
EUROGRAPHICS 2018 / D. Gutierrez and A. Sheffer
(Guest Editors)

Volume 37 (2018), Number 2

Approximate Program Smoothing Using Mean-Variance Statistics,
with Application to Procedural Shader Bandlimiting

Y. Yang1 and C. Barnes1,2

1University of Virginia, USA 2Adobe Research

(a) Ground Truth (b) No Antialiasing (c) Our Result (d) Dorn et al. 2015 (e) Supersampling

2115 ms, L2 error: 0.117 4041 ms (2x), L2 error: 0.021 1892 ms (1x), L2 error: 0.095 3659 ms (2x), L2 error: 0.072

Figure 1: Our paper gives a novel compiler framework for smoothing programs. Here we show how our smoothing framework can be
applied to bandlimiting (antialiasing) procedural shader programs. In (a) is the ground truth result for a brick shader, estimated by using
1000 samples; (b) is the aliased result due to naively evaluating the original shader program; (c) is our result; (d) is the result of previous
work; and (e) is supersampling, chosen to use comparable run-time as our result. The L2 errors are reported in sRGB color space, with the
inset heatmap depicting per-pixel L2 error. Our result has significantly less error, noise, and aliasing than other approaches.

Abstract
We introduce a general method to approximate the convolution of a program with a Gaussian kernel. This results in the program
being smoothed. Our compiler framework models intermediate values in the program as random variables, by using mean and
variance statistics. We decompose the input program into atomic parts and relate the statistics of the different parts of the
smoothed program. We give several approximate smoothing rules that can be used for the parts of the program. These include
an improved variant of Dorn et al. [DBLW15], a novel adaptive Gaussian approximation, Monte Carlo sampling, and compactly
supported kernels. Our adaptive Gaussian approximation handles multivariate Gaussian distributed inputs, gives exact results
for a larger class of programs than previous work, and is accurate to the second order in the standard deviation of the kernel for
programs with certain analytic properties. Because each expression in the program can have multiple approximation choices, we
use a genetic search to automatically select the best approximations. We apply this framework to the problem of automatically
bandlimiting procedural shader programs. We evaluate our method on a variety of geometries and complex shaders, including
shaders with parallax mapping, animation, and spatially varying statistics. The resulting smoothed shader programs outperform
previous approaches both numerically and aesthetically.

CCS Concepts
•Software and its engineering → Compilers; •Computing methodologies → Rendering;

1. Introduction
In many contexts, functions that have aliasing or noise could
be viewed as undesirable. In this paper, we develop a general
compiler-driven machinery to approximately smooth arbitrary pro-
grams, and thereby suppress aliasing or noise. We then apply this
machinery to bandlimit procedural shader programs. In order to
motivate our approach concretely by an application, we first dis-
cuss how procedural shaders may be bandlimited, and then return
to our smoothing compiler.

Procedural shaders are important in rendering systems, because
they can be used to flexibly specify material appearance in virtual
scenes [AMHH08]. In this work we focus on purely procedural
shaders that do not contain texture lookups or other references to
buffers. One visual error that can appear in procedural shaders is
aliasing. Aliasing artifacts occur when the sampling rate is below
the Nyquist limit [Cro77]. There are two more conventional ap-
proaches used to reduce such aliasing: supersampling and prefilter-
ing. We discuss these before discussing our smoothing compiler.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.



Y. Yang & C. Barnes / Approximate Program Smoothing Using Mean-Variance Statistics, with Application to Procedural Shader Bandlimiting

Input
Program

Decomposition
(§3)

Approximate
Smoothing Rules (§4)

Genetic Search
(§5)

sin(x2)
sin(·)
(·)2

• Dorn et al. (§4.1)
• Adaptive Gaussian (§4.2)
• Monte Carlo (§4.3)
• Compact Kernels (§4.4)

Optional:
Quality 

Improvement
(§6)

Smoothed
output

program

Figure 2: An overview of our compiler framework. The components
of our framework are discussed in the introduction.

Supersampling increases the spatial sampling rate, so that the
output value for each pixel is based on multiple samples. The sam-
pling rate can be uniform across the image. The sampling rate can
also be chosen adaptively based on measurements such as local
contrast [DW, Mita, HJW�08, Mitb]. This approach in the limit re-
covers the ground truth image, but can be time-consuming due to
requiring multiple samples per pixel.

Prefiltering typically stores precomputed integrals in mipmaps
[Wil83] or summed area tables [Cro84]. This approach offers the
benefit of accurate solutions with a constant number of operations,
provided that the shading function can be spatially tiled or other-
wise represented on a compact domain. However, in practice many
interesting shaders do not tile, so this limits the applicability of
this method. Further, prefiltering increases storage requirements
and may replace inexpensive computations with more expensive
memory accesses. This approach is not practical for functions of
more than two or three variables because memory costs scale expo-
nentially.

An alternative strategy is to construct a bandlimited variant of the
shading function by symbolic integration. This can be expressed
by convolving the shading function with a low-pass filter [NRS82].
Exact analytic band-limited formulas are known for some special-
ized functions such as noise functions [LLDD09]. In most cases,
however, the shader developer must manually calculate the convo-
lution integral. However, frequently the integrals cannot be solved
in closed form, which limits this strategy.

We take a different approach than most previous work, by using
a compiler framework to smooth an input program. We show an
overview of this process in Figure 2. Our goal is to smooth an ar-
bitrary input function represented as a program, by approximately
convolving it with a Gaussian filter. This convolution could be mul-
tidimensional: for shader programs, the dimension is typically 2D
for spatial coordinates. We would also like the output program to
be as efficient as possible. The compiler takes the program as in-
put, and decomposes it into atomic parts whose bandlimited solu-
tions are easier to obtain (Section 3). We then relate the statistics
of the different atomic parts, under the desired smoothing process.
Specifically, we treat each intermediate value in the computation as
a random variable with a certain probability distribution. We use
mean and variance statistics to model these random variables. A
key insight in our work is that we derive more accurate rules for
modeling the variance in addition to the mean statistics considered
in the previous work of Dorn et al. [DBLW15]. Each part of the pro-
gram accepts one or more inputs, which are assumed to be Gaus-
sian distributed according to these mean and variance statistics, and

outputs a single variable, which is also assumed to be Gaussian dis-
tributed. In this manner, we can smooth arbitrary programs that
operate over floating-point numbers. Our approach can be applied
to bandlimit shader programs, because we take as input an original
shader that may have aliasing, and produce as output bandlimited
approximations that have been convolved with the Gaussian kernel.

For the different atomic parts of the input program, we need rules
for how to approximate the mean and variance of the smoothed re-
sult. The previous work of Dorn et al. [DBLW15] has one such
rule. We improve the accuracy of this rule, relate it to our frame-
work, and explain a class of functions (or programs) for which it
gives exact results (Section 4.1). We also introduce new rules that
are more precise, but also more complex to compute. Specifically,
we develop a novel adaptive Gaussian approximation (Section 4.2).
This approximation handles multivariate Gaussian distributed in-
puts, is exact for a larger class of functions than previous work, and
accurate to the second power of the standard deviation for functions
with certain analytic properties. We also relate Monte Carlo sam-
pling (Section 4.3) to our framework. For our last approximation
rule, we discuss how compactly supported kernels (Section 4.4) can
be used for parts of the computation that would otherwise be unde-
fined. As an illustrative example, in Figure 3, we show the appli-
cation of each of our approximate smoothing rules to a simple 1D
function. In this case, smoothing is applied only to the single input
dimension (x). In particular, the previous work of Dorn et al. per-
forms poorly, as shown in Figure 3, when a function changes in fre-
quency across spatial coordinates. This happens often for shaders
because of foreshortening: frequency changes occur as a texture
becomes distant from the camera.

For each atomic part of the input program, we have different op-
tions for approximations, so we use a genetic search to apply rules
to individual and connected groups of atomic parts. The search al-
gorithm finds Pareto-optimal shader variants that optimally trade
off running time and approximation error (Section 5). We also show
how we can make minor quality improvement to the resulting pro-
grams by applying denoising (Section 6).

To evaluate our framework, we applied to three geometries a va-
riety of complex shaders, including shaders with parallax mapping,
animation, and spatially varying statistics. We compare the per-
formance with Dorn et al. [DBLW15] and commonly used super-
sampling. Our framework gives a wider selection of band-limited
programs with less error than Dorn et al. [DBLW15]. Our shaders
are frequently an order of magnitude faster than supersampling for
comparable errors.

2. Related work

Mathematics and smoothing. Smoothing a function is beneficial
in domains such as optimizing non-convex or non-differentiable
objectives [Nes05, CX99, CC99]. In numerical optimization, this
approach is sometimes known as the continuation method or mol-
lification [ENW95, EN97, Wu]. In our framework, we model the
smoothing process on the input program by relating the statistics
of each variable, and apply a variety of approximations to smooth
the program. Our idea of associating a range with each interme-
diate value of a program is conceptually similar to interval anal-
ysis [Moo79]. Chaudhuri and Solar-Lezama [CSL11] developed a

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



Y. Yang & C. Barnes / Approximate Program Smoothing Using Mean-Variance Statistics, with Application to Procedural Shader Bandlimiting

(a) Input program (b) Dorn et al. [DBLW15], (c) Adaptive Gaussian, (d) Monte Carlo sampling, (e) Compactly supported kernels,
(Section 4.1) (Section 4.2) (Section 4.3) (Section 4.4)

Figure 3: A visual example of our approximate smoothing rules. (a) The input program is the function y= f (x) = sin(x2). This program is
decomposed in our framework as the composition of two atomic parts that we do know how to smooth:sin() and x2. The “ground truth"
correctly smoothed program (or function) is shown in blue dashed curves in sub�gures (b-e). This is determined by a convolution that
is sampled at a very high sample rate. The orange lines in sub�gures (b-e) approximate the ground truth convolution by using different
approximation rules. The dark red subplots in (b-e) give an abstract illustration of the kernels that were actually used to evaluate these.
(b) The approximation by Dorn et al. [DBLW15] (Section 4.1); (c) Our adaptive Gaussian approximation (Section 4.2); (d) Monte Carlo
sampling approximation with 8 samples (Section 4.3); (e) Compactly supported kernels approximation: here we use a box kernel (Section 4.4).
We use a standard deviation ofs = 0:25 for all input distributions.

smoothing interpreter that uses intervals to reason about smoothed
semantics of programs. The homogeneous heat equation with initial
conditions given by a nonsmoothed function results in a smoothing
process, via convolution with its Green's function, the Gaussian.
Thus, connections can be made between convolution with a Gaus-
sian and results for the heat equation, such as �ysik [�ys12].

Procedural shader antialiasing. The use ofantialiasingto re-
move sampling artifacts is important and well studied in computer
graphics. The most general and common approach is to numerically
approach the band-limited signal using supersampling [AGB00].
Stochastic sampling [DW, Cro77] is one effective way to achieve
this. The sampling rate can be effectively lowered if it is adaptively
chosen according to the contrast of the pixel [DW,Mita,HJW� 08,
Mitb]. In video rendering, samples from previous frames can also
be reused for computation ef�ciency [YNS� 09]. An alternative to
sample-basedantialiasing is to create a band-limited version of
a procedural shader. This can be a dif�cult task because analyti-
cally integrating the function is often infeasible. There are several
practical approaches [Ebe03] that approximate the band-limited
shader functions by sampling. This includes clamping the high-
frequency components in the frequency domain [NRS82], and pro-
ducing lookup tables for static textures using mipmapping [Wil83]
and summed area tables [Cro84].

Like our work, and unlike most other work in this area, Dorn
et al. [DBLW15] use a compiler-driven technique to approximate
a smoothing convolution by decomposing an arbitrary input pro-
gram into atomic parts that we know how to individually smooth.
Like our work, Dorn et al. use a genetic search to select between
these rules. We adapt Dorn et al. as one of the approximation rules
into our framework with two improvements: better standard devi-
ation estimates and the collection of a Pareto frontier of smoothed
programs instead of one single output program. Unlike Dorn et
al. [DBLW15], which models only mean statistics, our framework
�exibly incorporates both mean and variance statistics. We also use
several approximations that have higher accuracy, which can better
model textures that change in spatial frequency due to foreshorten-
ing.

Heuristic search over programs. Genetic algorithms and ge-
netic programming (GP) are general machine learning strategies
that use an evolutionary methodology to search for a set of
programs that optimize some �tness criterion [Koz92]. In com-
puter graphics, Kensler and Shirley [KS] demonstrated that ge-
netic algorithms could be used to optimize ray-triangle intersec-
tion routines. Sitthi-Amorn et al. [SAMWL11] described a GP
approach to the problem of automatic procedural shader sim-
pli�cation. Other researchers have also investigated automatic
shader simpli�cation by heuristic search methods that simplify pro-
grams [OKS, Pel, HFTF15], and by jointly modifying shaders and
geometry [WYY� 14]. Brady and colleagues [BLPW14] showed
how to use GP to discover new analytic re�ectance functions. We
use a similar approach as [SAMWL11] to automatically generate
the Pareto frontier of approximately smoothed functions.

3. Decomposition and Associated Notation

In this section, we �rst explain in Section 3.1 how the input pro-
gram is decomposed into atomic parts. Next, in Section 3.2, we
de�ne math notation associated with these atomic parts.

3.1. Decomposing the Input Program into Atomic Parts

Most input programs lack a closed-form solution for their convolu-
tion with a Gaussian kernel. We therefore decompose the compu-
tation graph into atomic parts that individually have known closed-
form solutions. We then compute approximate mean and variance
statistics for each part, and substitute the mean and variance that
are output from one group of compute nodes as the inputs for any
subsequent compute nodes.

Our compiler-based framework assumes the input program has a
compute graph, where each node represents a �oating-point com-
putation, and the graph is a directed acyclic graph (DAG). This
compute graph is constructed directly by the programmer using
atomic operations such as addition, multiplication, trigonometric
functions, and others: please see the supplemental document for a
full list. We use lower-case letters such asx andy to represent real
values (scalars) in the input program. These can be either input,
output, or intermediate values. We use corresponding capital letters

c 2018 The Author(s)
Computer Graphics Forumc 2018 The Eurographics Association and John Wiley & Sons Ltd.


