruence simplification. Consider the two stage blur program of

Listing 1, which applies a horizontal blur followed by a vertical blur. In

(a), we show the locations that are sampled for the intermediate array A of

the blur program. This array is horizontally blurred, and has grid sampling

with spacing (4, 1). In (b), stage 2 of the blur program reads from the ar-

ray A and writes to the output array out. This stage reads from the array

A locations shown in the green circles. Specifically, the array A is read at

location (x′, y′) = (x, y − i), where x is the variable we are looping over,

with x ≡ 0 (mod 4). We can prove that the read locations (shown in green)

coincide with sample locations, so bilinear interpolation simplifies to near-

est neighbor lookup. In (c) suppose that we instead read from a different

array location (x′, y′) = (x + 2, y − i). We can prove that bilinear inter-

polation for this expression simplifies to linear interpolation with constant

weights (0.5, 0.5) between horizontally neighboring samples (depicted by

read locations in red being midway between adjacent samples).

tion for irregular samples, because it is inefficient in that case. In
particular, we apply three optimizations: rewriting pixel reads, stor-
age optimizations, and congruence simplification.

3.3.1 Rewriting pixel reads. This optimization replaces pixel
reads from the reconstructed image I ′ with on-demand reconstruc-
tions from nearby grid samples. For example, with nearest neighbor
reconstruction, we can simply read from the nearest grid point. Or,
for linear interpolation, we can count the number of dimensions p
with nontrivial grid spacing (si 6= 1), and then use multilinear in-
terpolation of order p (i.e., linear for p = 1, bilinear for p = 2,
trilinear for p = 3, etc). All pixel reads in the output image should
be rewritten this way, when the read is made in a stage after the
current stage.

3.3.2 Storage optimization. Storage optimization reduces stor-
age requirements and improves cache performance by storing the
grid spacing along with the type information for the image I that is
being looped over. This allows rewriting accesses within the current
stage so that I(x, y, . . .) becomes I(x/s1, y/s2, . . .). Pixel reads in
later stages simply use the same reconstruction as before, but with
coordinates appropriately divided by the spacing. Because the max-
imum index is divided by the spacing, the storage requirements for
the image are likewise reduced. Note that the sampling array S can
be omitted because reconstruction is done analytically instead of
by equation (1). This storage optimization gives a result similar to
downsampling, but note that computation is also being downsam-
pled alongside the image values.

3.3.3 Congruence simplification. The final optimization is
congruence simplification. This allows us to rewrite pixel read op-
erations to have constant reconstruction weights whenever they
have certain congruence properties. As a motivating example, recall
the two stage blur program shown in Listing 1, which first horizon-
tally blurs the input into a temporary array A, and then vertically
blurs the temporary array into the output array out. Previously,
we grid sampled the first computation stage (stage1) of the blur

program by (4, 1), and the second computation stage (stage2) by
(4, 4), and used multilinear reconstruction for both stages. In this
case, the loop in stage2 takes the following form:

Listing 2. Stage 2 of the blur program from Listing 1.

for y=0 to out.height () step 4

for x=0 to out.width () step 4

out[x, y] = sum(K(i,σ)*A[x, y-i], ...)

The stored samples for the intermediate (horizontally blurred)
array A are depicted in Figure 3(a). Because A is reconstructed
on-demand, we would ordinarily have to use multilinear recon-
struction every time we read from the A array. Specifically, in
stage2 of the blur program, we read from the array A by using
the code A[x, y-i]. Array A is grid sampled by (4, 1), and
therefore has some missing samples, so ordinarily we would have
to do interpolation across the x coordinate. However, as shown
in Figure 3(b), the green locations that are read from coincide
exactly with the black locations that have been previously sampled
and stored. Therefore, no interpolation is necessary for this read
operation. Mathematically, we can define the read location (x′, y′)
for the array A to be (x′, y′) = (x, y − i). We can note that the
loop variable x in Listing 2 has the property x ≡ 0 (mod 4),
so we can prove that the read index x′ ≡ 0 (mod 4), and thus
linear interpolation can be replaced with a single nearest neighbor
lookup. If we had instead read from location x′ = x + 2, then we
could prove x′ ≡ 2 (mod 4), and the linear interpolation weights
would be the constants (0.5, 0.5). This second scenario is shown
in Figure 3(c).

In general, we perform congruence simplification by passing all
the known loop congruences to a theorem prover [De Moura and
Bjørner 2008] and attempting to prove that a given read index vari-
able (e.g., x′) is congruent to each possible constant, modulo the
grid spacing. If the index is congruent to a constant then the inter-
polation has known, constant weights.

Finally, note that congruence simplification combined with com-
mon subexpression elimination can reduce the number of taps in a
filter. For example, suppose we have a two stage blur: a 5-tap con-
volution in x followed by 100-tap convolution in x. Suppose we
grid sample both stages with a spacing of 2 horizontally. Then con-
gruence simplification will convert the original 100 array reads in
the second stage into 50 unique reads, giving a 50-tap filter.

3.4 Special handling of color channels

Our final approximation concerns color channels. In video process-
ing, color spaces such as YUV [Black 2009] are common, where
chromatic information is represented with fewer bits or subsam-
pled. This is done because the human visual system is less sensitive
to chrominance than luminance [Párraga et al. 1998].

We allow for similar channel subsampling. We assume the last
array dimension stores color channels. If color approximation is
invoked, then all loops over color do not sample channels above a
maximum number of color channels c (e.g. c = 1 samples only
the first color channel). The remaining channels are simply copied
from the input image after reconstruction. Color subsampling is of-
ten more effective if the image processing is performed in a color
space such as YUV, so we also expose several convenience func-
tions for color conversion.

4. PROTOTYPE LANGUAGE AND COMPILER

We built a prototype programming language and compiler that im-
plements image perforation. Our compiler expects programs with
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C-like semantics as input, along with an approximation schedule,
which specifies the manner in which each loop is perforated and
missing samples are reconstructed, and any other specific optimiza-
tions like special handling of color channels. From these two input
files our compiler produces backend code, which is currently C++.

As we mentioned earlier, our language exposes a for loop,
which allows for standard loop perforations, as well as a for each
loop which allows for image perforations. The for each loop
serves to identify a particular image stage for the analysis described
in the previous section. It has the following syntax:

for each vars of image as stagename

This creates a loop over variables such as (x, y) in the domain
of image, starting with the first specified image dimension. The
stagename is a unique identifier for the stage.

Our compiler first converts the input program into an abstract
syntax tree (AST) [Aho et al. 1986]. Approximation schedules can
be specified manually using annotations associated with each loop.
Alternatively, the genetic search presented in the next section (Sec-
tion 5) can be used to automatically explore this space. The com-
piler creates the output program by directly modifying the AST ac-
cording to the approximation schedule, such as injecting sampling
code above for each loops, and reconstruction code below. Array
reads are modified as necessary due to any of the on-demand recon-
struction optimizations discussed in Section 3.3, and color loops are
modified as required by Section 3.4. The code generator produces
output code in the back-end language.

We also explored simple parallelization strategies such as thread
parallelism of loops and SIMD parallelization across color chan-
nels. Although we leave exploring the full transformation space of
Halide [Ragan-Kelley et al. 2013] to future work, our preliminary
results indicate that our approximations remain beneficial across
common parallel loop scheduling optimizations. This is discussed
further in Sections 7.6 and 7.8.

5. GENETIC SEARCH FOR GOOD SCHEDULES

Although image and loop perforation schedules can be specified by
hand in our language, we found this to be a time-consuming pro-
cess that can easily overlook beneficial optimizations. To address
this challenge, we developed a genetic algorithm that automatically
searches over the space of possible code transformations consisting
of different perforation strategies, reconstruction techniques, and
associated parameters.

Our genetic search closely follows the method of Sitthi-
Amorn et al. [2011]. We adopt their fitness function and tourna-
ment selection rules and we use the same method to compute the
Pareto frontier of program variants that optimally trade-off running
time and image fidelity.

We employ standard mutation and cross-over operations to ex-
plore the space of code transformations. Specifically, the mutation
step chooses a new perforation method (e.g., grid sampling or im-
portance sampling) and its parameters (e.g., grid spacing or frac-
tion f ), as well as the reconstruction method, the choice of pre-
computed vs on-demand reconstruction (this only applies to grid
sampling), and the choice of whether to sub-sample color chan-
nels. We use two-point crossover to generate a single child from
two randomly chosen parents. For example, suppose that the loops
in a pipeline are numbered 1, 2, 3, 4 and parent A has genome
A1A2A3A4 (genes may be empty for no approximation), and par-
ent B has genome B1B2B3B4. Two crossover points are selected
at random, which could result, for example, in a child A1B2B3A4.

Fig. 4. These six training images were selected out of the 120 image bench-
mark dataset. The training images are used by our genetic algorithm to iden-
tify good perforation schedules. Photo credits clockwise from top left: © Gage
Skidmore; Paulo Valdivieso; jhenryrose; Trey Ratcliff; Loren Kerns; ChrononautClub.

6. IMAGE BENCHMARK

We assembled a benchmark of images to serve as training data for
our genetic search and to test the accuracy of our optimized im-
age pipelines. This benchmark consists of 120 images downloaded
from Flickr that span a range of subjects, frequency characteristics,
and resolutions. A portion of this dataset is shown in Figure 4.

Our benchmark is divided into three categories: man-made (i.e.
cities, bridges, streets, etc.); natural (i.e. bodies of water, caves,
landscapes, etc.); and people (i.e. portraits, crowds, different skin
color and ethnicities, etc.). We chose these specific categories be-
cause we believe they offer good coverage of the type of content
typically used in modern image pipelines.

One goal of this benchmark was to allow studying how im-
age perforation varies across images having different frequency
content. To this end, for each of our categories we selected 10
“low texture” images and 10 “high texture” images. We deter-
mined the degree of texture within an image using the method of
Bae et al. [2006]. Low texture images are those with a mean tex-
ture measure less than 12 (assuming 8 bit pixel values in the range
[0,255]) and high texture images are those with a mean texture
measure greater than 15. We calculated these texture measures on
820x614 images (approximately 0.5MP).

Another goal was to verify that optimized pipelines perform well
on images with different resolutions. To this end, our benchmark
includes a mixture of images with both low (256x192) and medium
(820x614) resolutions. We chose these specific resolutions to make
training and testing times tractable.

In total, our benchmark contains 120 images (3 categories x 2
texture levels x 10 images per category x 2 resolutions). We chose
6 images (one image from each category and texture level includ-
ing both low and medium resolutions) to guide the genetic search
(Figure 4) and used the remaining 114 images for testing.

7. RESULTS

We evaluated image perforation by using our prototype compiler
(Section 4) and genetic search (Section 5) to automatically opti-
mize seven image pipelines. For comparison, we used this same
genetic algorithm to search over only the space of code transforma-
tions described in the original loop perforation paper [Sidiroglou-
Douskos et al. 2011]. To accomplish this we simply replaced for
each loops with for loops and used our same codebase. For two of
these pipelines, we investigated combining image perforation with
Halide (Section 7.8).
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For the genetic search we used a cluster consisting of 64 AMD
Opteron 6276 machines with 2MB cache, 2.3GHz processors with
8 cores and 4GB of memory. In every case, we evolved a popula-
tion of size 100 over 200 generations using the process described
in Section 5. The six images shown in Figure 4 were used to guide
the search. Specifically, we computed the average running times re-
quired to compute the output along with the average L2 difference
in the CIE Lab color space against the reference output for each
program variant in each population. (Recall that “program variants”
in this context are schedules that describe the specific perforation
and reconstruction strategies applied to each loop along with as-
sociated parameters.) At the end of each search, we compute the
Pareto frontier, which is the set of optimal program variants in the
sense that no other variant was found that performed better in one
dimension (either accuracy or running time) while being no worse
in the other. Figure 5 shows the Pareto frontiers for all seven image
pipelines. These are discussed in detail below. Frontiers that hug
the origin are preferable as these represent optimizations that offer
the greatest performance gains with the smallest visual errors. The
faint dots in these graphs plot the measured running time and mean
Lab L2 error of each program variant and each image in our test-
ing set to give some indication of the statistical variance in these
results.

Table I. Statistics for how often each perforation strategy was chosen in

the image pipelines we studied. These numbers reflect only those program

variants with mean Lab errors less than 10.

Application Grid Importance Adaptive None

Artistic blur 24% 15% 60% 2%

Bilateral filter 68% 21% 8% 3%

Bilateral grid 88% 0% 0% 12%

Demosaic 59% 0% 0% 41%

Median 40% 8% 52% 1%

Two-pass blur 96% 0% 0% 4%

Unsharp mask 86% 0% 0% 14%

Table I summarizes how often each perforation strategy was cho-
sen in the optimized programs along the Pareto frontier for each
image pipeline. Note that grid sampling tends to be the most pop-
ular choice. We attribute this to the fact that grid sampling has the
lowest performance overhead since it permits fast reconstruction
and avoids the more expensive computations associated with im-
portance and adaptive sampling. Nonetheless, in many cases adap-
tive and importance sampling strategies were chosen, usually with
spatially varying Gaussian reconstruction, which indicates the pres-
ence of particularly expensive inner loops whose execution out-
weighs these overheads. We highlight a few of these cases below.

7.1 Artistic blur

The image effect in Figure 1 is designed to dramatically empha-
size the center of a photo. This is achieved with a spatially varying
anisotropic blur that becomes stronger near the periphery of the
image. The source location for the blur kernel is also randomly jit-
tered to add an interesting artistic effect. In pseudocode, this effect
is implemented as follows:

function artistic(in , out)

for each (x, y) of out as stageOutput

r = distance of (x,y) from image center

if (r < cutoff)

out[x,y] = in[x,y]

else

out[x,y] = 0

for (i) of -h..h as stageKernelX

for (j) of -h..h as stageKernelY

out[x,y] += kern(r,i,j)*in[x-i,y-j]

The function kern(r,i,j) returns pre-normalized weights of a
kernel that produces a wider blur with increasing values of r, the
distance to the image center.

Figure 5(a) shows the results of the genetic search for image per-
foration. Image perforation overall far outperforms loop perforation
for this effect. To better understand why this is the case, consider
the specific result in Figure 1, which shows an optimized pipeline
found with image perforation that gives a speedup of roughly 6x. In
this case, image perforation optimizes stageOutput using adap-
tive sampling and computes only 25% of the samples with a grid
spacing of 3. Spatially varying Gaussian interpolation was used to
reconstruct skipped samples and no perforations were applied to
the inner loops stageKernelX and stageKernelY. In contrast,
the best strategy for loop perforation to achieve a similar speedup
is to optimize stageOutput by computing only the first 75% of
samples and similarly reduces stageKernelX and stageKernelY
by computing only the first 41% and last 96% of samples, respec-
tively. However, this results in large missing (black) areas in the
output image (see page 24 of the supplemental for the loop per-
foration result). Additionally, skipping portions of the nested sum
over the pre-normalized filter kernel causes the blurred regions to
become noticeably darker. Due to the far greater flexibility in how
loops over images may be reduced and the fact that missing val-
ues can be accurately reconstructed, especially in low-frequency
regions like the blurred areas near the edges of the image, image
perforation finds a program that is six times faster than the original
with very few visible artifacts. Please see the supplemental docu-
ment that includes more extensive comparisons for each of these
pipelines.

We also performed an experiment that compares our full method
with our method restricted to use only grid sampling. The results
are shown in Figures 6(a) and 7(top). As illustrated in Figure 7(top),
our full method more faithfully reproduces high-frequency details
in the center of the output image. Specifically, for a target speedup
of 2x, our full method uses adaptive sampling and computes only
45% of the samples with a grid spacing of 2. The comparable grid
sampling strategy uses spacing (1, 2).

(a) Artistic blur (b) Bilateral filter (c) Median

Fig. 6. A comparison of Pareto frontiers between (red) our full method

and (blue) our method restricted to use only grid sampling. (See also Fig-

ure 7.) Note that in most cases having the ability to perform importance

and adaptive sampling gives overall better performance. However, in some

cases such as bilateral filter, grid sampling is preferable and one is better off

spending more time searching over this restricted set of perforation strate-

gies. These results are discussed in more detail in Sections 7.1, 7.2, and

7.5.
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(a) Artistic blur (b) Bilateral filter (c) Bilateral grid (d) Demosaic (e) Median (f) Two pass blur (g) Unsharp mask

Fig. 5. Pareto frontiers for (red) image perforation and (blue) loop perforation for the image pipelines considered in our evaluation. These are
the result of taking the Pareto frontier from the training set and evaluating on the test set, thus, the curves are not monotonic. Opaque points
joined with line segments correspond to mean time and error for a single program variant over the entire test dataset, whereas translucent
points correspond to individual test image/program variant combinations.

Input Image Reference Output Our Full Method Ours Grid Only

Fig. 7. Individual image results for a comparison between our full method
and our method restricted to use only grid sampling (see also Figure 6).
These are shown for the two applications where we observed visual im-
provements: artistic blur (top) and median (bottom). Each row compares
optimized pipelines computed using each method for similar speedup fac-
tors. The target speedup for both applications is 2x. In both cases, our full
method chooses adaptive sampling, which allows more accurate reproduc-
tion of high-frequency texture details. These results are discussed in more
detail in Sections 7.1 and 7.5. Photo credits: © Werner Kunz and Robert Izumi.

7.2 Bilateral filter

A bilateral filter [Tomasi and Manduchi 1998] is a nonlinear
smoothing filter that avoids smoothing across edges. Several meth-
ods have been designed specifically to accelerate bilateral fil-
ters [Chen et al. 2007; Banterle et al. 2012]. In particular, the
method of Banterle et al. [2012] generates samples using a Poisson-
disk distribution. This is similar to our importance sampling, only
we use a simpler dithering approach to generate samples.

We evaluated image and loop perforation using a standard bilat-
eral filter [Tomasi and Manduchi 1998], implemented as follows:

function bilateral(in , out)

for each (x,y) of out as stageOutput

out[x,y] = 0

norm = 0

for each (i,j) as stageKernel

rw = range(in[x,y],in[x-i,y-j])

sw = spatial(i,j)

out[x,y] += rw*sw*in[x-i,y-j]

norm += rw*sw

out[x,y] /= norm

Here the functions range() and spatial() return typical val-
ues for the range and spatial filter components, respectively, com-
puted using a Gaussian function with standard deviations of 4 and
0.8 pixels, respectively. The spatial filter has a 9x9 square shape.

Pareto frontiers for image perforation and loop perforation are
plotted in Figure 5(b). Note that unlike the artistic blur, the con-
volution computed in stageKernel is normalized outside of the
loop. This allows loop perforation to skip iterations without intro-
ducing such egregious errors. Figure 8(top row) shows two opti-
mized pipelines with comparable speedups. Interestingly, the im-
age perforation result optimizes the outer loop stageOutput us-
ing importance sampling with a value of f equal to 75%. The inner
loop stageKernel is perforated using grid sampling with a spac-
ing vector of (2, 2). In contrast, loop perforation computes only the
last 96% iterations of stageOutput (notice the black scanline of
missing pixels along the top of the image) and executes only the
first half of the iterations in stageKernel in each of the two spa-
tial dimensions. Although the benefits of image perforation are less
dramatic than in other cases, the results obtained with our approach
are still consistently better.

When we compared optimizing the bilateral filter using our full
method to using our method restricted to only grid sampling, we
found the visual differences were fairly minor (see Figures 6 and
7). This appears to be because of a combination of two factors: (1)
our bilateral filter implementation is already quite fast and so the
overhead of using non-uniform sampling is only slightly preferred
by the search process, and (2) our error metric is simplistic and
does not take into account subtleties of human vision such as a
preference for greater fidelity along high-frequency edges. It would
be worth exploring the use of perceptual error measures in future
work.

7.3 Bilateral grid

The bilateral grid [Chen et al. 2007] accelerates the bilateral filter
by embedding the problem in a higher-dimensional domain that
enables the use of fast linear filters. It computes the output in three
steps. First, the input image is splatted into a three-dimensional
grid with two spatial dimensions and one range dimension. Second,
a linear blur is applied to this grid in order to smooth values that
are nearby in both space and pixel value. Finally, the output image
is sliced from the grid by evaluating the result of the blur at the grid
location associated with each pixel in the input.

We implemented the bilateral grid using five for each loops
without any nesting:

function bilateral_grid(in , out)

for each (x, y, z) of in as stageSplat
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grid[x/σs,y/σs,in[x,y]/σr] += (in[x,y], 1)
for each (x, y, z) of blurX as stageBlurX

blurX[x,y,z] = sum(K(i)*grid[x-i,y,z],

i=-h..h)

for each (x, y, z) of blurXY as stageBlurY

blurXY[x,y,z] = sum(K(i)*blurX[x,y-i,z],

i=-h..h)

for each (x, y, z) of blur as stageBlurZ

blur[x,y,z] = sum(K(i)*blurXY[x,y,z-i],

i=-h..h)

for each (x, y, z) of out as stageSlice

out[x,y] = blur[x/σs,y/σs,in[x,y]/σr]

Note that the bilateral grid is designed to already chose reason-
ably good sub-sampling rates along each dimension. Therefore,
image perforation can carefully explore decimating every loop by
varying amounts, and does find some advantageous strategies, but
the overall performance gain is modest in comparison to other
pipelines we evaluated. The sampling rates used by the bilateral
grid were a spatial σs of 1/64 the image width, a range σr of 0.1,
and a grid Gaussian with width of 5. Note that in general there are
collisions in the grid, so the splatting stage increments an additional
counter “channel” by 1 in the grid (this stage is not parallelized),
and the slicing stage divides by the sum of these counters when
converting back to color space. See Chen et al. [2007] for details.

As illustrated by the Pareto frontiers in Figure 5(c), image perfo-
ration provides dramatically better results than loop perforation for
this pipeline. We attribute this to the ability of our method to sub-
sample with reconstruction the three blur stages and the slice stage.
The results in Figure 8(second row) offer a representative example
of the different optimizations found with these methods. The im-
age perforation result subsamples stageBlurX and stageBlurY
with spacing (8, 4, 1), stageBlurZ with spacing (4, 4, 1), and
stageSlice with spacing (2, 2). Based on the spatial σs parame-
ter setting, the subsampled grid arrays therefore work out to have
size (8, 16, 64) for blurX and blurXY, and size (16, 16, 64) for
blur. In each case, on-demand reconstruction is used with multi-
linear interpolation. In contrast, the loop perforation result chooses
to sample contiguously the last 91% of stageBlurX, the last 93%
of stageBlurY, the first 70% of stageBlurZ, and the last 74% of
stageSlice. Note that loop perforation cannot reconstruct miss-
ing data, so it introduces black regions in the image and fails to
handle certain color ranges.

7.4 Demosaic

A color digital camera usually acquires color information by using
a Bayer filter mosaic, which alternates between sampling the red,
green, and blue portions of the incoming spectrum in a repeating
pattern across the sensor. To obtain a final RGB image it is neces-
sary to demosaic the raw Bayer image by interpolating a complete
RGB vector at each pixel. We implemented a simple image demo-
saic algorithm which takes an input pattern that is 50% green, 25%
red and 25% blue, known as “RGGB.” The algorithm first inter-
polates missing colors along the x-dimension and then along the
y-dimension using simple linear blending of adjacent samples:

function demosaic(in , out)

repeat for each color channel c,

for each (x,y) of A[c] as stageInterpX[c]

A[c][x,y]=sum(W(x,y,c,i)*in[y,x+i],

i= -1...1)

for each (x,y) of out[c] as stageInterpY[c]

out[c][x,y]=sum(W(x,y,c,i)*A[c](y+i,x),

i= -1...1)

for each (x,y) of out , combine channels as

OutputCombination

The filter weight function W(x,y,c,i) gives kernel weights for
a neighborhood around the center pixel in either the x or y direction.
The kernel weights are a function of (x, y), because some pixels
have known colors whereas others must be interpolated (in practice,
we use weights that are either 0, 1/2, or 1). This simple algorithm
is not intended to suppress aliasing, and serves as a “stress test” for
our algorithm, because its per-pixel efficiency is already quite high,
thus limiting potential speed improvements.

Figure 5(d) compares the Pareto frontiers for image perfora-
tion and loop perforation on this pipeline. By applying different
grid sampling strategies for each color channel, image perforation
typically produces better results. The images in Figure 8(fourth
row) show a representative comparison of the two approaches. Im-
age perforation applies grid sampling with a spacing of (4, 8) for
stageInterpX[G], a spacing of (8, 2) for stageInterpY[G],
and (8, 4) for stageInterpY[B]. Finally, it grid samples
OutputCombination with a spacing of (8, 1) and the missing
samples are reconstructed on-demand. In contrast, loop perforation
executes only the first 66% of stageInterpX[G], the first 71% of
stageInterpY[G], the first 75% of stageInterpX[R], the first
69% of stageInterpY[R], the first 67% of stageInterpX[B],
the first 73% of stageInterpY[B], and the first 80% of
OutputCombination. This strategy produces unusable results.

Although image perforation outperforms loop perforation in this
case, it attenuates some high-frequency details and introduces chro-
matic aberrations due to using different sampling rates for different
color channels. We believe this type of result could be improved by
replacing the simple error metric that guides our search by a more
perceptually meaningful one.

7.5 Median

The median filter is a popular non-linear filter that removes noise
in an image. It works by replacing each pixel value with the me-
dian of the colors in its surrounding neighborhood according to the
following pseudocode:

function median_filter(in , out)

for each(x,y) of input as stageLoop

for each i as stageKernelX

for each j as stageKernelY

list_r.add(in_r[x+i,y+j])

list_g.add(in_g[x+i,y+j])

list_b.add(int_b[x+i,y+j])

out_r[x,y]= median(list_r)

out_g[x,y]= median(list_g)

out_b[x,y]= median(list_b)

Figure 5(e) compares the Pareto frontiers of image perforation
and loop perforation for this filter. In general, image perforation
outperforms loop perforation across the range of acceptable er-
rors. A comparison of the two methods is shown in Figure 8(fifth
row) at a target speedup of 3x. The loop perforation result con-
tains strong aliasing artifacts because it samples stageKernelX
and stageKernelY with a spacing of 2. These artifacts are due
to the estimated median oscillating between modes when the gath-
ered colors have a multi-modal distribution. Image perforation sam-
ples stageLoop using adaptive sampling and computes only 28%
of the samples with a grid spacing of 2, and then uses spatially
varying Gaussian interpolation to reconstruct skipped samples with
σ = 0.95.
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The second row in Figure 7 compares the result of applying our
full method to using image perforation restricted to only grid sam-
pling. At the target speedup of 2x, the full method selects an adap-
tive sampling strategy that allows computing only 36% of the sam-
ples. This program corresponds to a single point in the graph of
Figure 6(c). The comparable grid sampling strategy uses a spac-
ing of (1, 2). In the full method, samples skipped in stageLoop
are reconstructed using Gaussian interpolation with σ = 0.82,
while stageKernelX and stageKernelY are modified to evaluate
only 6% and 22% of the samples, respectively. The grid sampling
method, in contrast, reduces stageKernelX and stageKernelY
to consider only 29% and 77% of the samples in those loops, re-
spectively.

7.6 Two-pass blur

Figure 5(f) compares the Pareto frontiers for the two-pass Gaussian
blur presented in Section 3 for image perforation and loop perfora-
tion. We implemented the sum within the convolution as a manually
unrolled expression, therefore neither our method nor loop perfo-
ration are able to subsample this step. Two specific optimizations
that give roughly 5-6x speedups are highlighted in Figure 8(third
row). Image perforation achieves a 5.6x speedup by perforating
both stage1 and stage2 using grid sampling with spacing vec-
tors of (4, 1) and (4, 4), respectively. Note that this corresponds
to the maximum amount of perforation possible without exceed-
ing the Nyquı̈st limit with the chosen standard deviation of σ = 4.
To achieve a similar speedup, loop perforation executes only the
first 12% of iterations in stage1 and the first 58% of stage2. This
leaves the majority of the output pixels unassigned.

We also used this pipeline to study how image perforation works
in conjunction with common parallel scheduling and vectorization
optimizations, where vectorization is applied across color channels.
For the image perforation result shown in the third row of Figure 8,
we found that for high-resolution inputs we were able to gain an
additional speedup of 4x for parallel scheduling, 2.7x for vector-
ized scheduling, and a combined 6x speedup for both parallel and
vectorized scheduling. We performed these experiments using an
x86 machine with the AVX instruction set and 4 processing cores.
We observed similar performance gains for the program variants
found elsewhere along the Pareto frontier, which is shown in Fig-
ure 5(f). For lower resolution inputs we found that the benefit of
parallelism is less pronounced due to the overhead of inter-thread
communications. In all, these experiments confirm that pipelines
optimized with image perforation enjoy benefits of parallelism and
vectorization, similar to other image pipelines (see also Section 7.8
for additional results).

7.7 Unsharp mask

Finally, we used image perforation to accelerate a standard unsharp
mask filter that is designed to enhance high-frequency image de-
tails, implemented as follows:

function unsharp(in ,out)

twoPassBlur(in ,blur)

for each (x, y) of out as stageOutput

out[x,y] = s*in[x,y] + (1-s)blur[x,y]

Here the sharpness coefficient s controls the amount of detail
enhancement and was set to 3. Figure 5(g) shows the Pareto fron-
tiers for this effect. Again, image perforation delivers a significantly
better performance-error trade-off than loop perforation across the
range of acceptable errors. Figure 8(bottom row) highlights two
optimized results with comparable performance. The image perfo-

ration result uses grid sampling with spacings (8, 1) for both stages
of the blur, and leaves the output stage alone. In contrast, the loop
perforation result samples the last 42% of the first blur stage and
last 34% of the second blur stage. Note that the loop perforation
introduces black regions in the blur, which after unsharp masking
become overly bright regions of the output image.

7.8 Comparison with Halide

For two of our image pipelines, we compared optimized results
found with image perforation to optimized implementations avail-
able in Halide [Ragan-Kelley et al. 2013] in order to study the re-
lationship between vectorization and parallel scheduling optimiza-
tions and perforation optimization strategies that can result in ir-
regular patterns in the processed image arrays. However, note that
C++ compilers do not apply the same optimizations as Halide.
Therefore, to achieve a fair comparison we ported our optimized
programs from C++ to Halide to allow directly comparing approxi-
mated and non-approximated Halide programs. We ported the same
optimized programs that were previously discussed and highlighted
in Figure 8.

The results are shown in Table II. Modest speedups of just un-
der 2x are obtained when using vectorization. When vectorization
is disabled for the blur program, a more substantial 3x speedup
is obtained. The reason our programs are not faster when vector-
ized is that Halide’s current vectorization does not always succeed
when presented with the memory access patterns used in our grid
samples. We believe these results could be improved by carefully
loading non-contiguous samples into SIMD registers. However, we
defer this important topic to future research.

Table II. Performance comparison between optimized Halide implementa-

tions and programs first optimized using image perforation and then using

Halide.

Application Vectorized Original Perforation + Speedup

Halide Halide

[ms] [ms]

Bilateral grid Yes 7.8 4.1 1.9x

Two stage blur No 170 52.2 3.3x

Two stage blur Yes 72.7 41.3 1.8x

8. CONCLUSION AND FUTURE WORK

We have presented a new general purpose technique for optimiz-
ing image pipelines called image perforation. Image perforation
works by transforming loops so that they skip certain samples. Our
method then reconstructs these skipped samples from the samples
that are computed, in case the skipped samples are needed in fu-
ture processing stages. Our approach considers a range of perfo-
ration strategies and reconstruction methods that include regular
grid sample placement and two strategies for nonuniform sample
placement that attempt to locate samples more densely in areas
with high-frequency content. We also described a genetic search
that explores the combinatoric space of possible optimizations and
outputs a sorted list of program variants that effectively trade vi-
sual fidelity for performance gains. We evaluated image perfora-
tion by implementing seven different image pipelines using a pro-
totype compiler and search tool. We also compared our approach
to loop perforation, a related method described by Sidiroglou-
Douskos et al. [2011] for optimizing general purpose programs that
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Application Input Image Reference Output Image Perforation Loop Perforation

Bilateral Filter

Bilateral Grid

Blur

Demosaic

Median

Unsharp Mask

Fig. 8. Image perforation and loop perforation results for four image pipelines from top to bottom: bilateral filter, bilateral grid, blur,
demosaic, median and unsharp mask. Each row compares optimized pipelines computed using each method for similar speedup factors.
Please consult the supplemental document for extensive comparisons for each of these pipelines. Note that one can zoom in to see the Bayer
mosaic pattern for the demosaic input. From top to bottom row, credits: © Charles Roffey; Trey Ratcliff; Neal Fowler; Eric Wehmeyer; Duncan Harris; Sandy Glass.
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considers only a subset of the optimizations used in image perfora-
tion. In all of the cases we studied, image perforation outperforms
loop perforation, often by orders of magnitude.

Several complementary optimizations could be combined with
our approach. As discussed in Section 7.6, we performed pre-
liminary experiments on loop transformations by exploring par-
allelization and vectorization over color channels, and found our
speedups persisted under these optimizations. It would be inter-
esting to combine our system with sophisticated loop scheduling
optimizers such as Halide [Ragan-Kelley et al. 2013] since their
optimizations are complementary to ours. We presented prelimi-
nary experiments showing that our method can be used to gain
additional accelerations in Halide. However: challenges are also
present, such as how one might best vectorize the regular sampling
patterns produced by grid sampling, or the irregular access patterns
produced by adaptive or importance sampling. Local program mod-
ifications [Sitthi-amorn et al. 2011] are another source of comple-
mentary optimizations. Our method performs more global modifi-
cations which change image sampling and reconstruction, but both
kinds of mutations could potentially be useful in accelerating image
pipelines. Finally, it may be beneficial to use reconstruction that is
tailored to be efficient for our adaptive sampling pattern, so that
adaptive sampling can be chosen even for pipelines that are already
highly efficient.

The original loop perforation method could potentially cause er-
rors to grow arbitrarily large through an arbitrary computation. In
practice, our errors appear to be smaller when applied to image
pipelines, due to the reconstruction step. However, an interesting
area for future work would be to incorporate probabilistic accuracy
bounds similar to Misailovic et al. [2011] or proofs that show pro-
grams robust to small perturbations [Chaudhuri et al. 2011].

Another avenue for future work is adding support for stream-
ing or GPU implementations. Streaming facilities have been im-
plemented in GPU languages such as Brook [Buck et al. 2004]
and are particularly useful for video processing or processing very
large images that cannot fit in memory. Extending image perfo-
ration to work with a GPU would require careful consideration of
the sampling and reconstruction steps to achieve high performance.
For example, our spatially varying Gaussian blur currently uses the
method of repeated integration [Heckbert 1986], but this requires
additional precision which might be a bad assumption on the GPU.
In these cases, other approaches such as Gaussian pyramids [Adel-
son et al. 1984] might prove more efficient.

APPENDIX

A. INTENSITY REMAPPING OF IMPORTANCE

MAPS

This appendix develops an intensity remapping technique that is
used as part of importance sampling in Section 3.1. As input,
we are given an importance map image v with n pixels indexed
0, . . . , n − 1. What we would like is an output image v′ such that
simply quantizing v′ using existing error-diffusion methods will re-
sult in the desired sample locations.

We have three goals in this remapping process. First, v might
have very low or high importance values, so it is necessary to remap
them using a global scale factor s. Additionally, we would like to
produce output intensities that do not exceed 1, because our quanti-
zation should result in either the absence or presence of a sample (0
or 1, respectively). Finally, we would like to reach the target sample
count fn, where f is the fraction of pixels to sample. We express
these mathematically by setting v′i = min (svi, 1). We want the

target image to sum to the sample count, so we have the objective:
n−1∑

i=0

min (svi, 1) = fn (2)

In theory, we could directly solve for the unknown scale factor s
by using Newton’s method on equation (2), and then use this to
recover the image v′. However, that is inefficient and can take a
large number of iterations. Our efficient approximation algorithm
proceeds by binning the intensities vi into a histogram with m bins,
where the bin centers are xi and the counts are hi. We approximate
equation (2) using the histogram:

m−1∑

i=0

hi min (sxi, 1) = fn (3)

For any scale factor s we can choose a split point k such that the
clamp operation is not applied before k and is applied after k. We
have the constraints: sxk < 1 and either sxk+1 ≥ 1 or k = m− 1.
Thus equation (3) becomes:

s

k∑

i=0

hixi +

m−1∑

k+1

hi = fn (4)

Now we define the cumulative sums Hk =
∑k

i=0
hi and Xk =∑k

i=0
hixi. These can be precomputed along with the histogram.

We solve equation (4) to obtain sk, which is a potential solution for
the scale factor s, indexed by the split point k that has been chosen:

sk =
Hk − n(1− f)

Xk

(5)

Our algorithm determines the final scale factor s by enumerating
k = 0, . . . ,m − 1 and returning any sk such that the constraints
hold. In practice, to handle round-off error, we add a small machine
epsilon and check whether sxk < 1 + ǫ and sxk+1 ≥ 1− ǫ. Once
the scale factor is known we then evaluate the remapped image v′

and proceed to dither it.
The time complexity of this algorithm is O(n+m). We empiri-

cally determined by simulations that the error in s is inversely pro-
portional to the number of histogram bins. In practice, we choose
m = 1, 000 bins which gave a maximum relative error of 0.5% for
our simulated data.
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MÖLLER, T., NILSSON, J., MUNKBERG, J., HASSELGREN, J., SUG-

IHARA, M., CLARBERG, P., ET AL. 2014. Coarse pixel shading. In High

Performance Graphics.

WEI, L.-Y. 2008. Parallel poisson disk sampling. In ACM Transactions on

Graphics (TOG). Vol. 27. ACM, 20.

YANG, L., SANDER, P. V., AND LAWRENCE, J. 2008. Geometry-aware

framebuffer level of detail. In Eurographics Symposium on Rendering

(EGSR).

YOUNG, I. T. AND VAN VLIET, L. J. 1995. Recursive implementation of

the gaussian filter. Signal processing 44, 2, 139–151.

YU, Y. AND XINJIE, Y. 2007. Cooperative coevolutionary genetic algo-

rithm for digital iir filter design. Industrial Electronics, IEEE Transac-

tions on 54, 3, 1311–1318.

Received September 2015; accepted Month ZZZ

ACM Transactions on Graphics, Vol. 35, No. 5, Article XXX, Publication date: October 2016.


	Introduction
	Related work
	Image perforation
	Perforation strategies
	Reconstruction
	On-demand reconstruction
	Rewriting pixel reads
	Storage optimization
	Congruence simplification

	Special handling of color channels

	Prototype language and compiler
	Genetic search for good schedules
	Image benchmark
	Results
	Artistic blur
	Bilateral filter
	Bilateral grid
	Demosaic
	Median
	Two-pass blur
	Unsharp mask
	Comparison with Halide

	Conclusion and future work
	Intensity remapping of importance maps

